А. А. Каспаров.

  Лит.:Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1972; Ахметов Н. С., Неорганическая химия, 2 изд., М., 1975; Тиунов Л. А., Кустов В. В., Токсикология окиси углерода, Л., 1969.

Углеродистая сталь

Углеро'дистая сталь, ,не содержащая легирующих компонентов. В зависимости от содержания углерода У. с. подразделяют на низкоуглеродистую (до 0,25% С), среднеуглеродистую (0,25-0,6% С) и высокоуглеродистую (более 0,6% С). Различают У. с. обыкновенного качества и качественную конструкционную. К 1-й группе относится горячекатаная (сортовая, фасонная, толстолистовая, тонколистовая, широкополосная) и холоднокатаная (тонколистовая) сталь; во 2-ю входят горячекатаные и кованые заготовки диаметром (или толщиной) до 250 мм,калиброванная сталь и .

 У. с. выплавляют в мартеновских, двухванных, дуговых печах и кислородных конвертерах. Для раскисления У. с. используют ферромарганец, ферросилиций, феррованадий, алюминий, титан и др.; по степени раскисления различают кипящую, полуспокойную и спокойную У. с. Для улучшения физико-химических и технологических свойств применяют микролегирование У. с. титаном, цирконием, бором, редкоземельными элементами. В результате микролегирования сталь приобретает мелкозернистую структуру, уменьшается степень зональной ,снижаются загрязнённость стали и склонность к образованию трещин при горячей пластической деформации, повышается при отрицательных температурах, что даёт возможность применять У. с. в различных климатических зонах (от - 40 до 60 °С). У. с. разливают на слитки (сверху, сифоном) и заготовки (на машинах непрерывного литья); масса слитков достигает 35 т.Кроме того, У. с. используется для получения стальных отливок. Литая У. с. отличается от деформируемой стали подобного состава несколько меньшими пластичностью и ударной вязкостью.

  У. с. - наиболее распространённый вид ;на её долю приходится (середина 70-х гг.) свыше 75% всей стальной продукции чёрной металлургии СССР.

  Лит.:Смоляренко Д. А., Качество углеродистой стали, 2 изд., М., 1969; Качество слитка спокойной стали, М., 1973.

  Д. А. Смоляренко.

Углеродистые огнеупоры

Углеро'дистые огнеупо'ры,состоят почти целиком из углерода либо содержат 5-70% С вместе с др. огнеупорными компонентами. Углеродистые изделия изготовляют из кокса, термоантрацита и каменноугольной смолы обжигом в восстановительной среде при 1100-1450 °С (неграфитированные) или около 2500 °С (графитированные). Графитовые изделия получают из природного или искусственного графита. Углеродсодержащие (графитсодержащие) огнеупоры формуют различными способами из смесей графита с глиной, шамотом, др. огнеупорными порошками и обжигают при 800-1350 °С или делают безобжиговыми. У. о. имеют кажущуюся плотность 1500-2000 кг/м 3,пористость преимущественно 15-30%, высокую .В окислительной среде У. о. сравнительно быстро окисляются, форма изделий - блоки различных размеров и фасонные изделия (пробки, стаканы, трубы, тигли и др.). Углеродистые изделия применяются в кладке горна и лещади доменных печей, подин печей цветной металлургии, печей по производству карбида кальция; графитированные и графитовые - в печах для производства специальных сплавов, в ракетных двигателях; графито-алюмосиликатные - при разливке стали, плавке цветных металлов и т.д. Находят применение также смеси - пасты из углеродистых или графитовых порошков со смоляным связующим.

  Лит.:Химическая технология керамики и огнеупоров, М., 1972.

  А. К. Карклит.

Углеродная единица

Углеро'дная едини'ца,унифицированная ,составляющая массы атома изотопа углерода 12C.

  У. е. была предложена в 1959 (IUPAC), принята в 1960 (IUPAP) и утверждена на конгрессе IUPAC в 1961. У. е. равна (1,66043 ± 0,00031)Ч10 -24 г.

