Каждое удачное столкновение молекул, каждое новое звено в цепи увеличивают этот блок. Но так ничтожно, что это и незаметно вовсе. И лишь миллионы столкновений делают прибавку ощутимой.
   Несколько раз в день поднимается по высоким мосткам к аппарату Сергей Васильевич. Молча подходит к глазку, смотрит. Молча уходит.
   Значит, еще рано.
   Наступает 15 февраля 1931 года. Этот день начинается, как все предыдущие. Утром, как обычно, в цехе появляется Лебедев. Идет — высокий, стройный, с откинутой назад головой. Поднимается по лестнице, подходит к аппарату.
   Смотрит в глазок. Долго смотрит. Потом медленно поворачивается и говорит: “Пора. Можно открывать”.
   Сергей Васильевич вообще не любил длинных фраз. Он кратко писал и так же кратко говорил. Но эта короткая, произнесенная тихим голосом фраза прозвучала громче, чем крик “ура”.
   Мгновенно, как вспышка света, пронеслась весть: пора. Со всего завода стали стекаться рабочие и служащие.
   Эта весть вылетела и за пределы завода, и вот в цехе уже много гостей.
   Наступила та торжественная минута, которую ждали полтора месяца.
   Сергей Васильевич, очень спокойный, очень хладнокровный, будто и не было этих изнурительных полутора месяцев и перед этим еще пяти напряженных лет, молча дает знак открыть аппарат.
   Рабочие поворачивают рычаг. Неторопливо, как при замедленной съемке, словно не ждут этого мгновения десятки людей, отделяется дно аппарата.
   Оно медленно, будто нарочно, опускается вниз к мосткам, где стоят рабочие.
   На нем, на этом дне, выползает из аппарата, словно песочный кулич из формы, светлый цилиндр. Это и есть блок каучука, только сейчас на нем еще пленка металлического натрия.
   Когда дно опускается вровень с мостками, блок с трудом передвигают на салазки. Потом снимают пленку натрия, и перед взорами собравшихся сияет невидимым для посторонних светом огромный, круглый, полупрозрачный, как желе, каучуковый пирог.
   Первый советский синтетический каучук, полученный не в лаборатории, а на заводе.
   Десятки рук тянутся к нему — каков он на ощупь. Ничего на ощупь: упругий, прочный. Многие хотят отщипнуть от него кусочек на память, но не тут-то было: 260‑килограммовая коврижка не поддается. Приносят ножи — может быть, удастся отрезать, но они застревают в каучуке. Наконец кто-то догадался — проволокой надо резать. И верно, только так удается отрезать драгоценные сувениры.
   Я думаю, каждый настоящий коллекционер должен оценить это приобретение. В конце концов, марка Гондураса или Никарагуа может оказаться еще у кого-нибудь, но, скажите, кто может похвастаться таким сувениром? Только те, кто присутствовал при его рождении.
   И еще — Музей Революции в Москве. Часть вынутого из аппарата каучукового блока хранится в музее как выдающийся исторический экспонат.
   Наконец день рождения первого промышленного СК остался позади со всеми его волнениями, хлопотами. Казалось бы, можно наконец перевести дух, позволить себе понежиться в лучах славы. Но нет, новые заботы, новые идеи торопят Лебедева. Никакого перерыва не может позволить он себе и сотрудникам, даже тех десяти дней, которые предоставил своей группе три года назад, после отправки образца на конкурс.
   Надо доводить новый процесс до совершенства. Надо готовиться к строительству новых заводов — уже не опытных, а настоящих. И надо одновременно с этим еще доказывать скептикам пользу нового каучука. Потому что некоторые работники резиновой промышленности говорят: а где гарантия, что СК будет вести себя так же, как и натуральный каучук в резиновых изделиях? Значит, надо дать гарантию. И Сергей Васильевич организует на опытном заводе производство резиновых изделий.
   Однако первое изделие было изготовлено еще в январе 1931 года из лабораторной порции СК. Это была автомобильная покрышка. Ее надели тогда на заводскую машину и стали следить, сколько она пройдет. Покрышка пробежала немало — 18.000 километров. Конечно, это меньше, чем выдерживают современные покрышки, сделанные из того же лебедевского каучука, и, конечно, шуршала она по гладкому ленинградскому асфальту, а не по булыжникам, и, конечно, по одной покрышке нельзя судить о достоинствах и недостатках нового каучука. Но ведь это была первая подопытная шина.
