Создание формализованных систем позволяет исследовать ряд важнейших логических свойств содержательных теорий, отображённых в данном формализме. К ним прежде всего относятся непротиворечивость, полнота и независимость исходных постулатов данной теории.

  Обнаружение общности логических структур различных в содержательном смысле научных теорий открывает большие возможности для перенесения идей и методов одной теории в область другой, для обоснования возможности сведения одной теории к другой и выявления их общих понятийных и методологических предпосылок. Это важно для унификации и упрощения систем научного знания, особенно в условиях быстрого возникновения и развития новых научных дисциплин.

  Особое место в Л. н. занимают проблемы, связанные с эмпирическим обоснованием и проверкой естественнонаучных и социальных теорий и гипотез. Интенсивные исследования в этой области показали несостоятельность раннего неопозитивистского принципа полной верифицируемости (см. Верификация ) ,так же как и критерия фальсифицируемости. Затруднения, возникшие в неопозитивистской Л. н., привлекли внимание многих логиков и философов к проблеме связи и взаимодействия логических структур со структурами предметно-экспериментальной практической деятельности, что обусловило целый ряд новых подходов к Л. н. Этим в значительной степени объясняется наметившийся среди зарубежных логиков интерес к принципам теории познания диалектического материализма.

  Особый интерес приобретают исследования по логической семантике, посвященные изучению смыслов и значений теоретических и эмпирических терминов в языках различных наук. Обнаружение того, что так называемые предикаты, с помощью которых выражаются понятия и формулируются законы определённых научных теорий, не сводятся исчерпывающим образом к предикатам наблюдения, фиксирующим результаты непосредственных научных наблюдений и экспериментов, выдвинуло целый ряд сложных проблем. Важнейшими среди них являются проблемы логического анализа словарей различных наук, правил перевода языка теории на язык наблюдений, исследования взаимодействия и соотношения естественных и искусственных языков и т. д. В связи с этим особую важность приобретают работы по изучению семантики общенаучных терминов, таких, как «система», «структура», «модель», «измерение», «вероятность», «факт», «теория» и т. д. Многозначность и различные способы их употребления, обнаружившиеся в связи с быстрым развитием кибернетики, структурной лингвистики, теории систем и т. п., делают логико-методологический анализ важнейшей предпосылкой эффективной реорганизации и эвристической полезности подобных понятий.

  Последний период (с конца 50-х гг.) был переломным для развития Л. н. не только вследствие осознания принципиальной ограниченности её неопозитивистской интерпретации, но также и в силу того, что в этот период были сделаны наиболее значительные шаги для распространения идей и методов логического анализа на область социальных наук. Интенсивные исследования ведутся в сфере изучения языка, структур и правил рассуждения правовых, этических и отчасти социологических теорий. Достигнуты значительные результаты в логике решений, логике норм и оценок, логике систем и т. д. В этих отраслях современной Л. н. широкое распространение находят технические и понятийные средства тех разделов символической логики, которые принято называть неклассическими (различные виды многозначных логик, модальные логики, логика вероятностных и статистических рассуждений и т. п.). Однако применение Л. н. к ряду общественных дисциплин наталкивается на значительные трудности, связанные, с одной стороны, со сложностью закономерностей и теоретических структур этих наук, а с другой - с недостаточной разработанностью или отсутствием адекватного математического аппарата. Поэтому дальнейшее развитие Л. н. требует усиления исследований в области символической логики во всех её разнообразных видах.

  В СССР исследования по Л. н. наиболее интенсивно ведутся в институтах философии АН СССР, АН УССР, АН Грузинской ССР, на философских факультетах Московского, Ленинградского и Тбилисского университетов.

  Лит.:Проблемы логики научного познания, М., 1964; Логика научного исследования, М., 1965; Зиновьев А. А., Основы логической теории научных знаний, М., 1967; его же, Логика науки, М., 1971; Копнин П. В., Логические основы науки, К., 1968; Попович М. В., О философском анализе языка науки, К., 1966; его же, Логika i наукове пiзнання, К., 1971; Ракитов А. И., Анатомия научного знания. (Популярное введение в логику и методологию науки), М., 1969; его же, Курс лекций по логике науки, М., 1971; Smart Н. R., The logic of science, N. Y. - L., 1931; Northrop F. S. C., The logic of the sciences and the humanities, N. Y., 1948; Popper K. R., The logic of scientific discovery, N. Y., 1959; Harre R., An introduction to the logic of the sciences, L. - N. Y.; 1966; Durbin P. R., Logic and scientific inquiry, Milwaukee, 1968.