Углеродные волокна

Углеро'дные воло'кна,волокна, состоящие в основном из углерода. У. в. обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температура обработки может составлять менее 900 °С (такие У. в. содержат 85-90% углерода), 900-1500 °С (95-99%) или 1500-3000 °С (более 99%). Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения У. в. могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.

  У. в. могут иметь разнообразную текстильную форму, определяемую чаще всего формой исходного сырья (непрерывные или штапельные нити, жгуты, ленты, войлок, ткани и др.). Возможна также переработка У. в. в тканые и нетканые материалы с использованием обычного текстильного оборудования.

  У. в. имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600-2000 °С в отсутствии кислорода механические показатели волокна не изменяются. Это предопределяет возможность применения У. в. в качестве тепловых экранов и теплоизоляционного материала в высокотемпературной технике. На основе У. в. изготавливают армированные пластики, которые отличаются высокой абляционной стойкостью (см. ).

  У. в. устойчивы к агрессивным химическим средам, однако окисляются при нагревании в присутствии кислорода. Их предельная температура эксплуатации в воздушной среде составляет 300-350 °С. Нанесение на У. в. тонкого слоя карбидов, в частности SiC, или нитрида бора позволяет в значительной мере устранить этот недостаток. Благодаря высокой химической стойкости У. в. применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др.

  Изменяя условия термообработки, можно получить У. в. с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2Ч10 -3до 10 6 омЧ см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.

  Активацией У. в. получают материалы с большой активной поверхностью (300-1000 м 2) ,являющиеся прекрасными сорбентами. Нанесение на волокно катализаторов позволяет создавать каталитические системы с развитой поверхностью.

  Обычно У. в. имеют прочность порядка 0,5-1 Гн/м 2(50-100 кгс/мм 2) и модуль 20-70 Гн/м 2(2000-7000 кгс/мм 2) ,а подвергнутые ориентационной вытяжке - прочность 2,5-3,5 Гн/м 2(250-350 кгс/мм 2) и модуль 200-450 Гн/м 2(20Ч10 3-45Ч10 3 кгс/мм 2) .Благодаря низкой плотности (1,7-1,9 г/м 3) по удельному значению (отношение прочности и модуля к плотности) механических свойств У. в. превосходят все известные жаростойкие волокнистые материалы. На основе высокопрочных и высокомодульных У. в. с использованием полимерных связующих получают конструкционные углеродопласты. Разработаны композиционные материалы на основе У. в. и керамических связующих, У. в. и углеродной матрицы, а также У. в. и металлов, способные выдерживать более жёсткие температурные воздействия, чем обычные пластики.

  Лит.:Конкин А. А., Углеродные и другие жаростойкие волокнистые материалы, М., 1974.

  А. А. Конкин.

Углеродовский

Углеро'довский,посёлок городского типа в Ростовской области РСФСР, подчинён Гуковскому горсовету. Расположен в 2 кмот железнодорожного узла Замчалово. Добыча угля.

Углеродопласты

Углеро'допла'сты,карбопласты, углепластики, пластмассы, содержащие в качестве наполнителя (в виде непрерывного жгута, ленты, мата или короткого рубленого волокна). Связующими для таких материалов служат синтетические полимеры, например эпоксидные, полиэфирные, феноло-формальдегидные смолы, полиимиды, кремнийорганические полимеры (полимерные У.), синтетические полимеры, подвергнутые пиролизу (коксованные У.), и так называемый «пиролитический углерод» (пироуглеродные У.).