   Естественно, как только на опытном заводе был налажен выпуск шин, решили провести настоящие испытания. Большие — для целой колонны машин. По сложному маршруту — из Москвы в Ташкент, из Ташкента в Красноводск, оттуда пароходом в Баку, а из Баку снова своим ходом в Москву. 9400 километров по шоссе, по проселочным дорогам, вообще без дорог — по пустыне Кара-Кум.
   Машины были обуты в шины, сделанные из разной резины: и из натурального каучука, и из синтетического, и из смеси того и другого.
   В пути и машинам и покрышкам приходилось очень тяжело. На некоторых участках температура воздуха достигала 43 градусов в тени. Машины не выдерживали, выходили из строя. Но шины не подвели. Когда в Москве после возвращения специальная техническая комиссия осмотрела их, оказалось, что шины из СК вели себя лишь немного хуже, чем из натурального каучука, и даже меньше истерлись. Правда, у них обнаружены некоторые другие изъяны, но зато теперь стало ясно, на что надо обратить внимание.
   Каракумский пробег был первым серьезным экзаменом нового каучука. И СК его выдержал. Как ни строги были экзаменаторы, они должны были признать: лебедевский каучук заслуживает высокой оценки.
   И новый СК пошел в жизнь. В 1932 году заработал Ярославский завод синтетического каучука, в 1933 — Ефремовский, следом за ним Воронежский. Советская резиновая промышленность, еще два года назад вынужденная тратить ежегодно 50 миллионов рублей на закупку импортного натурального каучука, стряхнула со своих плеч эту дорогую зависимость. Отныне наша страна имела свой каучук, добытый в соревновании с природой.
   Страна, не имеющая каучуковых деревьев, сумела обойтись без них.
   Разум человека, его знания, целеустремленность помогли нам первыми вырваться из этой кабальной зависимости, в которой долгие годы находились многие государства.
   Когда весть о создании Лебедевым СК пришла в Америку, знаменитый изобретатель Томас Эдисон, который по поручению правительства США занимался поисками новых каучуконосов и созданием СК, не поверил в это. Сам пытавшийся решить такую же проблему и испытавший горечь неудачи, он не смог допустить мысли, что советским ученым повезло. “Этого нельзя сделать, — сказал он в интервью. — Я бы сказал даже больше, весь этот отчет является фальшивкой. На основании моего собственного опыта и опыта других стран сейчас нельзя сказать, что получение синтетического каучука вообще когда-либо будет успешным”.
   Он утверждал это в 1931 году. В то время, когда уж работал опытный завод в Ленинграде. Когда бегала по ленинградским улицам заводская машина с покрышками из нового СК, когда строился полным ходом Ярославский завод — первенец советской каучуковой промышленности.
   Эдисон знал, что нам не удалось найти у себя каучуконос, равный бразильской гевее, но он не предполагал, что гевею нам сможет заменить обыкновенный картофель.
   Если подсечь картофелину, из нее не потечет белый каучуковый сок. Природа не сотворила в ее клетках каучуковые заводы. Зато она щедро наделила картофель крахмалом. Каучук и крахмал — между ними пропасть. Только смелый ученый мог увидеть здесь связь, только настоящий исследователь мог перебросить между этими веществами химический мост. Картофель — спирт — бутадиен — каучук. Так выглядела эта трасса химических превращений, задуманная впервые еще в начале нашего века тридцатилетним Лебедевым.
   Двадцать лет зрел замысел, чтобы воплотиться в громады заводов, в миллионы шин, галош, приводных ремней.
   За эти двадцать лет Сергей Васильевич занимался многими исследованиями, не связанными непосредственно с СК. Но, очевидно, что бы он ни делал, не гасла в нем эта идея, свернутая как тугая пружина, готовая распрямиться, как только придет час. И когда этот час пришел, все свое время и силы Лебедев отдал ей. Синтез СК стал главным делом его жизни. Делом, увековеченным и в самом СК, и в институте, носящем его имя, и в Лебедевской премии Академии наук.
   И участие в создании новой ; отрасли промышленности было для него великой наградой — быть может, даже не меньшей, чем звание академика или многочисленные премии. “Величайшее счастье, — писал он, — видеть свою мысль превращенной в живое дело такой грандиозности”.
