и И. .Своими работами Ф. оказал большое влияние на дальнейшее развитие математики. В области физики с именем Ф. связано установление основного принципа геометрической оптики (см. ) .
      
        Соч.: CEuvres, t. 1–4, P., 1891–1912.
        Лит.:Бурбаки Н., Элементы математики, [кн. 8]. Очерки по истории математики, пер. с франц., М., 1963 [лит.]; История математики с древнейших времён до начала XIX столетия, т, 2, М., 1970.
      П. Ферма.

Ферма (технич.)

       Ферма'(франц. ferme, от лат. firmus – крепкий, прочный), несущая конструкция, состоящая из прямолинейных стержней, узловые соединения которых при расчёте условно принимаются шарнирными. Ф. применяют главным образом в строительстве (покрытия зданий, пролётные строения мостов, мачты, опоры линий электропередачи, гидротехнические затворы и др.), а также в качестве несущих конструкций машин и механизмов. По виду материала различают металлические, железобетонные, деревянные и комбинированные (например, металлодеревянные) Ф. Тип Ф. и её очертания ( рис. ) определяются назначением здания или сооружения, видом покрытия, способом опирания Ф. и т.д. Узлы Ф., хотя и считаются шарнирными, практически обладают той или иной степенью жёсткости. При проектировании Ф., как правило, обеспечивается узловое приложение внешней нагрузки (например, прогоны покрытия здания опираются на Ф. в узлах верхнего пояса, балки подвесных кранов крепятся к узлам нижнего пояса и т.д.). Допущения о шарнирном соединении узлов и узловом приложении нагрузки позволяют учитывать при расчёте Ф. только осевые продольные усилия в стержнях (при этом в поперечных сечениях стержней возникают равномерно-распределённые напряжения, позволяющие наиболее эффективно использовать материал). Усилия в стержнях статически определимых плоских Ф. (см. ) определяют из уравнений статики, пространственных – как правило, путём расчленения на плоские. Статически неопределимые Ф. (см. ) рассчитывают при помощи уравнений метода сил (см. ) ,в которых коэффициенты при неизвестных (перемещения) определяют с учётом действия только нормальных усилий в элементах Ф. При расчёте Ф. на используют т. н. линии влияния.
        Лит.см. при статьях , , , .
         Л. В. Касабьян.
      Классификация ферм по типам решётки: а — балочная раскосная; б — балочная с треугольной решёткой; в — балочно-консольная с треугольной решёткой и дополнительными стойками; г — консольная полураскосная; д — консольная двухраскосная; е — балочная двухрешётчатая; 1 — верхний пояс; 2 — нижний пояс; 3 — раскос; 4 — стойка.

Фермана

       Фермана'(Fermanagh), административный округ в Северной Ирландии (Великобритания), в бассейне озёр Лох-Эрн и Аппер-Лох-Эрн. Площадь 1,7 тыс. км 3 .Население 50,3 тыс. чел. (1971). Главный город – Эннискиллен. Сельскохозяйственный район (мясо-молочное животноводство).

Фермата

       Ферма'та(итал. fermata, буквально – остановка) (музыкальная), знак ( или ) в нотном письме, обозначающий продление ноты или паузы, над или под которой он стоит, на неопределённое время (обычно в 1 1/ 2—2 раза). Продолжительность звука или паузы с Ф. исполнитель определяет по собственному усмотрению. Ф. над тактовой чертой обозначает неопределенной продолжительности паузу.