  А. И. Ракитов.

Логика отношений

Ло'гика отноше'ний, раздел логики,посвященный изучению отношений между объектами различной природы. В естественных языках отношения выражаются сказуемыми предложений, имеющих более одного подлежащего (или подлежащее и одно или несколько дополнений). В зависимости от числа этих подлежащих (или подлежащих и дополнений) говорят о бинарных (двуместных, двучленных), тернарных (трёхместных, трёхчленных), вообще n-арных (n-местных, n-членных) отношениях. В формализованных языках математической логики аналогом понятия отношения служит понятие (многоместного) предиката; соответственно современная модификация Л. о. называется логикой предикатов.На языке теории множеств и алгебры n-местным отношением называется класс упорядоченных систем из n элементов; если, например, упорядоченная пара <х, у> принадлежит некоторому отношению R, то говорят, что х находится в отношении R к у. Для понимаемых таким образом отношений определяются понятия области определения данного отношения (множество первых элементов входящих в него пар) и области значений (множество их вторых элементов) и аналогично тому, как это делается в теории множеств, вводятся операции объединения (суммы) и пересечения (произведения) отношений. В получающейся «алгебре отношений» (термин, также употребляемый как синоним термина «Л. о.») роль «единицы» играют т. н. отношения эквивалентности, т. е. отношения, обладающие свойствами рефлексивности (для всех х имеет место xRx), симметричности (из xRy следует yRx) и транзитивности (из xRy и yRz следует xRz). К этому важнейшему классу отношений принадлежит, например, равенство чисел, подобие многоугольников, параллельность прямых и т. п. Другой важнейший класс отношений - т. н. отношения порядка (рефлексивные и транзитивные, но несимметричные - «нестрогий» порядок; транзитивные, но нерефлексивные и несимметричные - «строгий» порядок; примерами могут соответственно служить отношения «не больше» и «меньше» для чисел или отрезков). В терминах отношений (и с использованием аппарата алгебры отношений) вводятся многие важнейшие понятия логики и математики, в частности понятия функции и операции.

  Ю. А. Гастев.

Логика предикатов

Ло'гика предика'тов, раздел математической логики,изучающий логические законы, общие для любой области объектов исследования (содержащей хоть один объект) с заданными на этих объектах предикатами (т. е. свойствами и отношениями). В результате формализации Л. п. принимает вид различных исчислений.Простейшими логическими исчислениями являются исчисления высказываний. В более сложных исчислениях предикатов описываются логические законы, связывающие объекты исследования с отношениями между этими объектами.

  В классическом исчислении предикатов употребляются следующие знаки: 1) т. н. предметные переменные - буквы х, у, z,..., которые содержательно рассматриваются как неопределённые имена объектов исследования теории; 2) предикатные переменные - знаковые комплексы вида P m, Q n, R l,... ( m, n, l- натуральные числа), причём, например, Q nозначает произвольное n-местное отношение между объектами; 3) знаки для логических связок: конъюнкции &, дизъюнкции , импликации Й, отрицания щ, означающие соответственно «... и...», «... или...», «если..., то...», «неверно, что...»; 4) знаки для кванторов "(квантор всеобщности), 3 (квантор существования), означающие соответственно «для всех...» и «существует... такое, что...»; 5) запятая, скобки (для уточнения строения формул).

  Если Q nесть n-местная предикатная переменная, a x 1,..., x n- предметные переменные, то выражение Q n( x 1,..., x n) есть, по определению, атомарная (элементарная) формула. Индекс nу предикатной переменной в атомарной формуле обычно опускается. Содержательно Q (x 1,..., x n) означает высказывание, гласящее, что объекты x 1,..., x nсвязаны отношением Q. Формулами считаются атомарные формулы, а также выражения, получаемые из них посредством следующих операций образования новых формул из уже полученных: 1) если j и  - формулы, то (j& ), (j ), (jЙ ) и щj - также формулы; 2) если j - формула и х - предметная переменная, то "xj, $xj - формулы. Определением формулы заканчивается описание языка исчисления предикатов.