   Но он никогда не считал, что создание СК — это его личная заслуга. Он всегда подчеркивал роль своих товарищей по работе. Когда 7 августа 1931 года в Железноводск, где отдыхал Сергей Васильевич после трудной зимы, пришло сообщение о том, что правительство наградило его орденом Ленина, он, обрадованный конечно, написал все же в письме: “Я предпочел бы, чтобы орден был дан лаборатории”.
   Конечно, личные качества ученого могут и не сказываться на качестве созданного им продукта, но все-таки приятно знать, что исследователь, чьи портреты глядят на нас из учебников, чье имя часто встречаешь в литературе, был не только прекрасным ученым, но и прекрасным человеком.
   Он был таким и на работе и дома — скромным, внимательным, отзывчивым.
   Бескорыстие ученого еще раз проявилось уже после его смерти.
   Он умер 2 мая 1934 года. В этом же месяце его жена, Анна Петровна Остроумова-Лебедева, приехала к Сергею Мироновичу Кирову, чтобы передать последнее желание своего мужа. Лебедев и его сотрудники должны были получить миллион рублей за внедрение своего СК. Но Лебедев сказал, что свою долю денег он хотел бы отдать на оборудование будущей лаборатории в Академии наук.
   И они были отданы.
   Пройдет время, появятся новые синтетические каучуки — лучшие, чем лебедевские, но его СК был первым, — первым СК, в который оделись колеса машин, провода, наши ботинки..
   И сегодня еще лебедевский каучук незаменим во многих изделиях — в обуви на микропористой подошве, в шинах, в кабелях, в приводных ремнях. Только применяется он теперь не один, а в смеси с другими СК. Их много — разных названий, разных свойств, — но все они младшие братья того, лебедевского блока, который хранится в Музее Революции как драгоценная реликвия советской науки.

Глава одиннадцатая. Почему стреляет рогатка

   Нельзя назвать имени ученого, который бы установил причину эластичности каучука, точно так же как и год, когда это было сделано.
   Прежде всего давайте договоримся: выяснять это вы будете не на уроках, и не дома, и вообще подальше от окон. Для того чтобы выяснить, почему она стреляет, совершенно не обязательно из нее стрелять. Больше того: сама рогатка нам даже не понадобится.
   Нам понадобятся другие вещи. Картошка, спички, проволока, игральные кости.
   Берите одну картофелину и воткните в нее спичку. На спичку насадите еще одну картошку. Получится своеобразная гантеля. Во вторую картофелину воткните три спички: одну вверх, а две других в бок. На две спички насадите еще одну картошку и еще одну на ту спичку, которая торчит вверх. Теперь в картошку № 3 воткните одну спичку, на нее наденьте одну картошку, затем еще спичку, еще картошку, и еще спичку и еще картошку. Получится поезд из шести картофелин. Теперь надо все повторить: в картошку № 6 вставьте одну спичку вверх, две другие в бок, и т. д. Когда вы повторите несколько раз это сочетание, у вас должно получиться некое странное сооружение.
   А теперь, когда вы достаточно перемазались сами и перемазали весь стол, я полагаю, ваши домашние зададут вам вполне резонный вопрос: а что, собственно, это такое? Я умышленно не объяснил ничего заранее, чтобы не испортить торжественности момента. Если бы вы всё знали, вы бы тут же, не дожидаясь, пока вас спросят, бухнули: это то-то и то-то. И смазали бы весь эффект.
   Тут главное — не торопиться. Спрашивает вас мама: “А что это такое?” А вы — молча, с достоинством — идете в комнату, молча — всё еще с достоинством — залезаете в портфель, также молча — можно слегка иронически улыбнуться, но не переборщите — открываете пенал и вынимаете из него — совершенно верно, ясно же не карандаш — свою рогатку. (Примечание 1. Если у вас ее по какой-либо уважительной причине временно нет, можете вынуть ластик. Примечание 2. Девочки могут сразу вынимать ластик. Хотя, честно говоря, я не очень понимаю, зачем им читать эту главу.)
   Теперь вы можете небрежно подбросить рогатку (или ластик) на ладони и сказать — главное, как можно более равнодушным голосом: “Это модель молекулы каучука”. И, чтобы уж совсем повергнуть в изумление всех окружающих, можете небрежно добавить: “Точнее, даже не молекулы, а ее скелета”.