Ферментативные методы анализа

       Ферментати'вные ме'тоды ана'лиза, методы количественного определения химических веществ в растворе, основанные на использовании .С помощью Ф. м. а. определяют вещества, способные участвовать в химических реакциях, катализируемых ферментами, а также являющиеся активаторами либо ингибиторами ферментов. Ф. м. а. характеризуются высокой чувствительностью и специфичностью, поскольку ферменты катализируют превращения веществ с большой скоростью и высоко избирательно, даже если анализируемое соединение находится в смеси с др. близкими по химическому строению веществами.
        При определении субстрата ферментативной реакции к анализируемой пробе прибавляют фермент и др. необходимые для реакции компоненты. По окончании реакции тем или иным удобным методом устанавливают в растворе содержание продукта реакции. Например, определение этилового спирта в растворе с помощью фермента алкогольдегидрогеназы (АДГ) производится при участии кофермента АДГ – (НАД). Последний в ходе ферментативной реакции количественно превращается в восстановленный НАД, обладающий, в отличие от окисленной формы, способностью к поглощению ультрафиолетового света при длине волны 340 нм.Измеряя это поглощение, можно установить концентрацию восстановленного НАД и рассчитать концентрацию этилового спирта. Метод позволяет определить 1 мкгспирта в 1 млраствора. Многие Ф. м. а. основаны на определении изменения кислотности раствора в ходе ферментативной реакции. Например, эфиры карбоновых, фосфорной и др. кислот можно определять с помощью специфических ферментов, катализирующих их гидролиз. Поскольку при гидролизе образуются соответствующие кислоты, результат их титрования по окончании реакции позволяет рассчитать концентрацию определяемого эфира.
        При Ф. м. а. часто используют комбинацию (сопряжение) нескольких ферментативных реакций. Например, концентрация глюкозы может быть определена с помощью ферментов глюкозооксидазы (ГО) и пероксидазы (ПО). Под действием ГО глюкоза превращается в глюконовую кислоту, при этом образуется перекись водорода, которая, в свою очередь, под влиянием ПО может окислить введённый в раствор ортодианизидин (или толидин) и давать окраску. Измеряя интенсивность окраски раствора, можно рассчитать исходную концентрацию глюкозы (чувствительность метода 5 мкгв пробе). Этот способ применяется для быстрого определения глюкозы в моче у больных диабетом с помощью индикаторной бумажки, пропитанной указанными реактивами.
        Разновидностью Ф. м. а. являются кинетические методы анализа, основанные на зависимости скорости ферментативной реакции от концентрации анализируемых веществ (см. ) ,которыми могут быть субстраты, активаторы или ингибиторы ферментов. Зная характер этой зависимости, можно, измеряя скорость ферментативной реакции, рассчитать концентрацию анализируемого вещества. Например, количественное определение фосфорорганических инсектицидов, являющихся сильными ингибиторами, фермента производится путём измерения активности этого фермента в отсутствии и в присутствии ингибитора. Чувствительность метода определения, например диэтил- -нитрофенилфосфата, составляет 0,015 мкгв пробе, ионов магния (по активирующему их влиянию на фермент, окисляющий изолимонную кислоту) – 0,1 мкг.
        Широкое распространение получили Ф. м. а., основанные на использовании ферментов, прочно связанных с твёрдыми носителями, которыми могут быть полимеры, неорганические сорбенты, гели. Такие «твёрдые ферменты», помещенные на электрохимические датчики (стеклянные, платиновые и др. электроды), представляют собой ферментные электроды, служащие инструментами для измерения скорости ферментной реакции в растворе анализируемого вещества. С помощью ферментных электродов определяют мочевину, аминокислоты, пенициллин, глюкозу и т.д. с чувствительностью 0,1–0,01 мкгв пробе.
        Лит.:Березин И. В., Клесов А. А., Ферментные электроды, «Успехи химии», 1976, т. 45, в. 2: Methoden der enzymatische Analyse, Hrsg. Н. U. Bergmeyer, 3 Aufl., Bd 1–2, Weinheim, 1974.
         В. А. Яковлев.