  Изделия из У. можно формовать всеми способами, применяемыми при переработке слоистых .Наиболее распространён следующий метод: углеродный наполнитель пропитывают расплавом или раствором связующего (например, в спирте, в углеводородах), подсушивают, получая полуфабрикат (препрег), из которого выкраивают заготовки, собирают из них по форме изделия пакет и прессуют, как правило, на гидравлических прессах, в автоклавах или пресс-камерах (удельное давление не должно превышать 2,0- 2,5 Мн/м 2,или 20-25 кгс/см 2,из-за высокой хрупкости углеродного волокна). Препрег в виде пропитанной ленты или жгута используют также при получении изделий намоткой. Коксованные У. получают пиролизом полимерных У. при 300-1500 °С или 2500-3000 °С. При изготовлении пироуглеродных У. наполнитель, не пропитанный связующим, выкладывают по форме изделия, помещают в печь, в которую пропускают обычно метан. При 1100 °С и остаточном давлении 2,6 кн/м 2(20 мм рт. см.) он разлагается, и образующийся «пиролитический углерод» осаждается на углеродных волокнах, связывая их.

  У. характеризуются сочетанием высокой прочности и жёсткости с малой плотностью, низкими температурным коэффициентом линейного расширения (благодаря чему при повышенных температурах У. имеют хорошую стабильность размеров) и коэффициент трения, высокими тепло- и электропроводностью, износостойкостью, устойчивостью к термическому, химическому и радиационному воздействию. У. превосходят др. слоистые пластики (например, , ) и металлы по статической и динамической выносливости, имеют высокую вибропрочность (например, усталостная прочность при изгибе У. на основе эпоксидного связующего более 400 Мн/м 2,или 40 кгс/мм 2,вибропрочность 480 Мн/м 2,или 48 кгс/мм 2) .У. обладают высокой анизотропией свойств. Пироуглеродные и коксованные У. отличаются также хорошими абляционными свойствами (см. ) .Однако ударная прочность У. меньше, чем, например, у стеклопластиков.

  У. - важные ,используемые в авиастроении (обеспечивают снижение массы деталей фюзеляжа, крыла, оперения самолёта на 15-50%). Из У. изготавливают детали самолётов скоростной авиации и космических летательных аппаратов, спортинвентарь (например, лыжи), химическое оборудование; У. используют в судо- и автомобилестроении. Коксованные и пироуглеродные У. применяют для внешней теплозащиты возвращаемых космических аппаратов, для внутренней теплозащиты элементов ракетных двигателей (сопла, камеры сгорания).

  И. П. Хорошилова.

Углеуральский

Углеура'льский,посёлок городского типа в Пермской области РСФСР, подчинён Губахинскому горсовету. Расположен на западном склоне Среднего Урала, на автодороге Соликамск - Кунгур, в 3 кмот железнодорожная станции Половинка (на линии Соликамск - Чусовская) и в 4 кмот железнодорожной станции Углеуральская (на линии Лёвшино - Соликамск). 17,2 тыс. жителей (1976). Добыча угля. Филиал швейной фабрики.

Угли ископаемые

У'гли ископа'емые- твёрдые горючие полезные ископаемые осадочного происхождения. В состав У. и. входят: органическое вещество - продукт преобразования высших и низших растений с участием микроорганизмов планктона, минеральные примеси (условно не более 50%) и влага.

  У. и. залегают в земной коре в виде пластов, пластообразных и линзовидных залежей, имеют землистую, массивную, слоистую или зернистую текстуру; цвет от коричневого до чёрного.

  I. Общие сведения

 У. и. - один из основных видов энергетического сырья; доля их участия в мировом топливно-энергетическом балансе 30-35%. С 1950 по 1974 мировая добыча У. и. увеличилась в 1,7 раза, превысив 3 млрд, т.

 У. и. составляют основную часть (87,5%) прогнозных ресурсов ископаемого топлива Земли, оцениваемых величиной 12,8 триллиона т ( тут) .СССР обладает крупнейшими ресурсами У. и.; разведанные и прогнозные геологические запасы У. и., отвечающие современным требованиям по качеству и мощности разрабатываемых пластов, составляют 5,7 триллиона т(1968), или 4,6 триллиона тут.