  Вхождение предметной переменной х в формулу j называется связанным, если х входит в часть j вида $xj или "xj или стоит непосредственно после знака квантора. Несвязанные вхождения переменной в формулу называются свободными. Если найдётся хоть одно свободное вхождение хв j, то говорят, что переменная хвходит свободно в j или является параметром j. Интуитивно говоря, формула j с параметрами выражает некоторое условие, которое превращается в конкретное высказывание, если (конкретизировав предварительно область объектов) приписать определённые значения входящим в формулу параметрам и предикатным буквам. Связанные же переменные не имеют самостоятельного значения и служат (вместе с соответствующими кванторами) для обозначения общих утверждений или утверждений существования. Если j - формула, а хи у- предметные переменные, то через j( х½ у) будет обозначаться результат замещения всех свободных вхождений xв j на y(а если при этом уоказалось на месте хв части формулы вида " y или $ y , то следует дополнительно заменить все связанные вхождения ув эту часть на переменную, не входящую в j; это делается для того, чтобы не допустить искажения смысла j при замене хна у).

  Пусть j, , h - произвольные формулы, а хи у- предметные переменные. Тогда формулы следующих видов принимаются в качестве аксиом классического исчисления предикатов:

  1. (jЙ( Йh)),

  2. ((jЙ( Йh))Й((jЙ )Й(jЙh))),

  3. ((j& )Йj),

  4. ((j& ),

  5. (jЙ( Й(j& ))),

  6. ((jЙh)Й(( Йh)Й((j )Йh))),

  7. (jЙ(j )),

  8. ( Й(j )),

  9. (щjЙ)(jЙ )),

  10. ((jЙ )Й((jЙщ )Йщj))

  11. (j щj),

  12. ( "xjЙj(x/y)),

  13. (j(x/y) Й $xj).

  В исчислении предикатов употребляются след. три правила вывода. 1) Правило вывода заключений: из формул j и (jЙ ) выводится формула . Два кванторных правила вывода: 2) из формулы (jЙ ), где  не содержит свободно х, можно вывести (jЙ "x ); 3) из формулы (jЙ ), где  не содержит свободно х, можно вывести ( $xjЙ ).

  В отличие от других формулировок исчисления (см., например, Логика , раздел Предмет и метод современной логики), здесь j,  и h не принадлежат языку рассматриваемого исчисления, а обозначают его произвольные формулы; поэтому каждая из записей 1-13 есть аксиомная схема, «порождающая» при подстановке вместо греческой буквы некоторую конкретную аксиому; специальных правил подстановки при этой формулировке не надо.

  Интуиционистское исчисление предикатов отличается от классического лишь тем, что закон исключенного третьего (аксиома 11) исключается из числа аксиом. Различие двух исчислений отражает различие в их истолкованиях. Истолкование логических связок &, , Й, щ в исчислениях предикатов таково же, как и в соответствующих исчислениях высказываний. Что касается истолкования кванторов, то в классическом исчислении предикатов кванторы трактуются с точки зрения актуальной бесконечности. Точнее, каждая формула получает значение «истина» или «ложь», если определить модель исчисления предикатов, т. е. определить множество объектов, приписать каждой предикатной букве формулы некоторое отношение на этом множестве и приписать всем параметрам формулы некоторые объекты в качестве значений. Формула называется классически общезначимой, если она в любой модели принимает значение «истина». Как показал К. Гёдель,в классическом исчислении предикатов выводимы все классически общезначимые формулы, и только они. Эта теорема Гёделя и представляет собой точное выражение идеи формализации логики: в классическом исчислении предикатов выводятся все логические законы, общие для всех моделей.

  В интуиционистском же истолковании утверждение, что некоторая формула истинна, требует проведения некоторого математического построения. Например, " x $ yj истинно с интуиционистской точки зрения, только если имеется общий метод, позволяющий находить для каждого хсоответствующее у. Истинность " x(j щj) предполагает наличие метода для определения истинного члена дизъюнкции (j щj) для каждого значения параметра х. Например, классически общезначимые формулы, выражающие закон исключенного третьего (j щj) или закон пронесения отрицания через всеобщность (щ " x$ xщj), интуиционистски необщезначимы (теория моделей развивается, однако, и для интуиционистского исчисления предикатов).

  Л. п. является обычным базисом для построения логических исчислений, предназначенных для описания тех или иных дисциплин (прикладных исчислений). С этой целью язык исчисления предикатов «конкретизируется»: к нему добавляют предикатные символы и знаки операций, выражающие специфические отношения и операции рассматриваемой дисциплины. Например, если мы стремимся описать истинные суждения арифметики натуральных чисел, то можно добавить операции сложения, умножения, отношение делимости и т.п. Затем, кроме аксиом и правил вывода исчисления прецикатов (логических постулатов), в исчисление вводятся аксиомы, выражающие специфические законы изучаемого предмета (прикладные, специфические аксиомы). Таким образом строится, например, формальная арифметика.