Ферментативный катализ

       Ферментати'вный ката'лиз,биокатализ, ускорение химических реакций под влиянием .В основе жизнедеятельности лежат многочисленные химические реакции расщепления питательных веществ, синтеза необходимых организму химических соединений и трансформации их энергии в энергию физиологических процессов (работа мышц, почек, нервная деятельность и т.п.). Все эти реакции не могли бы происходить с необходимой для живых организмов скоростью, если бы в ходе эволюции не возникли механизмы их ускорения с помощью Ф. к.
        Одно время считалось, что Ф. к. принципиально отличается от небиологического ,широко используемого в химическом производстве. Такое представление основывалось на трёх отличительных особенностях Ф. к.: исключительно высокой эффективности (увеличение скорости реакции в 10 10–10 13раз) и специфичности, т. е. избирательности (способности каждого фермента катализировать превращение строго определённых биологических субстратов, иногда лишь единственного вещества, в единственном направлении), не достижимых в небиологическом катализе. Особенностью Ф. к. является также его регулируемость – способность биокатализатора – фермента – увеличивать или уменьшать свою активность в зависимости от потребностей организма. Однако исследование механизма Ф. к. показывает, что к нему применимы законы и принципы, на которых основаны обычные химические реакции. Отличие реакций Ф. к. определяется сложностью структуры ферментов и химических превращений, которые совершают вещества в ходе катализа.
        Эффективность Ф. к. достигается в результате того, что химическая реакция разбивается на ряд энергетически более лёгких промежуточных реакций, в которых участвует фермент. Важнейшая для Ф. к. реакция – образование первичного фермент-субстратного комплекса даёт выигрыш энергии, достаточный для ускорения процесса в целом. Представления о необходимости образования такого комплекса следовали из изучения зависимости скорости ферментативной реакции (V) от концентрации фермента ( Е) и субстрата (S), которая описывается уравнением Михаэлиса – Ментен:
       ,
        где kК т–константы, характерные для каждой реакции.
        Эта зависимость, установленная экспериментально для многих ферментативных реакций, может быть теоретически выведена, если превращение субстрата в продукт реакции (Р) происходит по механизму образования и распада комплекса между ферментом и субстратом – ES-комплекса:
       ,
        где k 1, k -1и k + 2–константы, характеризующие скорость указанных стрелками стадий процесса, причём соотношение ( k -1+ k + 2) / k -1= К т.Если в реакции участвует не один, а несколько (в большинстве случаев два) субстратов и ES-комплекс образует продукты реакции не в одну, а в несколько стадий, зависимость выражается более сложными уравнениями, однако и они могут быть выведены лишь на основе представления о первичном образовании ES-комплексов. Для многих ферментов получены прямые доказательства образования ES-комплексов. Так, спектральными методами доказано образование комплексов с участием дегидрогеназ и пероксидаз; выделены в кристаллич. состоянии комплексы оксидазы D-аминокислот с D-aланином, карбоксипептидазы А с глицил- L-тирозином. В ряде случаев установлено пространственное строение ES-комплексов методом рентгеноструктурного анализа.
        Высокая специфичность Ф. к. объясняется строгим геометрическим и электронным соответствием структуры субстрата структуре фермента, на котором субстрат сорбируется и далее претерпевает химические превращения. Допускается, что соответствие (комплементарность) геометрического и электронного строения активного центра и реагирующих с ним участков молекулы субстрата (субстратов) достигается в момент сближения субстрата с активным центром (гипотеза индуцированного соответствия Д. Э. Кошленда, США). Активный центр фермента, представляющий собой ансамбль химически активных группировок (функциональных групп аминокислот), формируется из остатков аминокислот, нередко расположенных далеко друг от друга в полипептидной цепи, но сближенных в пространстве в результате глобулярной структуры белка. Часто в построении активных центров участвуют низкомолекулярные вещества (ионы металлов, органические кофакторы). В молекуле a-химотрипсина, катализирующего гидролиз белков и полипептидов и имеющего цепь длиной в 246 аминокислотных остатков, активный центр образован остатками серина (порядковый номер остатка в цепи 195), гистидина (№ 57), изолейцина (№ 16) и аспарагиновой кислоты (№ 102 и № 194). Активный центр рибонуклеазы, катализирующей расщепление РНК и построенной из 124 аминокислот, образован остатками лизина (№ 7 и № 41), аргинина (№ 39) и гистидина (№ 12 и № 119). Активные центры мн. ферментов функционируют с участием низкомолекулярных веществ – Ф. к. К ним относятся производные витаминов, ,а также ионы некоторых металлов (Na, К, Ca, Mg, Zn, Fe, Сu, Со, Mo и др.).
        Общая теория Ф. к. не разработана, однако результаты исследования механизма действия ферментов позволяют качественно, а в отдельных случаях и количественно объяснить высокую активность Ф. к. Её главные причины: 1) сближение реагентов при сорбции их в активном центре, этот фактор эквивалентен повышению концентрации реагирующих веществ; 2) специфическая ориентация сорбированного в активном центре субстрата, благоприятная для взаимодействия с каталитическим участком активного центра; 3) образование химических связей между субстратом и каталитическим участком активного центра, направляющее реакцию по энергетически наиболее лёгкому пути; 4) осуществление всех основных химических превращений субстрата «внутримолекулярно» – в составе фермент-субстратного комплекса; 5) исключительная гибкость молекулы фермента, позволяющая активному центру принимать на каждой стадии превращения фермент-субстратного комплекса строение, способствующее достижению максимальной скорости данной стадии реакции. Каждая предшествующая стадия подготавливает наилучшие условия для последующей. Ориентировочная оценка суммарного эффекта всех перечисленных факторов Ф. к. позволяет теоретически предсказать возможное ускорение реакции в 10 10–10 13раз, что во многих случаях совпадает с найденной экспериментально величиной.
        Механизмы регуляции активности Ф. к. связаны с особенностями белковой структуры ферментов. Глобулярное строение ферментов, поддерживаемое относительно слабыми химическими связями между отдельными участками полипептидной цепи, легко нарушается при изменении кислотности среды, температуры, концентрации солей в клетках и т.п. Поскольку для Ф. к. необходима строго заданная структура фермента, все эти факторы оказывают воздействие на его активность. Каждый фермент максимально активен при определённой температуре, pH среды и т.п. Изменение условий среды в обе стороны от оптимума снижает активность Ф. к.; нередко она саморегулируется продуктом реакции. Для обратимых процессов, когда фермент катализирует прямую и обратную реакции, скорость прямой реакции (активность Ф. к.) уменьшается при образовании избытка продукта реакции.
        Важную роль в Ф. к. играет т. н. аллостерическая регуляция активности ферментов. В живой клетке совершается множество последовательных химических реакций, катализируемых соответствующими ферментами E 1 , E 2и т.п.
      
