Для любой переменной z типа, для которого определены операции «„ и “», копирующий цикл можно написать так:
   while (cin»»z) cout «„ z «« «\n“;
   Например, если z – вектор символов, этот цикл будет брать стандартный ввод и помещать его в стандартный вывод по одному слову (то есть, последовательности символов без пробла) на строку.
   Когда в качестве условия используется поток, происходит проверка состояния потока, и эта проверка проходит успешно (то есть, значение условия не ноль) только если состояние _good. В частности, в предыдущем цикле проверялось состояние istream, которое возвращает cin»»z. Чтобы обнаружить, почему цикл или проверка закончились неудачно, можно исследовать состояние. Такая проверка потока реализуется операцией преоразования (#6.3.2).
   Делать проверку на наличие ошибок после каждого ввода или вывода действительно не очень удобно, и обычно источником ошибок служит программист, не сделавший этого в том месте, где это существенно. Например, операции вывода обычно не проверяются, но они могут случайно не сработать. Парадигма потка ввода/вывода построена так, чтобы когда в С++ появится (если это произойдет) механизм обработки исключительных ситаций (как средство языка или как стандартная библиотека), его будет легко применить для упрощения и стандартизации обрабоки ошибок в потоках ввода/вывода.

8.4.3 Ввод Типов, Определяемых Пользователем

   Ввод для пользовательского типа может определяться точно так же, как вывод, за тем исключением, что для операции ввода важно, чтобы второй параметр был ссылочного типа. Например:
   istream amp; operator»»(istream amp; s, complex amp; a) /* форматы ввода для complex; "f" обозначает float: f ( f ) ( f , f ) */ (* double re = 0, im = 0; char c = 0;
   s »» c; if (c == '(') (* s »» re »» c; if (c == ',') s »» im »» c; if (c != ')') s.clear(_bad); // установить state *) else (* s.putback(c); s »» re; *)
   if (s) a = complex(re,im); return s; *)
   Несмотря на то, что не хватает кода обработки ошибок, большую часть видов ошибок это на самом деле обрабатывать бдет. Локальная переменная c инициализируется, чтобы ее значние не оказалось случайно '(' после того, как операция окочится неудачно. Завершающая проверка состояния потока гарантирует, что значение параметра a будет изменяться только в том случае, если все идет хорошо.
   Операция установки состояния названа clear() (очистить), потому что она чаще всего используется для установки состония потока заново как _good. _good является значением парметра по умолчанию и для istream::clear(), и для ostream::clear().
   Над операциями ввода надо поработать еще. Было бы, в частности, замечательно, если бы можно было задавать ввод в терминах образца (как в языках Snobol и Icon), а потом проврять, прошла ли успешно вся операция ввода. Такие операции должны были бы, конечно, обеспечивать некоторую дополнителную буферизацию, чтобы они могли воссанавливать поток ввода в его исходное состояние после неудачной попытки распознавания.

8.4.4 Инициализация Потоков Ввода

   Естественно, тип istream, так же как и ostream, снабжен конструктором:
   class istream (*
   // ... istream(streambuf* s, int sk =1, ostream* t =0); istream(int size, char* p, int sk =1); istream(int fd, int sk =1, ostream* t =0); *);
   Параметр sk задает, должны пропускаться пропуски или нет. Параметр t (необязательный) задает указатель на ostream, к которому прикреплен istream. Например, cin прикреплен к cout; это значит, что перед тем, как попытаться читать симвлы из своего файла, cin выполняет
   cout.flush(); // пишет буфер вывода
   С помощью функции istream::tie() можно прикрепить (или открепить, с помощью tie(0)) любой ostream к любому istream. Например:
   int y_or_n(ostream amp; to, istream amp; from) /* «to», получает отклик из «from» */ (* ostream* old = from.tie( amp;to); for (;;) (* cout «« "наберите Y или N: "; char ch = 0; if (!cin.get(ch)) return 0;
   if (ch != '\n') (* // пропускает остаток строки char ch2 = 0; while (cin.get(ch2) amp; amp; ch2 != '\n') ; *) switch (ch) (* case 'Y': case 'y': case '\n': from.tie(old); // восстанавливает старый tie return 1; case 'N': case 'n': from.tie(old); // восстанавливает старый tie return 0; default: cout «« "извините, попробуйте еще раз: "; *) *) *)
   Когда используется буферизованный ввод (как это происхдит по умолчанию), пользователь не может набрав только одну букву ожидать отклика. Система ждет появления символа новой строки. y_or_n() смотрит на первый символ строки, а остальные игноирует.
   Символ можно вернуть в поток с помощью функции istream:: putback(char). Это позволяет программе «заглядывать вперед» в поток ввода.