 Помимо классического и интуиционистского исчислений предикатов, имеются и др. логические системы, описывающие логические законы, выразимые иными логическими средствами или с иных методологических позиций. Сюда относятся исчисления модальной логики, вероятностной логики, индуктивной логикии др.

  Лит.:Клини С. К., Введение в метаматематику, пер. с англ., М., 1957.

  А. Г. Драгалин.

Логинов Евгений Федорович

Ло'гиновЕвгений Федорович [10(23).10.1907, Гельсингфорс, ныне Хельсинки, - 7.10.1970, Москва], советский военачальник, маршал авиации (1967). Член КПСС с 1939. В Советской Армии с 1926. Окончил Военно-теоретическую школу ВВС (1926), военную школу лётчиков (1928), Высшую военную академию им. К. Е. Ворошилова (1949). В 1926-42 лётчик, командир звена, отряда, эскадрильи, помощник командира авиабригады. Во время Великой Отечественной войны 1941-1945 командовал авиационной дивизией и авиационным корпусом дальнего действия. После Великой Отечественной войны начальник факультета и заместитель начальника Военно-воздушной академии (1950-54), на ответственной работе в войсках; заместитель Главкома ВВС и генерал-инспектор Главной инспекции министерства обороны (1954-59), начальник Главного управления Гражданского воздушного флота (1959-1964), с 1964 министр Гражданской авиации СССР. Депутат Верховного Совета СССР 7-го созыва. Кандидат в члены ЦК КПСС (с 1966), член ЦК КПСС с 1968. Награжден 4 орденами Ленина, 3 орденами Красного Знамени, орденами Кутузова 1-й степени, Суворова 2-й степени, Александра Невского, Красной Звезды и медалями.

Е. Ф. Логинов.

Логистика

Логи'стика(от греч. logistike - искусство вычислять, рассуждать), 1) синоним (несколько архаический) термина математическая логика.2) Наименование этапа в развитии математической логики, представленного работами Б. Рассела и его школы (см. Логицизм ) .В античной математике Л. называли «искусство» вычислений и геометрических измерений, противопоставлявшееся «теоретической» математике. Г. В. Лейбниц употреблял термины logistica и logica mathematica как синонимы для разрабатывавшегося им calculus ratiocinator - исчисления умозаключений, идеи которого получили впоследствии более полное воплощение в современной математической логике. Термин «Л.» имеет ряд производных: логистический метод (способ изложения формальной логики посредством построения формализованных языков), логистическая система (то же, что формальная система,исчисление) и др.

  Лит.:Чёрч А., Введение в математическую логику, пер. с англ., т. 1, М., 1960.

  Ю. А. Гастев.

Логицизм

Логици'зм, направление в основаниях математики и философии математики, основным тезисом которого является утверждение о «сводимости математики к логике», т. е. возможности (и необходимости) определения всех исходных математических понятий (в рамках самой математики не определяемых) в терминах «чистой» логики и доказательства всех математических предложений (в том числе аксиом) опять-таки логическими средствами. Идеи Л. были выдвинуты ещё Г. В. Лейбницем,но в развёрнутом виде эта доктрина впервые была сформулирована Г. Фреге,предложившим сведение основного математического понятия - понятия натурального числа - к объёмам понятий и детально разработавшим логическую систему, средствами которой удавалось доказать все теоремы арифметики. Поскольку к тому времени в математике была практически завершена работа по сведению (в том же смысле, что и выше) основных понятий математического анализа, геометрии и алгебры к арифметике (посредством частичного сведения их друг к другу и выражения их понятий в терминах множеств теории ) ,то, как считал Фреге, логицистическая программа была тем самым в основном выполнена.

