Рост опухоли начинается не из одной клетки (как это предполагается в теории мутации), а из определенной части ткани. Следовательно, перерождения в мембранах и неполно ценность антиоксидантных систем являются первичны ми, а в ДНК митохондрий последствия вторичны. Цикл развития клеток становится усеченным, работают только примитивные древние генные программы. Все это сбивает с толку исследователей и заставляет искать причину нарушений на генетическом уровне – в геноме ядра клетки. И там действительно «находят» такие онкогены, например р53 и другие. Они описаны, изучены, но являются отражением, вторичной перестройкой, экспрессией, результатом устойчивых изменений на митохондриально-мембранном уровне. Митохондрии имеют свои ДНК, но их предназначение заключается в регулировании энергетического процесса в цикле Кребса. ДНК митохондрий существенно отличается от ДНК в ядре.
   Мембраны – это ахиллесова пята клеток, в первую очередь повреждающаяся под влиянием различных факторов. Возможности самозащиты и восстановления у таких клеток намного ограничены. Они-то и являются базой, на которой может развиваться процесс малигнизации (перерождения здоровых клеток в раковые, злокачественные).
   Предложенный нами двойственный митохондриально-мембранный подход к решению теоретических и практических проблем онкологии позволяет увязать в единое целое многие разрозненные ранее результаты. Впервые стало возможным об основание и решение практических сторон лечения с максимально возможным эффектом при полной его безвредности.
   В свете предложенной теории становится понятным, почему решения проблемы онкологии только с помощью восстановления энергетики клеток и их митохондрий недостаточно. Дело в том, что, даже в случае достижения положительного результата по рассасыванию опухоли и исчезновению метастазов, остается большая угроза рецидива заболевания в сроки от 1 до 5 лет. Крупные опухоли вообще плохо поддаются лечению, и нужно дополнительно подключать к терапии другие механизмы, в том числе повышающие иммунизацию и иммуногенность.
   К сожалению, врачи пока не признают эти методы лечения ни в качестве основных, ни в качестве вспомогательных.

Роль митохондрий в образовании опухолей

   Ранее мембранно-митохондриальный под ход к объяснению канцерогенеза уже выдвигал ряд авторов. Ниже я приведу их теории. В них есть большие преимущества в решении задачи по срав нению с предшествующими теориями, одному выбранному авторами подходу к объяснению механизмов канцерогенеза присущ и ряд недостатков, так как он не может объяснить многие стороны первичных процессов зарождения малигнизации – перерождения обычных клеток в злокачественные. Часть звеньев этого процесса исследователями упущены.

Энергетическая концепция онкологического процесса О. Варбурга (1927 г.)

   Он обнаружил, что злокачественное перерождение тканей сопровождается значительным усилением аэробного и анаэробного гликолиза (процесс получения энергии в присутствии или в отсутствие кислорода). Дыхание с использованием кислорода в раковых клетках заменяется на другой тип энергетики – ферментацию глюкозы, свойственную низшим формам жизни.
   Согласно его концепции, причина малигнизации состоит в нарушении дыхания и компенсаторного усиления гликолиза в тех клетках, которые выживают после повреждения дыхания. Способность получать энергию за счет «молочнокислой ферментации» гликолиза и расти за счет энергии этого процесса является главной биохимической характеристикой опухолевых клеток. Он пришел к заключению, что раковые клетки отличаются от нераковых, включая растущие эмбриональные, неспособностью подавлять гликолиз в присутствии кислорода.
   Понимая, что энергетика клетки связана с митохондрия ми, он впервые высказал предположение о возможных нарушениях именно в них. Но это его высказывание было надолго оставлено без внимания.

Мембранная теория рака С. А. Нейфаха (1961 г.)

   С его позиции, особенность энергетики раковых клеток определяется дефектом мембран митохондрий и повышением синтеза и каталитической мощности гексокиназы, ограничивающей скорость гликолиза в клетках. Мембраны определяют работу ферментов. Верно объясняя некоторые ферментные стороны онкопроцесса, ученый тем не менее не смог объяснить устойчивость этого процесса в последующих поколениях клеток и многое другое.

Изозимная гипотеза B. C. Шапот (1968, 1975 гг.)

