Блок цилиндров – «сердце» ДВС. Кроме шатунно-поршневой группы, в нем предусмотрены литые и высверленные каналы и отверстия, а также места установки подшипников.
   На подшипниках в блоке цилиндров вращается коленчатый вал (см. рис. 2.5). Во внутренних полостях блока, между его двойными стенками, циркулирует охлаждающая жидкость, там же проходят специальные каналы системы смазки двигателя, по которым циркулирует масло. Наружное оборудование двигателя монтируется преимущественно на блоке цилиндров и при работающем моторе составляет с ним единое целое. Нижняя часть блока называется картером и представляет собой поддон (резервуар) для масла.
 
   Рис. 2.10. Детали шатунно-поршневой группы:
   1 – маслосъемное поршневое кольцо; 2, 3 – компрессионные поршневые кольца; 4, 6 – поршни; 5 – поршневой палец; 7 – шатун; 8 – крышка шатуна; 9 – шатунный вкладыш; 10 – отверстие на шатуне для выхода масла; 11 – метка «П» на поршне
 
   Верхняя часть двигателя – вторая по значимости и по величине его составляющая – называется головкой блока цилиндров. В ней расположены камеры сгорания, клапаны и свечи зажигания, а также распределительный вал (на большинстве двигателей легковых автомобилей). В головке, как и в блоке цилиндров, предусмотрены каналы и полости для циркуляции охлаждающей жидкости и масла. Головка крепится к блоку цилиндров с помощью резьбовых соединений, а сверху через прокладку закрывается штампованной крышкой.
   ДВС работает в очень жестком режиме: коленчатый вал двигателя на холостом ходу совершает около 1000 оборотов в минуту, то есть за секунду – около 16 полных вращений.
   При движении автомобиля количество оборотов возрастает в 2–5 раз, то есть всего лишь за одну секунду коленвал совершает до 80 оборотов. При этом коленвал связан с поршнями, причем всего за пол-оборота вала поршень проделывает весь путь в цилиндре сверху вниз или наоборот, а за полный оборот – совершает два хода, да еще с полной остановкой в верхней и нижней мертвых точках и последующим изменением направления движения на противоположное. При этом поршни перемещаются в цилиндрах при очень высоких температурах и давлении.

Газораспределительный механизм (ГРМ)

   Газораспределительный механизм предназначен для своевременного впуска в цилиндры двигателя горючей смеси и выпуска отработавших газов. Также он обеспечивает надежную изоляцию камеры сгорания от окружающей среды во время тактов сжатия и рабочего хода.
   ГРМ состоит из следующих основных элементов (рис. 2.11):
   ♦ распределительного вала;
   ♦ рычагов;
   ♦ ремня газораспределительного механизма (ремень ГРМ) или цепи;
   ♦ впускных и выпускных клапанов с мощными пружинами;
   ♦ впускных и выпускных каналов.
 
   Рис. 2.11. Газораспределительный механизм:
   1 – коленчатый вал; 2 – ведущая звездочка; 3 – звездочка натяжного устройства; 4 – двуплечий рычаг; 5 – пружина; 6 – регулировочный винт; 7 – коромысло; 8 – ось коромысла; 9 – наконечник регулировочного винта; 10 – опорная шайба пружины; 11 – наружная и внутренняя пружины; 12 – крепления опорной шайбы на клапане; 13, 16 – выпускной и впускной клапаны; 14 – кулачок; 15 – ведомая звездочка распределительного вала; 17 – упорный фланец
 