8.5 Работа со Строками

   Можно осуществлять действия, подобные вводу/выводу, над символьным вектором, прикрепляя к нему istream или ostream. Например, если вектор содержит обычную строку, завершающуюся нулем, для печати слов из этого вектора можно использовать приведенный выше копирующий цикл:
 
   void word_per_line(char v[], int sz) /* печатет "v" размера «sz» по одному слову на строке */ (* istream ist(sz,v); // сделать istream для v char b2[MAX]; // больше наибольшего слова while (ist»»b2) cout «„ b2 «« «\n“; *)
   Завершающий нулевой символ в этом случае интерпретируеся как символ конца файла.
   В помощью ostream можно отформатировать сообщения, котрые не нужно печатать тотчас же:
   char* p = new char[message_size]; ostream ost(message_size,p); do_something(arguments,ost); display(p);
   Такая операция, как do_something, может писать в поток ost, передавать ost своим подоперациям и т.д. с помощью стадартных операций вывода. Нет необходимости делать проверку на переполнение, поскольку ost знает свою длину и когда он будет переполняться, он будет переходить в состояние _fail. И, нконец, display может писать сообщения в «настоящий» поток ввода. Этот метод может оказаться наиболее полезным, чтобы справляться с ситуациями, в которых окончательное отображение данных включает в себя нечто более сложное, чем работу с трдиционным построчным устройством вывода. Например, текст из ost мог бы помещаться в располагающуюся где-то на экране оласть фиксированного размера.

8.6 Буферизация

   При задании операций ввода/вывода мы никак не касались типов файлов, но ведь не все устройства можно рассматривать одинаково с точки зрения стратегии буферизации. Например, для ostream, подключенного к символьной строке, требуется буферзация другого вида, нежели для ostream, подключенного к фалу. С этими пробемами можно справиться, задавая различные бферные типы для разных потоков в момент инициализации (обратите внимание на три конструктора класса ostream). Есть только один набор операций над этими буферными типами, поэтму в функциях ostream нет кода, их различающего. Однако фунции, которые обрабатывают переполнение сверху и снизу, виртальные. Этого достаточно, чтобы справляться с необходимой в данное время стратегией буферизации. Это также служит хорошим примером применения виртуальных функций для того, чтобы сдлать возможной однородную обработку логически эквивалентных средств с различной реализацией. Описание буфера потока в «stream.h» выглядит так:
   struct streambuf (* // управление буфером потока
   char* base; // начало буфера char* pptr; // следующий свободный char char* qptr; // следующий заполненный char char* eptr; // один из концов буфера char alloc; // буфер, выделенный с помощью new
   // Опустошает буфер: // Возвращает EOF при ошибке и 0 в случае успеха virtual int overflow(int c =EOF);
   // Заполняет буфер
   // Возвращет EOF при ошибке или конце ввода, // иначе следующий char virtual int underflow();
   int snextc() // берет следующий char (* return (++qptr==pptr) ? underflow() : *qptr amp;0377; *)
   // ...
   int allocate() //выделяет некоторое пространство буфера
   streambuf() (* /* ... */*) streambuf(char* p, int l) (* /* ... */*) ~streambuf() (* /* ... */*) *);
   Обратите внимание, что здесь определяются указатели, нобходимые для работы с буфером, поэтому обычные посимвольные действия можно определить (только один раз) в виде максимално эффективных inlinфункций. Для каждой конкретной стратгии буферизации необходимо определять только функции перепонения overflow() и underflow(). Например:
   struct filebuf : public streambuf (*
   int fd; // дескриптор файла char opened; // файл открыт
   int overflow(int c =EOF); int underflow();
   // ...
   // Открывает файл: // если не срабатывает, то возвращет 0, // в случае успеха возвращает «this» filebuf* open(char *name, open_mode om); int close() (* /* ... */ *)
   filebuf() (* opened = 0; *) filebuf(int nfd) (* /* ... */ *) filebuf(int nfd, char* p, int l) : (p,l) (* /*...*/ *) ~filebuf() (* close(); *) *);
   int filebuf::underflow() // заполняет буфер из fd (* if (!opened !! allocate()==EOF) return EOF;
   int count = read(fd, base, eptr-base); if (count « 1) return EOF;
   qptr = base; pptr = base + count; return *qptr amp; 0377; *)