   Биохимические особенности опухоли зависят не от появления новых ферментов в клетках, а от расстройства последовательности синтеза изоферментов (или изоэнзимов – это различные формы одного и того же фермента, существующие в одном организме, но, как правило, в разных его клетках, тканях или органах), которые присутствуют и в нормальных клетках. В результате изменяется соотношение некоторых изоферментов, что при водит к усилению скорости гликолиза и изменению его взаимодействия с другими процессами метаболизма. Показано, что различие в изоферментном составе нормальных и опухолевых клеток касается таких ферментов, как гексокиназа, альдолаза, пируваткиназа, лактатдегидрогеназа, аденилаткиназа и другие. Но это лишь частично объясняет образование опухоли, являясь только звеном механизма канцерогенеза.

Митохондриальная теория рака Зотина (1991 г.)

   Только в последнее десятилетие получено много данных о нарушении в раковых клетках структуры и функции митохондрий – органелл, осуществляющих функцию дыхания. Это позволило выдвинуть митохондриальную теорию рака, которая в какой-то мере дополняет теорию Варбурга. Концепция исходит из ранее предложенной идеи о том, что возникновение злокачественных опухолей связано с появлением в клетках мутантных, дефектных митохондрий.
   Как отмечает автор, дело не в полном нарушении дыхания клеток, а лишь в нарушении воспроизводства и строения митохондрий, повреждении их наружной мембраны, увеличении проницаемости последней и как следствие нарушении регуляторных механизмов дыхания и гликолиза. Как видим, внимание здесь обращено только на внешнюю сторону мембран митохондрий и нет взаимоувязывания с мембранами клетки в целом. А именно этот мембранный комплекс может определять многие внутренние процессы как митохондрий, так и ядра клеток.
   Для того чтобы создать свою теорию, ученому необходимо было объяснить, как изменения митохондрий, приводящие к возникновению энергетического метаболизма ракового типа, связаны с активацией онкогенов трансформированных клеток? Иными словами, какова связь между теорией Варбурга и теорией онкогена? По признанию самого автора, «в митохондриальной теории еще много неясного как в деталях, так и в целом».
   И самое главное, что эта теория описывает лишь часть более глобальных перестроек в клетке. В такой концепции не укладываются многие научные факты. Например, борьба иммунитета с онкоклетками и выбраковка их, что на сегодняшний день доказано. Такое объяснение воз можно только с учетом факта перерождения наружных мембран онкоклеток. Также эта теория не учитывает провоспалительную начальную сторону канцерогенеза, что, в свою очередь, тоже можно связать с наружными мембранами клеток. Следовательно, вышеуказанная теория является лишь узкоспецифическим взглядом на механизмы проявления онкологии на клеточном уровне и не способна связать воедино все разрозненные факты, охватить всю сложность проблемы. В то же время рассматриваемая концепция может объяснить только уже проявленный онкологический процесс, но никак не объясняет первичные этапы онкологизации, которые в большей степени вероятности могут определяться наружными мембранами клеток, тогда как внутриклеточные перестройки могут быть вторичными подстройками, перенапряжением энергетических процессов в определенных группах клеток с последующим закольцеванием процесса.