   Распределительный вал в большинстве двигателей легковых автомобилей установлен на головке блока цилиндров. Его образуют кулачки (эксцентрики), количество которых соответствует числу клапанов двигателя, то есть каждый кулачок работает только со своим конкретным клапаном. При вращении распределительного вала его кулачки через рычаги воздействуют на клапаны. Этим обеспечивается своевременное открытие и закрытие впускных и выпускных клапанов. Иными словами, для открытия и закрытия клапанов должен повернуться распределительный (или кулачковый) вал.
   В большинстве ДВС распредвал вращается от коленвала: с помощью или цепной передачи, или зубчатого ремня, натяжение которых регулируется специальными устройствами.
   Ременный привод работает тише, прост в установке, не требует смазки, упрощает конструкцию двигателя и снижает его массу. Цепной привод имеет обратный эффект. Но если рвется ремень ГРМ, выходят из строя клапаны, если же повреждена цепь, то «страдает» фактически только она. Натяжение в цепном приводе регулируется подпружиненным плунжером, а ремня – роликом.
   Большинство современных двигателей оснащено ременным приводом распредвала.
   На примере одноцилиндрового ДВС рассмотрим работу газораспределительного механизма (см. рис. 2.7). Распредвал, получив вращение от коленвала, поворачивается. Его кулачок набегает на рычаг, который нажимает на стержень подпружиненного клапана и, преодолев сопротивление пружины, открывает его. Продолжая вращаться, кулачок сбегает с рычага (толкателя), и под воздействием пружины клапан закрывается. Дальше поршень через открытый впускной или выпускной клапан соответственно засасывает горючую смесь или выталкивает отработавшие газы.
   Для лучшего наполнения цилиндров рабочей смесью впускной клапан открывается чуть раньше того момента, когда поршень достигает ВМТ, а выпускной (для лучшей очистки от отработавших газов) – несколько раньше, чем поршень доходит до НМТ. В результате впускной клапан начинает открываться в тот момент, когда выпускной клапан еще полностью не закрылся. Такое положение клапанов называется их перекрытием. Когда же оба клапана в одном цилиндре надежно закрыты, происходит такт сжатия или рабочий ход поршня.

Система питания карбюраторного двигателя

   Система питания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и по-дачи ее в цилиндры двигателя. Количество и качество этой смеси должно быть разным при различных режимах работы двигателя, что также находится «в компетенции» системы питания. Поскольку мы будем рассматривать работу бензиновых двигателей, топливом у нас всегда будет бензин.
   В зависимости от вида устройства, осуществляющего подготовку топливо-воздушной смеси, двигатели могут быть инжекторными, карбюраторными или оборудованными моновпрыском.
   Система питания состоит из следующих основных элементов (рис. 2.12):
   ♦ топливного бака;
   ♦ топливопроводов;
   ♦ фильтров очистки топлива;
   ♦ топливного насоса;
   ♦ воздушного фильтра;
   ♦ карбюратора или инжектора с электронной системой управления.
   Топливный бак (или бензохранилище) – это специальная металлическая емкость вместимостью 40–80 литров, которая чаще всего устанавливается в задней (более безопасной) части легкового автомобиля. Топливо в бензобак заливают через горловину, в которой предусмотрена трубка для выхода воздуха при заправке. На некоторых машинах в самой нижней точке бензобака есть сливная пробка, позволяющая при необходимости полностью очистить бак от нежелательных составляющих бензина – воды и мусора.
   Бензин, залитый в бак легкового автомобиля, предварительно очищается сетчатым фильтром, установленным внутри бака на топливозаборнике. В бензобаке также размещен датчик уровня топлива (поплавок с реостатом), показания которого выводятся на щиток приборов.
   Из топливного бака бензин подается к карбюратору по топливопроводу, который проходит под днищем автомобиля. По пути топливо проходит через фильтр тонкой очистки. Бензин из бака отправляет «в дорогу» топливный насос. Топливные насосы бывают механические и электрические. Механические насосы используют для машин с карбюраторными двигателями. На автомобили, оборудованные электронным впрыском, устанавливают электрические насосы.
 
   Рис. 2.12. Система питания автомобиля:
   1 – топливный бак; 2 – датчик указателя уровня топлива; 3 – карбюратор; 4 – воздушный фильтр; 5 – топливный насос; 6 – шланг подвода нагретого воздуха; 7 – выпускной трубопровод; 8 – дополнительный глушитель; 9 – основной глушитель; 10 – труба глушителя; 11 – топливопровод
 
   Поскольку сейчас мы рассматриваем систему питания карбюраторного двигателя, остановимся подробнее на механических насосах.
   Механический насос (рис. 2.13) состоит из корпуса, подпружиненной диафрагмы с механизмом привода, впускного и нагнетательного (выпускного) клапанов, а также сетчатого фильтра. Топливный насос в зависимости от марки автомобиля приводится в действие либо эксцентриком (кулачком) распредели тельного вала, либо эксцентриком, размещенным на валу привода масляного насоса и прерывателя-распределителя. В обоих случаях вращающийся эксцентрик качает рычаг привода топливного насоса, прижатый к нему пружиной. Этот рычаг воздействует на шток с подпружиненной диафрагмой.
   Когда рычаг тянет шток с диафрагмой вниз, пружина диафрагмы сжимается, и над ней создается разрежение, под действием которого впускной клапан, преодолев усилие своей пружины, открывается. Через этот клапан топливо из бака втягивается в пространство над диафрагмой. Когда рычаг освобождает шток диафрагмы (часть рычага, связанная со штоком, перемещается вверх), диафрагма под действием собственной пружины также перемещается вверх, впускной клапан закрывается, и бензин выдавливается через нагнетательный клапан к карбюратору. Этот процесс происходит при каждом повороте приводного вала с эксцентриком.
 