        Обнаружены многочисленные реакции, когда образующийся в избытке против физиологически необходимых количеств продукт Рспособен снижать активность первого фермента E 1и тем самым уменьшать скорость всей цепи реакций. Такой механизм называется регуляцией по принципу обратной связи. При этом регулятор Р (в общем случае носит наименование эффектор) воздействует на специальный регуляторный центр фермента E 1 ,расположенный вдали от активного центра. Однако вследствие подвижности структуры белковой молекулы фермента в целом реакция с регуляторным центром приводит к изменению строения и свойств активного центра. Такой участок получил, по предложению Ф. и Ж. ,наименование аллостерического центра, а сами ферменты типа E 1называется аллостерическими ферментами. В качестве аллостерических эффекторов часто выступают нуклеотиды (например, адениловая кислота, аденозинтрифосфат и т.п.) и аминокислоты (в реакциях биосинтеза др. аминокислот).
        К аллостерическим относят также механизмы регуляции действия фермента, содержащего несколько активных центров, при которых связывание субстрата в активном центре вызывает изменение (уменьшение или увеличение) активности фермента. Аллостерическими свойствами обладают ферменты, построенные из нескольких (чётного числа) молекул, каждая из которых имеет активный и регуляторный центры. Воздействие эффектора на регуляторный центр одной из молекул вызывает общее (кооперативное) изменение строения в др. молекулах и активности фермента в целом. Возможны также регуляторные механизмы, при которых воздействие эффектора на аллостерический фермент приводит к изменению степени ассоциации составляющих его субъединиц, что также сопровождается изменением общей активности фермента. Такого рода механизмы играют важную роль в регуляции сложной системы химических реакций ( ) в живом организме.
        Лит.:«Журнал Всес. химического общества им. Д. И. Менделеева», 1971, т. 16, № 4; Дженке В, П., Катализ в химии и энзимологии, пер. с англ., М., 1972: Структура и функции активных центров ферментов. Сб., посвященный 70-летию со дня рождения А. Е. Браунштейна, М., 1974.
         В. А. Яковлев.