   Теперь не сомневайтесь: как минимум, два разбитых стекла вам прощены.
   Ну конечно, через некоторое время, когда ваши родители придут в себя от изумления, они станут задавать всякие неуместные вопросы: а зачем то, а зачем это… Тут надо быть абсолютно непреклонным: “Я занят”, и все. Возвращайтесь на кухню и, делая вид, что вам все давно известно, лениво, как бы между прочим, берите книгу. Я вам сейчас объясню — зачем то и зачем это.
   Вы только что своими собственными руками построили скелет молекулы каучука. Точнее, только его небольшую часть. Потому что если бы вы захотели воспроизвести всю длину, то понадобилось бы около тонны картофеля и почти сто коробок спичек.
   Вы уже не раз слышали, что молекула натурального каучука представляет собой длинную цепь, построенную многократным повторением молекулы изопрена. Но так как сам изопрен построен всего из двух элементов — углерода и водорода, то ясно, что и молекула каучука, как бы ни была она длинна, построена также всего из двух элементов. Их роли неодинаковы; углерод — главный. Это он обладает способностью образовывать длинные цепи, это у него как бы четыре руки, которыми он поспевает делать два дела сразу: и с себе подобными сцепляться, и еще водороды удерживать. А у водорода всего одна рука; максимум, на что он способен в данном случае — уцепиться за углерод, если у того есть свободная рука.
   Я думаю, вы уже слышали, что углерод — важный элемент не только в каучуке, но и во всех органических соединениях, то есть во всех соединениях, из которых построена живая природа.
   Деревья — что это такое? В основном целлюлоза. Что составляет ее основу? Углерод. А мы с вами? А мы с вами — это в основном более или менее удачный набор белков и — не знаю, как вы — еще и жиров. А что составляет их основу? В значительной мере углерод. Словом, углерод — главный элемент жизни, на нем держится все живое.
   Каучук, конечно, не живое вещество, но он рождается в клетках растений, поэтому его остов и построен из углерода.
   Теперь вам ясно, что каждая картофелина изображает атом углерода, а спички — это химические связи, которыми атомы между собой соединяются, это то, что я образно назвал руками.
   И теперь вам ясно, почему я говорю о скелете. Водороды мы в счет не брали. С ними возни много. Атом водорода намного меньше атома углерода; подыскать для него на кухне модель не так-то просто. Лучше всего подошел бы зеленый горошек, но его в доме могло бы и не оказаться. И, кроме того, после нанизывания на спички он уже никуда не годился бы. А я совсем не уверен, что это было бы правильно воспринято вашими домашними. Так что углеродный скелет мы оставили без водородного обрамления. Но это ничуть не помешает нашему исследованию. Вы не забыли его тему: почему стреляет рогатка?
   Чтобы приблизиться еще на один шаг к интересующему вас ответу, придется поработать еще немного руками и еще как следует головой.
   Вам, очевидно, не раз приходилось видеть, как в солнечном луче носится рой пылинок. Если не видели, это нетрудно устроить: подойдите к окну и потрясите свою куртку. Но сколько бы вы ни присматривались к замысловатому танцу пылинок, вам не удастся понять его рисунок. Когда во время праздника вы смотрите, скажем, с балкона на танцующую под вами толпу, вы все же можете догадаться, что там танцуют — вальс или польку, даже если все танцуют невпопад. А пылинки ведут себя так, словно каждая из них исполняет свою собственную партию, соло, и никакого порядка в их движении не существует. Как на большой перемене.
   Этот образ — беспорядочное движение частичек — нужен для того, чтобы заглянуть мысленно внутрь вашей рогатки. Если бы вы могли видеть то, что происходит внутри каучука, вы бы сказали, что его молекулы ведут себя почти так же. Они находятся в беспорядочном хаотическом движении, все время изгибаясь, принимая разные очертания, словно исполняя какой-то замысловатый танец, который называется, так же как танец пылинок, тепловым движением и который также невозможно понять.
   Правда, если частички пыли совершенно себя ничем не стесняют, то молекулы каучука все же несколько ограничены в своих возможностях. Они скованы теми двумя спичками, которые вы всадили между некоторыми парами картошек.
   Попробуйте повращать какую-нибудь картофелину вокруг одной спички, как вокруг оси. Вращается. А ту, которая надета на две? Ничего не получается.