   Рис. 2.13. Схема работы топливного насоса:
   1 – фильтр; 2 – всасывающий клапан; 3 – нагнетательный клапан; 4 – подводная трубка; 5 – головка топливного насоса; 6 – штанга привода; 7 – тяга диафрагмы; 8 – рычаг привода топливного насоса; 9 – ось рычага привода
 
   Бензин в карбюратор выталкивается только за счет усилия пружины диафрагмы при перемещении ее вверх. При заполнении карбюратора до необходимого уровня его специальный игольчатый клапан перекроет доступ бензина. Так как качать топливо будет некуда, диафрагма топливного насоса останется в нижнем положении: ее пружина будет не в силах преодолеть создавшееся сопротивление. И лишь когда двигатель израсходует часть топлива из карбюратора, его игольчатый клапан откроется и диафрагма под действием пружины сможет втолкнуть новую порцию топлива из бензонасоса в карбюратор.
   Бензонасос имеет рычажок, выступающий из его корпуса наружу. Он предназначен для ручной подкачки топлива (например, при испарении бензина из карбюратора из-за длительного перерыва в эксплуатации).
   Воздушный фильтр (рис. 2.14), расположенный сверху на карбюраторе, очищает воздух от пыли и других механических примесей перед поступлением его в карбюратор для последующего смешивания с бензином. В воздушный фильтр воздух поступает через трубу воздухозаборника, которая затем разделяется на две части. Через одну часть холодный воздух всасывается в теплую погоду (летом), через другую часть воздух, подогретый выпускным коллектором, всасывается в холодную погоду (зимой). Переход от «лета» к «зиме» и наоборот на разных автомобилях выполняется по-разному: либо с помощью специального рычажка-переключателя, либо поворотом корпуса воздушного фильтра, либо автоматически.
 
   Рис. 2.14. Воздушный фильтр двигателя:
   1 – гайка; 2 – шайба; 3 – уплотняющая прокладка; 4 – регулирующая перегородка; 5 – прокладка регулирующей перегородки; 6 – фильтрующий элемент приточной вентиляции картера; 7 – фильтрующий элемент воздуха; 8 – крышка; 9 – приемный патрубок подогретого воздуха; 10 – приемный патрубок холодного воздуха; 11 – корпус

Общее устройство карбюратора

   Карбюратор предназначен для приготовления горючей смеси, разной по качеству (соотношению бензина и воздуха) и количеству в зависимости от режимов работы двигателя, и ее подачи в цилиндры двигателя.
   Элементарный карбюратор состоит из следующих основных элементов (рис. 2.15):
   ♦ поплавковой камеры;
   ♦ поплавка с игольчатым запорным клапаном;
   ♦ распылителя;
   ♦ смесительной камеры;
   ♦ диффузора;
   ♦ воздушной и дроссельной заслонок;
   ♦ топливных и воздушных каналов с жиклерами.
 
   Рис. 2.15. Схема карбюратора:
   1 – рычаг ускорительного насоса; 2 – винт регулировки подачи топлива ускорительным насосом; 3 – топливный жиклер переходной системы второй камеры; 4 – воздушный жиклер эконостата; 5 – воздушный жиклер переходной системы; 6 – топливный жиклер эконостата; 7 – воздушный жиклер главной дозирующей системы второй камеры; 8 – эмульсионный жиклер эконостата; 9 – распылитель эконостата; 10 – распылитель главной дозирующей системы второй камеры; 11 – клапан распылителя ускорительного насоса; 12 – распылитель ускорительного насоса; 13 – воздушная заслонка; 14 – малый диффузор первой камеры; 15 – воздушный жиклер главной дозирующей системы первой камеры; 16 – воздушный жиклер пускового устройства; 17 – тяга; 18 – воздушный жиклер системы холостого хода; 19 – игольчатый клапан; 20 – топливный фильтр; 21 – электромагнитный клапан; 22 – топливный жиклер системы холостого хода; 23 – главный топливный жиклер первой камеры; 24 – корпус экономайзера; 25 – эмульсионный жиклер системы холостого хода; 26 – дроссельная заслонка первой камеры; 27 – распылитель главной дозирующей системы первой камеры; 28 – дроссельная заслонка второй камеры; 29 – главный топливный жиклер второй камеры
 