  Но ещё до выхода в свет 2-го тома работы Фреге «Основные законы арифметики» (1893-1903) Б. Рассел обнаружил в системе Фреге противоречие (называемое обычно парадоксом Рассела, см. Парадокс ) .Сам Рассел, однако, разделял основные тезисы программы Л.; он предпринял попытку «исправления» системы Фреге и «спасения» её от противоречий. Решение этой задачи потребовало большой работы по последовательной и детальной формализации не только математики, но и кладущейся в её основание (согласно программе Л.) логики. Итогом этой работы явился написанный Расселом (совместно с А. Н. Уайтхедом ) трёхтомный труд «Principia Mathematica» (1910-13). Главным новшеством системы Рассела - Уайтхеда (ниже РМ) явилось построение логики в виде «ступенчатого исчисления», или «теории типов». Формальные объекты этой теории разделялись на т. н. типы (ступени), и эта «иерархия типов» (а в др. модификациях системы РМ - ещё дополнительная «иерархия уровней») позволила избавиться от всех известных парадоксов. Однако для построения классической математики средствами РМ к этой системе пришлось присоединить некоторые аксиомы (см. Типов теория ) ,содержательно характеризующие важные свойства данного конкретного «мира математики» (и, конечно, соответствующего ему мира реальных вещей), а вовсе не являющиеся «аналитическими истинами», или, по Лейбницу, истинами, верными «во всех возможных мирах». Итак, не вся расселовская математика выводима из логики. Но более того, эта математика и не есть вся математика: как показал К. Гёдель (1931), системы типа РМ (и все, не уступающие им по силе) существенно неполны - их средствами всегда можно сформулировать содержательно истинные, но не разрешимые (не доказуемые и не опровержимые) математические утверждения (см. Аксиоматический метод, Метаматематика) .

 Т. о., программа Л. «чисто логического» обоснования математики оказалась невыполнимой. Тем не менее и результаты Рассела, и работы др. учёных, предложивших позднее различные усовершенствования системы РМ (например, работы американского математика У. ван О. Куайна), оказали громадное положительное влияние на развитие математической логики и науки в целом, способствуя формированию и уточнению ряда важнейших логико-математических и общеметодологических идей и построению соответствующего точного математического аппарата.

  Лит.:Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, гл. 3; Френкель А., Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966, гл. 3.

  Ю. А. Гастев.

Логическая операция

Логи'ческая опера'цияв ЦВМ, поразрядная операция над кодами произвольной длины по правилам алгебры логики. Л. о. производится над всеми цифрами кодов одна и та же, при этом каждая цифра результата зависит не более чем от одной цифры одного или нескольких кодов. В ЦВМ Л. о. выполняются в большинстве случаев над двоичными кодами. К числу основных и наиболее распространённых Л. о. относятся операции отрицания, конъюнкции, дизъюнкции и эквивалентности (см. табл. при ст. Алгебра логики ) .Эти Л. о. достаточно просто реализуются физическими элементами ЦВМ, а более сложные Л. о. могут быть программно сведены, например, только к трём Л. о.: отрицания, конъюнкции и дизъюнкции. Примеры использования Л. о.: отрицание - инвертирование при преобразовании прямого кода в обратный или дополнительный код; конъюнкция - логическое умножение для «выделения» любых частей кода; дизъюнкция - логическое сложение при формировании новых команд из нескольких других команд; эквивалентность - равнозначность при определении поразрядного тождества кодов. К Л. о. часто относят также сдвиг, проверку равенства числа нулю, проверку знака числа, получение абсолютной величины числа и др. В универсальных ЦВМ Л. о. обеспечивают управление ходом выполнения программ и взаимосвязь в программах, формирование новых команд, перекодирование данных, поиск информации по логическим шкалам и др. Л. о. являются основой для создания специализированных логических цифровых машин, для решения задач анализа переключательных схем с целью их минимизации и задач синтеза, т. е. составления и подбора элементарных схем, посредством которых можно создавать более сложные схемы для реализаций заданных функций.

  А. В. Гусев.

Логическая семантика

Логи'ческая сема'нтика, раздел логики,посвященный изучению значений и смыслов понятий и суждений и их формальных аналогов - интерпретаций выражений (термов и формул) различных исчислений ( формальных систем ) .Т. о., к задачам Л. с. в первую очередь относится уточнение понятий «значение», «смысл», «интерпретация», а в связи с этим и понятий «истинность», «определимость», «выразимость», «следование», «модель» и др. (вплоть до столь общих и первичных понятий, как «множество», «предмет», «соответствие»). Важные семантические проблемы возникают в связи с различием между содержанием и объёмом понятий, между смыслом и (истинностным) значением суждений. Свойства (например, равносильность, следование), связанные с содержанием понятий и смыслом суждений, называются интенсиональными; свойства, связанные с объёмом понятий и истинностным значением суждений, называются экстенсиональными. Суждения и понятия, интенсионально равносильные, равносильны и экстенсионально; обратное, вообще говоря, неверно (например, высказывания «Волга впадает в Каспийское море» и «2Ч2 = 4» равносильны экстенсионально, но не интенсионально; любая пара равносильных в обычном понимании суждений иллюстрирует предыдущее утверждение; см. ниже об аналитической и синтетической истинности).