Регулирование энергетических процессов

   Именно в митохондриях находятся генетические программы, которые отвечают за самый совершенный механизм энергетики, то есть цикла Кребса. Они определяют, будет ли этот цикл полноценным аэробным или же все пойдет по анаэробному (бескислородному) пути.
   Определенные гены митохондрий могут быть выключены или включены в зависимости от изменений в элементном составе субстрата. Митохондрии работают всегда, даже когда организм голодает, ведь дыхательно-энергетические процессы и выделение тепла идут непрерывно. Гены определяют работу ферментов цикла Кребса. Известно, что многие гены иногда дублируются в геноме сотни раз. Многих такие излишества сбивают с толку.
   Есть основание считать, что каждый генопродукт регулируется в митохондриях не одним геном и не только за счет последующей транскрипции РНК на рибосомах, с многократным считыванием и образованием копий белков и ферментов, но также и целым блоком генов-дублей, которые запараллелены в батареи. Активность генов, ответственных за энергетику, здесь регулируется, очевидно, каким-то другим образом. Но ясно то, что они реагируют на состояние окружающей их среды. Очевидно, митохондрии могут существовать автономно и вне клеток, при этом клонируя себя. Видимо, у них есть набор генов самосборки, а значит, есть ДНК, ответственная не только за энергетические процессы. Особенность ДНК-регуляции в области энергетики позволяет системе управляться не просто путем «включено – выключено», а более тонко реагировать на разные уровни состояния среды.
   Кроме того, такая особенность работы ДНК митохондрий объясняет большую вероятность их повреждений. В то же время становится возможным при необходимости корректировать работу генов. При этом подключается большее или меньшее количественно ферментов, отвечающих за определенное звено цепи Кребса. Энергогенных продуктов в ходе работы митохондрий образуется многократно больше, чем при обычных строи тельных процессах в клетке. А для этих целей нужны специальные органеллы, подключение же программы возможно только при преодолении некоего порога. Такая сложная генетическая программа действует как датчик чувствительности, релейная сеть, реагирующая на порог концентрации. При такой ситуации в митохондриях нарушаются обычно не все ответственные за этот процесс гены, а лишь часть из них.
   Правомочен вопрос: возможно ли от таких работающих митохондрий добиться их репарации?
   Вывести онкологические клетки на уровень здоровых, в принципе, можно путем повышения их энергетики. Этому есть подтверждающие данные по применению меди и янтарной кислоты.
   Известно, что устойчивый гликолиз, кроме онкоклеток могут про являть и эмбриональные клетки. Дифференциальные гены у них тоже заблокированы.
   Следует понимать, что митохондрий в клетках бывает много, от 5 до сотен. Число их, очевидно, зависит от энергетических потребностей клетки. Поломка одной митохондрии не должна сказываться на общем состоянии клетки. В норме, если нарушается работа многих митохондрий, то запускаются механизмы апоптоза – самоуничтожения. Но у онкоклеток этого не происходит. Почему?
   Энергетические процессы в них происходят преимущественно не в митохондриях, а в цитоплазме клеток. Того совершенного цикла Кребса с гибко управляемой цепью ферментных звеньев, которые имеются в митохондриях, здесь нет. Кстати, тут и находится ахиллесова пята – слабое место опухоли.
   У таких аберрантных клеток из-за нарушений порога чувствительности происходит извращенная реакция включения программ на репарацию, воспроизведение, что сопряжено с механизмами воспаления на клеточном уровне. Воспаление усиливает репарацию. Очевидно, этим можно объяснить определенную взаимосвязь сдерживания роста онкоклеток, например, такими противовоспалительными средствами, как аспирин.
   Теперь становится понятным, почему антиоксиданты и предложенные мною оксигенаторы имеют определенный эффект при лечении онкологических заболеваний, в частности выборочно способствуют апоптозу (естественной клеточной смертности) раковых клеток, не затрагивая здоровые клетки, ослабляют онкоангиогенез (прорастание сосудов в опухоли) и метастатическое развитие.
   Изучая, например, механизм воздействия цианидин-3-рутинозида (C-3-R), полученного из ежевики, на злокачественные клетки, исследователи установили, что данное вещество приводит к аккумуляции в митохондриях клеток активных соединений кислорода, что, в свою очередь, запускает процесс запрограммированной гибели клеток – апоптоза. Преимущественно такой эффект дают антиоксиданты полифенольной группы, содержащиеся больше в ягодах черного цвета, например в черном винограде, ирге, бузине, красящем веществе бетаине из свеклы и др. Но имеют определенное значение и другие группы антиоксидантов, в том числе минеральных, таких как селен, жирорастворимых, таких как ликопин, вита мин А и др.

Обратимость онкоклеток

   Также предлагаемая мною теория проще приемлет факты, подтверждающие способность опухолевых клеток нормализоваться при дифференцировке.
   Впечатляющие результаты были получены в работах по изучению морфобластических возможностей клеток тератокарциномы[8] мыши (Mintz, 1978). Было продемонстрировано, что раковые клетки тератокарцином способны к полной утрате признаков злокачественности и включению в гистогенез – восстановление здоровых тканей[9]. Такими же свойствами обладали клетки неэмбриональных опухолей – аденокарциномы молочной железы, плоскоклеточного ороговевающего рака, хондросаркомы (Pierce, Speers, 1988).
   Степень злокачественности опухоли стало возможным объяснять не нарушением специфической группы генов, а глубиной нарушения гликолизного процесса – объема поражения генома митохондриальных тел. Это означает, что энергетическая функция определенной геногомеостатной единицы может отключаться не в пол ном объеме, а только частично, что и ограничивает в разной степени энергетику.