 Основные направления промышленного использования У. и.: производство электроэнергии, металлургического кокса, сжигание в энергетических целях, получение при химической переработке разнообразных (до 300 наименований) продуктов. Возрастает потребление У. и. для получения высокоуглеродистых углеграфитовых конструкционных материалов, горного воска, пластических масс, синтетического жидкого и газообразного высококалорийного топлива, ароматических продуктов путём гидрогенизации, высокоазотистых гуминовых кислот для удобрений. Из У. и. извлекаются германий, галий (см. ) .Перспективно извлечение серы из У. и., использование высокоглинозёмистых зол и отходов обогащения для производства алюминия, в качестве керамического и огнеупорного сырья, строительных материалов, средства очистки промышленных сточных вод. Возможное использование У. и. в промышленности определяется их составом и свойствами, характеризующимися большим разнообразием - следствием различий в исходном материале и условиях его преобразования.

  II. Происхождение, состав и свойства

 По составу основного компонента - органического вещества - У. и. подразделяются на 3 генетические группы: гумолиты (гумусовые угли), и сапрогумолиты. Преобладают гумолиты, исходным материалом которых явились остатки высших наземных растений. Отложение их происходило преимущественно в болотах, занимавших низменные побережья морей, заливов, лагун, пресноводных бассейнов (озёр и рек) - автохтонное накопление; более ограниченным было отложение при сносе с прилегающих участков суши в застойные водные бассейны растительного материала и продуктов его преобразования - аллохтонное накопление. Накапливавшийся растительный материал в результате биохимического разложения перерабатывался в ;при этом значительное влияние оказывали обводнённость и химический состав водной среды. Анаэробные (в водной среде) условия приводили к гелификации органического материала - основы образования блестящих - витринитовых, или гелинитовых, углей; аэробные условия и окислительная среда способствовали фюзенизации тканей - образованию волокнистых и сажистых фюзинитовых углей. Элювиация - вымывание проточными водами продуктов окисления лигнино-целлюлозных тканей - сопровождалась обогащением органической массы остатками наиболее устойчивых частей растений (оболочками спор, кутикулой, смоляными тельцами, пробковой тканью коры и т.п.), характерных для матовых лейптинитовых углей. Угли, сложенные почти полностью стойкими форменными элементами (растительными остатками, сохранившими своё строение и очертания), выделяются в особую группу - липтобиолиты (см. ) .

 Сапропелиты (сапропелевые угли) - продукт преобразования низших растений и микроорганизмов планктона, накапливавшихся в органогенном иле озёр и морских лагун. На равных стадиях преобразования органического вещества сапропелиты отличаются от гумолитов более высоким выходом летучих веществ (60-80%) и содержанием водорода (8- 12%).

  Сапрогумолиты - переходная разность У. и., продукт преобразования высших, а также низших растений. Сапропелиты и сапрогумолиты обычно залегают в виде прослоев и линз среди гумусовых углей. Высокозольные разности сапропелитов называют ;они нередко образуют самостоятельные бассейны (например, ) и месторождения.

  Минеральные примеси находятся либо в тонкодисперсном состоянии в органической массе, либо в виде тончайших прослоек и линз, а также кристаллов и конкреций. Источником минеральных примесей в У. и. могут быть: неорганические составные части растений-углеобразователей; терригенный материал, приносимый в области торфообразования водой и ветром, а также минеральные новообразования, выпадающие из растворов вод, циркулирующих в торфяниках. Состав минеральных примесей - кварц, глинистые минералы (главным образом каолиниты), полевые шпаты, пирит, марказит, карбонаты и др. соединения, содержащие Si, Al, Fe, Ca, Mg, К, Na, Ti, редкие и рассеянные элементы (U, Ge, Ga, V и др.). Содержание минеральных примесей изменяется в широких пределах; большая часть из них при сжигании У. и. превращается в золу.