   Теперь вам ясна причина гибкости молекулы каучука; она вращается, как на шарнирах, вокруг всех своих одинарных связей, соединяющих атомы углерода. Поскольку эти связи находятся под определенным углом друг к другу, молекула может принимать самые невероятные очертания. Убедитесь вы в этом, если не побоитесь разломать творение своих рук. Попробуйте повращать картофелины вокруг спичек.
   Но каждое положение, которое принимает молекула, длится всего триллионные доли секунды. Строго говоря, она вообще ни на мгновение не останавливается. Чтобы заставить ее замереть, надо сильно охладить молекулу. Тогда холод затормозит движение молекулы, скует ее, как сковывает воду мороз. Она замрет, парализованная, но в этот же момент пропадет ее эластичность. Вы уже не сможете растянуть свою рогатку — каучук сломается, как стекло.
   И наоборот: если вы будете нагревать каучук, то звенья молекулы будут вращаться сильнее и она сильнее будет изгибаться.
   Но значит ли это, что вообще нельзя говорить о ее какой-то конфигурации и что, следовательно, напрасно испорчен пищевой продукт? Нет, не значит Видим же мы фотографии бегунов, хотя они и меняют свое положение ежесекундно. Точно так же можно сделать мгновенную фотографию молекулы каучука. И для этого не надо фотоаппарата, пленки, проявителя. Не надо класть рогатку в холодильник, чтобы остановить вращение молекул. Нужны только угломер и игральная кость. И проволока. Проволоки много — 300 метров. И терпение. Терпения тоже много — еще больше, чем проволоки.
   Работа предстоит не ахти какая сложная: тысячу раз бросить игральную кость и тысячу раз согнуть проволоку.
   Только и всего? — скажете вы. Только и всего, — скажу я. И добавлю: это вполне серьезный научный эксперимент.
   Спросите у своих друзей: много они занимались настоящим научным экспериментированием? Не таким, как сбор бабочек или натирание эбонитовой палочки мехом, а серьезным, которое было бы по плечу крупному ученому. Не очень-то, верно? А вы сейчас приобщитесь к настоящему научному творчеству. Вы повторите — точь-в-точь — тот эксперимент, с помощью которого была получена впервые мгновенная фотография молекулы каучука.
   Вообще в науке не так уж много экспериментов, которые можно было бы взять вот так запросто и повторить на кухне. Но и не так уж мало. Особенно в науке XVIII и XIX веков. В то время вообще было модно ставить опыт как можно проще. Правда, иногда эта мода была вынужденная. Сейчас экспериментальная оснастка науки сильно увеличилась. Теперь считается даже плохим тоном ставить опыт без использования какой-нибудь электронно-счетной машины.
   Опыт, который вы собираетесь сейчас проделать, был поставлен впервые, если не ошибаюсь, в начале сороковых годов нашего века. Наука тогда уже сильно усложнилась, но каким-то образом удавались иногда все же простые и очень наглядные работы.
   Для начала несколько слов об азартных играх, которые имеют непосредственное отношение к тому, чему я собираюсь вас научить. Тут я хочу сразу оговориться: так же как и ваши родители, я противник любых азартных игр — будь то железка, очко или кости. Но, надо признаться, на этот раз они сослужили доброе дело.
   Игра, в которую я вам предлагаю сыграть с каучуковой молекулой, преследует самые благородные цели. Хотя со стороны и может показаться, что вы уподобились какому-нибудь пирату Билли Бонсу из “Острова сокровищ”, на самом деле вы будете заняты совершенно невинным делом. Проигравшего в этой игре не будет. А вы наверняка выиграете.
   Вы обогатитесь еще одной частичкой знания и еще на один шаг приблизитесь к ответу на вопрос, с которого мы начали эту главу, — почему стреляет рогатка.
   Азартные игры — это такие игры, где исход совершенно не зависит от вашего умения и старания, а только лишь от случая. Когда играющие в кости по очереди бросают кубик (чаще они бросают сразу два), то предугадать заранее, сколько очков выпадет, нельзя. Если кубик имеет правильную форму и сделан из однородного материала и, следовательно, центр тяжести находится точно в центре куба, то упасть он может на любую из шести сторон, как получится, то есть исход броска подчиняется только случаю.
   Вот с этим случаем вам и предстоит играть.