8.7 Эффективность

   Можно было бы ожидать, что раз ввод/вывод «stream.h» определен с помощью общедоступных средств языка, он будет мнее эффективен, чем встроенное средство. На самом деле это не так. Для действий вроде «поместить символ в поток» использются inline-функции, единственные необходимые на этом уровне вызовы функций возникают из-за переполнения сверху и снизу.
   Для простых объектов (целое, строка и т.п.) требуется по оному вызову на каждый. Как выясняется, это не отличается от прочих средств ввода/вывода, работающих с объектами на этом уровне.

8.8 Упражнения

   1. (*1.5) Считайте файл чисел с плавающей точкой, составьте из пар считанных чисел комплексные числа и выведите комплексные числа.
   2. (*1.5) Определите тип name_and_address (имя_и_адрес). Определите для него «„ и “». Скопируйте поток объектов name_and_address.
   3. (*2) Постройте несколько функций для запроса и чтения различного вида информации. Простейший пример – функция y_or_n() в #8.4.4. Идеи: целое, число с плавающей токой, имя файла, почтовый адрес, дата, личные данные и т. д. Постарайтесь сделать их защищенными от дурака.
   4. (*1.5) Напишите программу, которая печатает (1) все бувы в нижнем регистре, (2) все буквы, (3) все буквы и цифры, (4) все символы, которые могут встречаться в идентификаторах С++ на вашей системе, (5) все символы пунктуации, (6) целые значения всех управляющих симвлов, (7) все символы пропуска, (8) целые значения всех символов пропуска, и (9) все печатаемые символы.
   5. (*4) Реализуйте стандартную библиотеку ввода/вывода C («stdio.h») с помощью стандартной библиотеки ввода/вывда С++ («stream.h»).
   6. (*4) Реализуйте стандартную библиотеку ввода/вывода С++ («stream.h») с помощью стандартной библиотеки ввода/ввода C («stdio.h»).
   7. (*4) Реализуйте стандартные библиотеки C и С++ так, чтбы они могли использоваться одновременно.
   8. (*2) Реализуйте класс, для которого [] перегружено для реализации случайного чтения символов из файла.
   9. (*3) Как Упражнение 8, только сделайте, чтобы [] работло и для чтения, и для записи. Подсказка: сделайте, чтбы [] возвращало объект «дескрипторного типа», для котрого присваивание означало бы присвоить файлу через дескриптор, а неявное преобразование в char означало бы чтение из файла через дескриптор.
   10. (*2) Как Упражнение 9, только разрешите [] индексировать записи некоторого вида, а не символы.
   11. (*3) Сделайте обобщенный вариант класса, определенного в Упражнении 10.
   12. (*3.5) Разработайте и реализуйте операцию ввода по споставлению с образцом. Для спецификации образца исползуйте строки формата в духе printf. Должна быть возмоность попробовать сопоставить со вводом несколько образцов для нахождения фактического формата. Можно было бы вывести класс ввода по образцу из istream.
   13. (*4) Придумайте (и реализуйте) вид образцов, которые намного лучше.

Справочное Руководство
 
1. Введение

   Язык программирования С++ – это C*, расширенный введенем классов, inline-функций, перегруженных операций, перегрженных имен функций, константных типов, ссылок, операций уравления свободной памятью, проверки параметров функций. Коротко различия между С++ и «старым С» приведены в #15. В этом руководстве описывается язык на Июнь 1985.
   – * «Язык программирования Си» Брайэна В. Кернигана и Дениса М. Ритчи. Это руководство было построено на основе Спрвочного Руководства по Языку C («C Programming Language – Reference Manual») системы UNIX V с разрешения AT amp;T Bell Laboratories. (прим. автора)

2. Договоренности о Лексике

   Есть шесть классов лексем: идентификаторы, ключевые слва, константы, строки, операторы и прочие разделители. Симвлы пробела, табуляции и новой строки, а также комментарии (собирательно – «белые места»), как описано ниже, игнорируюся, за исключением тех случаев, когда они служат разделителми лексем. Некое пустое место необходимо для разделения идетификаторов, ключевых слов и констант, которые в противном случае окажутся соприкасающимися.
   Если входной поток разобран на лексемы до данного симвла, принимается, что следующая лексема содержит наиболее длинную строку символов из тех, что могут составить лексему.