Ферментёр

       Ферментёр,аппарат для глубинного выращивания (культивирования) микроорганизмов в питательной среде в условиях стерильности, интенсивного перемешивания, непрерывного продувания стерильным воздухом и постоянной температуры. Ф. представляет собой герметичный цилиндрический сосуд – корпус, снабженный барботером для подачи стерильного воздуха и мешалкой с электроприводом. Внутри Ф. вдоль его корпуса и перпендикулярно к нему закрепляют узкие металлические полосы – отбойники для повышения эффективности перемешивания. Объём Ф., предназначенных для лабораторных исследований, чаще до 30 л, для полузаводских экспериментов – 0,05–5 м 3 ,промышленного использования – 50–100 м 3 .Лабораторные Ф. могут изготовляться из термостойкого стекла (их стерилизуют в автоклавах), Ф. больших размеров – из нержавеющей стали (они имеют паровую рубашку для стерилизации и поддержания температуры). Ф., как правило, оборудуются устройствами для измерения и регулирования температуры, количества продуваемого воздуха и давления внутри Ф. В случае необходимости Ф. дополнительно снабжается устройствами для измерения и регулирования pH среды, концентрации растворённого кислорода в культуральной жидкости, углекислого газа в выходящем воздухе, сигнализатором уровня пены и приспособлениями для механического или химического пеногашения. При непрерывном процессе культивирования микроорганизмов Ф. дополнительно оборудуются стерилизуемыми резервуарами для хранения компонентов питательной среды и насосами для их непрерывной подачи в Ф. Используют Ф. в промышленности при антибиотиков, ферментов, витаминов, аминокислот, нуклеотидов, белково-витаминных концентратов и т.д., в научных исследованиях в области микробиологии, биохимии и др. родственных дисциплин.
        Лит.:Уэбб Ф., Биохимическая технология и микробиологический синтез, пер. с англ., М., 1969; Производство антибиотиков, М., 1970.
         М. А. Гильзин.
      Ферментёр: 1 — корпус; 2 — паровая рубашка; 3 — барботёр; 4 — мешалка; 5 — отбойник; 6 — электропривод; 7 — загрузочный люк.

«Ферментная и спиртовая промышленность»

       «Ферме'нтная и спиртова'я промы'шленность»,научно-технический и производственный журнал, орган министерства пищевой промышленности СССР и центрального правления научно-технического общества пищевой промышленности. Периодичность 8 номеров в год. Издаётся в Москве с 1924: название менялось (в частности, с 1953 по 1963 назывался «Спиртовая промышленность»). Освещает достижения науки и техники в спиртовой, пивобезалкогольной, ликёро-водочной, ферментной и ацетонобутиловой промышленности, опыт передовых предприятий. Тираж (1975) 4600 экз.