   В поплавковой камере постоянный уровень топлива поддерживается поплавком, соединенным с игольчатым клапаном. По мере расходования топлива поплавок опускается, открывается игольчатый клапан и новая порция бензина вливается в топливную камеру. При достижении нормального уровня в поплавковой камере поплавок, всплывая, закрывает иглой входное отверстие и прекращает доступ бензина. По трубке распылителя бензин из поплавковой камеры попадает в смесительную камеру, где смешивается с поступающим из входного патрубка воздухом. Уровень топлива в поплавковой камере несколько ниже кромки выходного отверстия распылителя, поэтому при неработающем двигателе топливо из поплавковой камеры не вытекает даже при наклонном положении машины.
   Для дозирования бензина в нижнюю часть трубки распылителя ввернут жиклер, представляющий собой пробку с калиброванным отверстием. Диффузор (суженный внутри короткий патрубок) служит для увеличения скорости воздушного потока в центре смесительной камеры и создания разрежения около конца распылителя (при работающем двигателе), что необходимо для высасывания топлива из топливной камеры и лучшего его распыления. Количество горючей смеси, подаваемой в цилиндры двигателя, регулируется дроссельной заслонкой, связанной с педалью газа. Эта заслонка изменяет площадь проходного сечения за смесительной камерой. Водитель управляет заслонкой с помощью педали газа, расположенной под его правой ногой.
   Простейший карбюратор не способен приготовить оптимальную по составу горючую смесь во всех режимах работы двигателя.
   При увеличении степени открытия дроссельной заслонки смесь будет обогащаться.
   Оптимальное же изменение состава смеси должно быть другим.
   Современные карбюраторы бензиновых двигателей значительно отличаются от элементарного карбюратора главным образом за счет наличия дополнительных вспомогательных устройств, позволяющих в тех или иных режимах работы двигателя в определенной степени обеднять или обогащать смесь. Различают карбюраторы с восходящим, горизонтальным и падающим потоком. Наиболее часто используют карбюраторы с падающим потоком, в которых смесь в смесительной камере движется сверху вниз. Карбюратор может иметь одну или две камеры. В последнем случае они могут устанавливаться последовательно или параллельно. Чаще всего используются двухкамерные карбюраторы с параллельным расположением камер.
   В общем случае современный карбюратор состоит из следующих основных устройств: главного дозирующего устройства, пускового устройства, системы холостого хода, экономайзера, ускорительного насоса, балансировочного устройства и ограничителя частоты вращения коленчатого вала. Иногда в состав карбюратора входят также эконостат и система принудительного холостого хода.
   Кроме того, обычно под панелью приборов или прямо на ней есть специальная рукоятка, которая управляет воздушной заслонкой карбюратора. В народе – попросту «подсос». Вытягивая ее, водитель прикрывает воздушную заслонку, ограничивая доступ воздуха и увеличивая разрежение в смесительной камере карбюратора. В результате бензин из поплавковой камеры высасывается более интенсивно и при недостатке воздуха готовит для мотора обогащенную горючую смесь, которая и необходима для пуска холодного двигателя.
   Наиболее экономично карбюратор работает при средних нагрузках. Движение рывками (резкий разгон – торможение) увеличивает расход топлива, так как при резком нажатии на педаль газа двигателю для быстрого набора оборотов и исключения провалов в работе требуется обогащенная смесь.
   Итак, подведем промежуточный итог: карбюратор – это сложное механическое устройство, смешивающее бензин с воздухом в определенных пропорциях и осуществляющее доставку подготовленной смеси к цилиндрам двигателя.
   Простейший карбюратор доставляет топливо пропорционально количеству воздуха, проходящего через него.

Система питания двигателя с впрыском топлива

   С середины 1980-х годов карбюраторы стали вытесняться более эффективными инжекторными системами. Главными их преимуществами являются лучшие пусковые свойства (они меньше зависят от окружающей температуры), надежность, экономичность, лучшие мощностные характеристики, а также меньшая токсичность выхлопа. Однако инжекторные системы более привередливы к качеству бензина. Так, не допускается работа двигателей с системой впрыска топлива на этилированном бензине. Это приводит к выходу из строя нейтрализатора и датчика концентрации кислорода.
   
Конец бесплатного ознакомительного фрагмента