2.1 Комментарии

   Символы /* задают начало комментария, заканчивающегося символами */. Комментарии не могут быть вложенными. Символы / / начинают комментарий, который заканчивается в конце строки, на которой они появились.

2.2 Идентификаторы (Имена)

   Идентификатор – последовательность букв и цифр проивольной длины. Первый символ обязан быть буквой. Подчерк '_' считается за букву. Буквы в верхнем и нижнем регистрах явлются различными.

2.3 Ключевые Слова

   Следующие идентификаторы зарезервированы для использовния в качестве ключевых слов и не могут использоваться иным образом:
   asm auto break case char class const continue default delete do double else enum extern float for friend goto if inline int long new operator overload public register return short sizeof static struct switch this typedef union unsigned virtual void while
   Идентификаторы signed и volatile зарезервированы для применения в будущем.

2.4 Константы

   Как описано ниже, есть несколько видов констант. В #2.6 приводится краткая сводка аппаратных характеристик, которые влияют на их размеры.

2.4.1 Целые Константы

   Целая константа, состоящая из последовательности цифр, считается восьмиричной, если она начинается с 0 (цифры ноль), и десятичной в противном случае. Цифры 8 и 9 не являются восьмиричными цифрами. Последовательность цифр, которой прешествует 0х или 0Х, воспринимается как шестнадцатиричное цлое. В шестнадцатеричные цифры входят буквы от а или А до f или F, имеющие значения от 10 до 15. Десятичная константа, значение которой превышает наибольшее машинное целое со знком, считается длинной (long); восьмеричная и шестнадцатериная константа, значение которой превышает наибольшее машинное целое со знаком, считается long; в остальных случаях целые константы считаются int.

2.4.2 Явно Заданные Длинные Константы

   Десятичная, восьмиричная или шестнадцатиричная констата, за которой непосредственно стоит l (латинская буква «эль») или L, считается длинной константой.

2.4.3 Символьные Константы

   Символьная константа состоит из символа, заключенного в одиночные кавычки (апострофы), как, например, 'х'. Значением символьной константы является численное значение символа в машинном наборе символов (алфавите). Символьные константы считаются данными типа int.
   Некоторые неграфические символы, одиночная кавычка ' и обратная косая \, могут быть представлены в соответствие со следующей таблицей escape-последовательностей:
   символ новой строки NL(LF) \n горизонтальная табуляция NT \t вертикальная табуляция VT \v возврат на шаг BS \b возврат каретки CR \r перевод формата FF \f обратная косая \ \\ одиночная кавычка (апостроф) ' \' набор битов 0ddd \ddd набор битов 0xddd \xddd
   Escape-последовательность \ddd состоит из обратной ксой, за которой следуют 1, 2 или 3 восьмеричных цифры, задащие значение требуемого символа. Специальным случаем такой консрукции является \0 (не следует ни одной цифры), задающая пустой символ NULL. Escape-последовательность \xddd состоит из обратной косой, за которой следуют 1, 2 или 3 шестнадцатричных цифры, задающие значение требуемого символа. Если слдующий за обратной косой символ не является одним из перечиленных, то обратная косая игнорируется.

2.4.4 Константы с Плавающей Точкой

   Константа с плавающей точкой состоит из целой части, десятичной точки, мантиссы, е или Е и целого показателя стпени (возможно, но не обязательно, со знаком). Целая часть и мантисса обе состоят из последовательности цифр. Целая часть или мантисса (но не обе сразу) может быть опущена; или десятичная точка, или е(Е) вместе с целым показателем степени (но не обе части одновременно) может быть опущена. Константа с плавающей точкой имеет тип double.

2.4.5 Перечислимые Константы

   Имена, описанные как перечислители, (см. #8.5) являются константами типа int.

2.4.6 Описанные Константы

   Объект (#5) любого типа может быть определен как имеющий постоянное значение во всей области видимости (#4.1) его имни. В случае указателей для достижения этого используется декларатор *const; для объектов, не являющихся указателями, используется описатель const (#8.2).

2.5 Строки

   Строка есть последовательность символов, заключенная в двойные кавычки: «...». Строка имеет тип «массив символов» и класс памяти static (см. #4 ниже), она инициализируется зданными символами. Все строки, даже если они записаны одинково, различны. Компилятор располагает в конце каждой строки нулевой (пустой) байт \0 с тем, чтобы сканируюшая строку программа могла найти ее конец. В строке перед символом двоной кавычки " обяэательно должен стоять \; кроме того, могут использоваться те же escape-последовательности, что были опсаны для символьных констант. И, наконец, символ новой строки может появляться только сразу после \, тогда оба,– \ и символ новой строки,– игнорируются.