   Точнее, играть будет каучуковая молекула, вы лишь станете бросать за нее кость.
   В чем смысл игры?
   Возьмите одно звено каучуковой молекулы и повращайте картофелину вокруг спички. Вы убедитесь, что атом углерода вращается вокруг одной из связей, очерчивая при этом другой связью в воздухе дугу. Если посмотреть на картофелину “в лоб”, то торчащая в ней спичка будет описывать круги, как часовая стрелка.
   И вот, допустим, вы, решив сделать мгновенную фотографию молекулы, говорите, как доктор Фауст, герой Гете: “Остановись, мгновение”. Где оно остановится? На каком часе воображаемого циферблата замрет спичка?
   А кто ее знает. На каком угодно. Это дело случая. Любое положение одинаково вероятно. Как и выпадение любой метки при бросании кости.
   Вы уловили связь? Вы примете для себя, что метка 1 соответствует 12 часам, метка 2 — 2 часам, метка 3 — 4 часам, метка в 4 очка — 6 часам, 5 очков — 8 часам и б очков — 10 часам. Круг замыкается.
   Теперь можно начинать игру. Бросайте кость. Смотрите, сколько выпало очков, и поворачивайте химическую связь, то есть спичку, в заданное положение.
   Таким образом, вы повернете и все следующее звено молекулы, потому что следующая картофелина повернется вместе со спичкой.
   Теперь вот что. Играть в эту игру с картошкой слишком неудобно и потом их не хватит на тысячу звеньев. Поэтому возьмите проволоку и считайте, что каждые три сантиметра соответствуют одному звену. И для простоты примем, что двойных связей нет, все одинарные. Бросайте кость, определяйте направление звена в пространстве по отношению к предыдущему звену (не забудьте про угол между ними, он равен 109 градусам) и изгибайте проволоку. Когда вы сделаете последний бросок и в последний раз изогнете проволочное звено, опыт будет считаться законченным. Перед вами мгновенная фотография молекулы каучука (слева), один из миллиардов ее положений в пространстве. Вы не мешали ей изгибаться, ничем не стесняли ее, не задавали ей никаких невозможных или маловероятных положений, — все выбирал господин случай. Вы не вмешивались в игру, вы только следили, чтобы выполнялись ее правила.
   Конечно, если вы повторите весь опыт, портрет будет несколько иным, хотя и похожим. Это вполне закономерно, ибо здесь не может быть неправильных положений, любое положение возможно на какую-то долю секунды. Но как бы ни отличались они между собой, у них будет одна общая черта. И это для нас самое важное. Потому что именно она и поможет нам догадаться, почему же, собственно, стреляет рогатка.
   Я избавлю вас от необходимости делать несколько фотографий, чтобы обнаружить это сходство. Просто укажу на него: начало и конец молекулы всегда подходят довольно близко друг к другу.
   Очевидно, теперь вам уже совершенно ясно, почему каучук может растягиваться. Потому, во-первых, что при растяжении разводятся в разные стороны концы его скрученных молекул. Потому, во-вторых, что при этом еще как бы распутывается весь клубок молекулы, она распрямляется и сильно увеличивается в длину, словно пружина. Потому, в-третьих, что… Впрочем, давайте прежде еще несколько задержимся около во-первых и во-вторых.
   До сих пор и вы и я делали вид, будто нас интересует только один на свете вопрос — почему стреляет рогатка. Я думаю, теперь настало время признаться себе: за этим вопросом мы скрывали интерес гораздо более широкий, интерес к тому непонятному явлению, когда резиновые вещи сжимаются и растягиваются и, словно ничего не было, возвращаются в исходное положение.
   Вопрос надо ставить шире: почему каучук эластичен, почему, если его растянуть, он вновь сжимается.
   Если бы ваша рогатка состояла всего из одной огромной молекулы, то тогда этого вопроса для нас уже не существовало бы. Ибо все было бы ясно как день. Когда вы растягиваете молекулу, вы тем самым с силой распрямляете ее, скрученную. И чем сильнее вы тянете, тем больше она распрямляется. Разумеется, существует предел ее растяжения — это ее длина. Когда вы вытянете всю молекулу в прямую линию, то дальше, сколько бы ни тянули ее, она не растянется, она лопнет, порвется, и вместо одной резинки у вас в руках останутся две.