  Различия в исходном материале, степени обводнённости торфяников, химическом составе среды и фациальных обстановках осадко- и торфонакопления, обусловливающие направленность и интенсивность протекания окислительных и восстановительных микробиологических процессов, создали в торфяной стадии основу для образования различных генетических типов У. и. (см. ) .Торфообразование и торфонакопление завершались перекрытием торфяника осадками, образующими породы кровли. Происходившие при относительно невысоких температурах и давлении диагенетические (уплотнение, дегидратация осадков, газовыделение) и биохимические процессы восстановительного характера приводили к превращению торфа в .У. и., включающие слабо разложившиеся древесные остатки, сцементированные землистым углём, называемые лигнитами.

  Бурые угли - одна из разновидностей У. и. - имеют широкое распространение. Доля запасов бурых углей и лигнитов в мировых запасах У. и.- 42%. Неглубокое залегание и большая мощность угольных пластов позволяют широко применять открытый способ разработки, экономические и технические преимущества которого во многом компенсируют относительно низкое качество сырья.

  В результате длительного воздействия повышенных температур и давления бурые угли преобразуются в ,а последние - в .Необратимый процесс постепенного изменения химического состава (прежде всего в направлении обуглероживания), физических и технологических свойств органического вещества в преобразованиях от торфа до антрацита называются углефикацией. Углефикация на стадиях превращения бурых углей в каменные и последних в антрациты, обусловленная происходящими в земной коре процессами, носит название метаморфизма углей. Выделяют 3 основных вида метаморфизма углей: региональный, вызванный воздействием внутренней теплоты Земли и давления перекрывающей толщи пород при погружении У. и. в глубь земной коры; термальный - под влиянием тепла, выделяемого магматическими телами, перекрывшими или внедрившимися в угленосную толщу, либо в подстилающие её отложения; контактовый - под воздействием тепла изверженных пород, внедрившихся в угольные пласты или пересекших их непосредственно; проблематично признаётся возможным метаморфизм углей за счёт повышения температур в областях проявления тектонических сжимающих и скалывающих) усилий - динамометаморфизма.

  Структурно-молекулярная перестройка органического вещества при метаморфизме углей сопровождается последовательным повышением в них относительного содержания углерода, снижением содержания кислорода, выхода летучих веществ; в определённых закономерностях с экстремальными значениями на средних стадиях углефикации изменяются содержание водорода, теплота сгорания, твёрдость, плотность, хрупкость, оптические, электрические и др. физические свойства У. и. ( рис. 1 ). Для определения этих стадий используются: выход летучих веществ V Г,содержание углерода, микротвёрдость и др. особенности химического состава и физических свойств углей. Наиболее эффективен метод определения стадии углефикации по отражательной способности витринита ® .

 Каменные угли на средних стадиях метаморфизма приобретают спекающие свойства - способность гелифицированных и липоидных компонентов органического вещества переходить при нагревании в определённых условиях в пластического состояние и образовывать пористый монолит - .Относительное количество запасов У. и. с высокой спекающейся способностью составляет 10-15% от общих запасов каменных углей, что связано с более высокой интенсивностью преобразования органических вещества на средних стадиях метаморфизма. Спекающиеся угли возникают при температурах примерно от 130 до 160-180 °С при общем диапазоне температур, обусловливающих протекание метаморфизма У. и., от 70-90 °С для длиннопламенных углей до 300-350 °С для антрацитов. Наиболее высококачественные спекающиеся угли формировались в бассейнах, испытавших региональный метаморфизм при глубоком погружении угленосной толщи. При термальном и контактовом метаморфизме в связи с резким изменением температур и невысоким давлением преобразование органического вещества протекает неравномерно и качество углей отличается невыдержанностью технологических свойств. Породы угленосных формаций наряду с метаморфизмом углей испытывают катагенетические преобразования (см. ) .