Ферментные препараты

       Ферме'нтные препара'ты,лекарственные средства, содержащие ,оказывают направленное влияние на обмен веществ. Ф. п. получают из продуктов животного происхождения, растений и микроорганизмов. Желудочный сок, , и др. Ф. п. и ферменты применяют при желудочно-кишечных заболеваниях с нарушением функций желёз органов пищеварения. Широкое применение в медицинской практике нашли Ф. п. протеолитического действия (см. ) ,получаемые из поджелудочной железы крупного рогатого скота (например, ) .Они расщепляют пептидные связи в белках и пептидах. Трипсин при местном воздействии разрушает некротизированные ткани и фибринозные образования, разжижает вязкие секреты, экссудат, сгустки крови, при внутримышечном введении оказывает противовоспалительное действие. Применяют трипсин в виде ингаляций или внутримышечно для облегчения удаления секрета и экссудата при бронхитах, бронхоэктатической болезни; при лечении тромбофлебита, остеомиелита, гайморита, иридоциклита и др. заболеваний; местно – при лечении ожогов, пролежней, гнойных ран. Дезоксирибонуклеаза уменьшает вязкость гноя, задерживает развитие вирусов герпеса, аденовирусов; применяют при герпетических и аденовирусных заболеваниях глаз, абсцессах лёгких, поражениях верхних дыхательных путей. Препарат лидаза, содержащий фермент гиалуронидазу, вызывает увеличение проницаемости тканей и облегчает движение жидкостей в межтканевых пространствах; применяют при контрактурах суставов, рубцах после ожогов и операций, гематомах и др. Для лечения тромбоэмболий, тромбофлебитов, инфаркта миокарда применяют фибринолизин, растворяющий свежие тромбы. Пенициллиназа, получаемая из культуры Bacillus cereus, инактивирует препараты пенициллина, в связи с чем применяется при аллергических реакциях, вызванных этими препаратами.
        В медицинской практике применяют также препараты с антиферментной активностью: (угнетают холинэстеразу), некоторые антидепрессивные средства (угнетают моноаминоксидазу); в качестве мочегонных – ингибиторы карбоангидразы (например, диакарб); при острых панкреатитах – ингибиторы протеолитических ферментов (например, трасилол).
        Лит.:Капланский С. Я., Применение ферментных препаратов в терапии различных заболеваний, в кн.: Актуальные вопросы современной биохимии, т. 2, М., 1962; Машковский М. Д., Лекарственные средства, 7 изд., ч. 2, М., 1972.
         В. В. Чурюканов.

Ферментные яды

       Ферме'нтные я'ды,вещества различной химической природы, специфически подавляющие активность определённого или группы родственных ферментов. По существу Ф. я. представляют собой ферментов, которые даже в очень низких концентрациях угнетают жизненно важные физиологические функции организма. Многие ядовитые вещества, т. н. «нервные яды» (люизит), «дыхательные яды» (цианиды, H 2S), пестициды (ядохимикаты) оказывают отравляющее действие в результате ингибирования отдельных ферментов (например, холинэстеразы у членистоногих). Изучение влияния Ф. я. на изолированные ферменты или ферментные системы позволяет целенаправленно искать эффективные противоядия к определённым отравляющим веществам или новые пестициды для борьбы с вредными насекомыми, клещами и т.д. и сорняками. Иногда термин «Ф. я.» применяют для обозначения ферментов, входящих в состав ядов змей, пчёл, скорпионов и др. и разрушающих клетки крови или др. тканей человека и животных.

Ферментопатии

       Ферментопа'тии,энзимопатии, заболевания, обусловленные врождённым дефектом обмена веществ вследствие ферментных нарушений; относятся к группе .В основе Ф. лежат различные виды нарушений (полное отсутствие фермента, снижение его активности, отсутствие или неправильный синтез кофермента и др.), последствия которых в виде определённых аномалий обмена веществ и определяют в каждом случае специфику клинической картины Ф. Например, аномалии углеводного обмена могут проявляться в виде сахарного диабета, галактоземии; жирового обмена – в виде болезней Тей-Сакса, Нимана-Пика; аминокислотного обмена – в виде алкаптонурии, и т.п. Известно около 500 видов Ф. Многие из них отличаются полиморфизмом и т. н. гетерогенностью, которая заключается в том, что аномалии различных генов, регулирующих взаимодействие ферментов, могут иметь идентичные проявления, т.к. ферменты, контролирующие разные биохимические реакции, нередко дают одинаковый конечный результат метаболизма. Большинство Ф. передаётся по аутосомно-рецессивному типу наследования. Некоторые Ф. могут быть выявлены с помощью экспресс-методов в первые дни жизни ребёнка, например .Во многих случаях ранняя диагностика Ф. позволяет нормализовать обмен веществ с помощью специально подобранной диеты, введения в организм недостающего вещества (заместительная терапия), гормонов или удаления избытка продуктов метаболизма, нарушающего обмен веществ. Перспективен также метод внутриутробной диагностики (изучение культивируемых клеток околоплодной жидкости, реже – прямое исследование её). В профилактике Ф. возрастает роль