О целесообразности объединения теорий канцерогенеза

   У прежних теорий имелись противоречия, которые невозможно было уложить в единую систему. Например, сведения о том, что клетки с хромосомными нарушениями при дифференцировке нормализуются, теряя злокачественность (Сакс, 1986).
   Автономность онкоклеток легко объясняется с позиции их аберрантной неполноценности. Стало возможным объяснять данную аберрантность как результат сбоя энергостанций. Известно, что все клетки могут существовать и без митохондрий. Митохондрии – позднее приобретение эволюции. Считается, что это произошло вследствие слияния, симбиоза простейших эукариотных клеток с некими автономными структурами. Такой симбиоз позволил перейти клеткам на новые этапы эволюции. Митохондрии в клетках – относительно самостоятельные структуры со своим генетическим аппаратом.
   Репарация (восстановление) в клетках при онкологии все-таки возможна, но для этого уже нужно создавать определенные условия, в которых будет протекать метаболизм (обмен веществ) клеток, чтобы подключились заблокированные программы генома митохондрий.
   Некоторые авторы утверждают, что фактором роста для онкоклеток могут быть выделения от цистовой формы глистов или грибов, обитающих в крови. Все это огромное количество факторов может способствовать проявлению болезни, но без внутриклеточной предрасположенности они не способны сами по себе ее начать.
   Общую картину эти авторы пытаются представить таким образом: при повышенном режиме пролиферации нарушение структуры тканевого гомеостаза определяет сдвиг в сторону эмбрионализации, что меняет соотношение между стимуляторами и ингибиторами митоза (деления клеток), в результате возникает «сверхстимуляция» и опухоль разрастается. Таким образом, в тканевой модели связываются канцерогенный профиль, режим пролиферации, степень омоложения, искажение структуры и функции гомеостаза, неконтролируемый рост клоногенных клеток.
   Согласно теории онкогена, в нормальных клетках имеются неактивные протоонкогены, которые в процессе трансформации патологически активизируются, в итоге провоцируя образование опухоли. Но эту активацию следует объяснять вторичной реакцией на нарушение энергетического гомеостаза клетки.
   Последние данные показывают, что малигнизируются (озлокачествляются) стволовые и коммитированные клетки, так как они не нуждаются в генетических изменениях, поскольку уже обладают набором «злокачественных» свойств. Поэтому в раковые клетки могут переходить только активно митирующие (делящиеся) клетки. Именно в них возможны энергетические сбои.
   Эмбрионализацию онкологических клеток можно объяснить отключением программ митохондрий. Эмбриональные клетки тоже могут существовать в бескислородной энергетике, то есть без митохондрий.
   Можно предполагать, что раковые клетки происходят не из любых, а из стволовых, клоногенных клеток. Причем особенность в том, что именно в них происходит нарушение внутриклеточного энергетического гомеостаза за счет вырождения митохондрий и мембран. Онкология – это, очевидно, наложение аберрантных процессов на клоногенные клетки.
   Аналогичное повышение устойчивости к апоптозу происходит и в стареющих клетках. Снижение темпов выбраковки старых и больных клеток – проблема старости. Таким образом, отсутствие апоптоза – проблема не чисто онкологическая, а вторичный универсальный процесс, связанный с уровнем аэробных дыхательно-энергетических процессов. Там, где есть снижение активности митохондрий, ослабляется и апоптоз независимо от митотической активности. Следовательно, апоптоз – функция, регулируемая сильным аэробическим процессом. Старые линии клеток, не способные к отмиранию, перекрывают дорогу к росту стволовым клеткам. Как результат – соотношение старых клеток к вновь образующимся молодым падает в пользу старых и идет старение на клеточном уровне всей ткани, а затем и организма в целом. Задача в гериатрии – ускорить выбраковку старых клеток и усилить активность роста клоновых молодых клеток.
   Наложение аберрантных (генных нарушений) процессов на неклоногенные клетки, очевидно, может приводить преимущественно к дистрофическим процессам, то есть к простому их перерождению. Это уже фундамент для всяких атрофических и инволюционных процессов, замедлению процессов метаболизма с возрастом и естественно для стареющих тканей, да и старения всего организма в целом.
   Хорошо известны эксперименты по пересадке ядер опухолевых клеток в предварительно энуклеированные (искусственно лишенные ядра) зародышевые клетки. В этом случае развивается здоровый организм, а не пораженный раком, что еще раз говорит о том, что механизмы онкологии лежат за пределами ядра клетки.
   Но это уже тема для отдельной книги, над которой я сейчас работаю.

Причины повреждения мембран

   При определенных ситуациях и нагрузках на ткани может образовываться большое число высокотоксичных свободных радикалов: оксидов, гидроксидов и перекисей. Эти соединения химически очень агрессивны. Они способны повреждать клеточные мембраны и вызывать самые различные нарушения жизнедеятельности организма. Но сами по себе они не являются первичным механизмом новообразования, а служат лишь фоном, на котором могут произойти последующие роковые изменения. Они всего лишь один из факторов образования в организме большого количества ущербных клеток, из части которых в дальнейшем под влиянием других факторов может произойти их перерождение и малигнизация.
   
Конец бесплатного ознакомительного фрагмента