 В зонах аэрации и активного действия подземных вод вблизи поверхности Земли У. и. подвергаются окислению. По своему воздействию на химический состав и физические свойства У. и. окисление имеет обратную направленность по сравнению с метаморфизмом: У. п. утрачивают прочностные свойства (до превращения их в сажистое вещество) и спекаемость; в них возрастает относительное содержание кислорода, снижается количество углерода, увеличиваются влажность и зольность, резко снижается теплота сгорания. Глубина окисления У. и. в зависимости от современного и древнего рельефа, положения зеркала грунтовых вод, характера климатических условий, вещественного состава и метаморфизма углей колеблется от 0 до 100 мпо вертикали.

  Различия в вещественном составе и степени метаморфизма обусловили большую дифференциацию технологических свойств У. и. Для установления рационального направления промышленного использования У. и. подразделяются на марки и технологические группы; в основу такого подразделения положены параметры, характеризующие поведение У. и. в процессе термического воздействия на них (см. табл.). Границей между бурыми и каменными углями принята высшая теплота сгорания рабочей массы беззольного угля, равная 5700 ккал/кг(23,86 Мдж) .

 Ведущий показатель при использовании У. и. в энергетических целях - низшая теплота сгорания - в пересчёте на рабочее топливо (Q п н) колеблется в пределах ( ккал/кг) :2000-5000 (8,372-20,930 Мдж) для бурых, 4100-6900 (17,162 - 28,893 Мдж) для каменных углей и 5700-6400 (23,86-26,79 Мдж) для антрацитов. Пониженная величина этого показателя у бурых углей объясняется низкой степенью углефикации органического вещества, слабой уплотнённостью материала и, соответственно, высокой их естественной влажностью, изменяющейся в пределах 15-58%. По содержанию рабочей влаги ( W p) бурые угли подразделяются на технологические группы: Б1 с W p> 40%, Б2 с W p30-40% и Б3 с W p< 30%.

  В основу промышленной маркировки каменных углей положены показатели, характеризующие результаты их высокотемпературной сухой перегонки (коксования): выход летучих веществ, образующихся при разложении органической массы (частично неорганического материала - сульфидов, карбонатов, гидратированных минералов), и характеристика беззольного горючего остатка - кокса по спекаемости. Весовой выход летучих веществ (V Г) из У. и, последовательно снижается с повышением степени углефикации от 45 до 8% у каменных углей и до 8-2% у антрацитов.

  В СССР спекаемость У. и. определяется в лабораторном аппарате пластометрическим методом, предложенным в 1932 советскими учёными Л. М. Сапожниковым и Л. П. Базилевич, по толщине образующегося при нагревании пластического слоя (у) с учётом усадки ( х) ,выраженных в мм.Наибольшей спекающей способностью характеризуются каменные угли средних стадий углефикации с толщиной пластического слоя 10-35 мм(марок К и Ж). С понижением и увеличением степени метаморфизма спекаемость У. и. снижается. Угли марок Д и Т характеризуются слабоспекшимся порошкообразным нелетучим остатком. В таблице приведены величины основных показателей качества углей на различных стадиях углефикации применительно к маркам, употребляемым в СССР.

Основные показатели качества углей марочного состава

Марки угля Буквен-ное обоз-начение марок Средние величины показателей для углей, состоящих преимущественно из витринита Отражательная способность витринита в масляной иммерсии R° ,%
Выход лету- чих веществ V г, % содержание углерода С г, % теплота сгорания Q г б, ккал/кг
Бурые ДлнннопламенныеГазовые Жирные Коксовые Отощённо-спекаю-      щиеся Тощие Антрациты Б Д Г Ж К ОС Т А 41 и более 39 и более 36 30 20 15 12 менее 8 76 и менее 76 83 86 88 89 90 91 и более 6900-7500 7500-8000 7900-8600 8300-8700 8400-8700 8450-8780 7300-8750 8100-8750 0,30-0,49 0,50-0,64 0,65-0,84 0,85-1,14 1,15-1,74 1,75-2,04 2,05-2,49 2,50-6,00

  Кроме указанных в таблице, в некоторых бассейнах выделяются промежуточные марки: газовые жирные (ГЖ), коксовые жирные (КЖ), коксовые вторые (K