2.6 Харктеристики Аппаратного Обеспечения

   В нижеследующей таблице собраны некоторые харктеристики аппаратного обеспечения, различающиеся от машины к машине.

3. Запись Синтаксиса

   По используемым в данном руководстве синтаксическим првилам записи синтаксические категории выделяются курсивом а литеральные слова и символы шрифтом постоянной ширины. Алтернативные категории записываются на разных строках. Необзательный терминальный или нетерминальный символ обозначается нижним индексом «opt», так что
 
   (* выражение opt *)
   указывает на необязательность выражения в фигурных скоках. Синтаксис кратко изложен в #14.

4. Имена и Типы

   Имя обозначает(денотирует) объект, функцию, тип, значние или метку. Имя вводится в программе описанием (#8). Имя может использоваться только внутри области текста программы, называемой его областью видимости. Имя имеет тип, определящий его использование. Объект – это область памяти. Объект имеет класс памяти, определяющий его время жизни. Смысл знчения, обнаруженного в объекте, определяется типом имени, ипользованного для доступа к нему.

4.1 Область Видимости

   Есть четыре вида областей видимости: локальная, файл, программа и класс.
   Локальная: Имя, описанное в блоке (#9.2), локально в этом блоке и может использоваться только в нем после места описания и в охватываемых блоках. Исключение составляют метки (#9.12), которые могут использоваться в любом месте функции, в которой они описаны. Имена формальных параметров функции рассматриваются так, как если бы они были описаны в самом внешнем блоке этой функции.
   Файл: Имя, описанное вне любого блока (#9.2) или класса (#8.5), может использоваться в файле, где оно описано, после места описания.
   Класс: Имя члена класса локально для его класса и может использоваться только в функции члене этого класса (#8.5.2), после примененной к объекту его класса (#7.1) операции . или после примененной к указателю на объект его класса (#7.1) операции -». На статические члены класса (#8.5.1) и функции члены можно также ссылаться с помощью операции :: там, где имя их класса находится в области видимости. Класс, описанный внутри класса (#8.5.15), не считается членом, и его имя прнадлежит охватывающей области видимости.
   Имя может быть скрыто посредством явного описания того же имени в блоке или классе. Имя в блоке или классе может быть скрыто только именем, описанным в охватываемом блоке или классе. Скрытое нелокальное имя также может использоваться, когда его область видимости указана операцией :: (#7.1). Имя класса, скрытое именем, которое не является именем типа, все равно может использоваться, если перед ним стоит class, struct или union (#8.2). Имя перечисления enum, скрытое имнем, которое не является именем типа, все равно может исползоваться, если перед ним стоит enum (#8.2).

4.2 Определения

   Описание (#8) является определением, за исключением тех случаев, когда оно описывает функци, не задавая тела функции (#10), когда оно содержит спецификатор extern (1) и в нем нет инициализатора или тела функции, или когда оно является опсанием класса (#8.8).

4.3 Компоновка

   Имя в файловой области видимости, не описанное явно как static, является общим для каждого файла многофайловой прораммы. Таковым же является имя функции. О таких именах говорится, что они внешние. Каждое описание внешнего имени в программе относится к тому же объекту (#5), функции (#8.7), классу (#8.5), перечислению (#8.10) или значению перечислитля (#8.10).
   Типы, специфицированные во всех описаниях внешнего имени должны быть идентичны. Может быть больше одного определения типа, перечисления, inline-функции (#8.1) или несоставного const (#8.2), при условии, что определения идентичны, поялются в разных файлах и все инициализаторы являются констанными выражениями (#12). Во всех остальных случаях должно быть ровно одно определение для внешнего имени в программе.
   Реализация может потребовать, чтобы составное const, ипользованное там, где не всречено никакого определения const, должно быть явно описано extern и иметь в программе ровно оно определение. Это же ограничение может налагаться на inline -функции.

4.4 Классы Памяти

   Есть два описываемых класса памяти: автоматический и статический.
   Автоматические объекты локальны для каждого вызова блока и сбрасываются по выходе из него.
   Статические объекты существуют и сохраняют свое значение в течение выполнения всей програмы.
   Некоторые объекты не связаны с именами и их времена жини явно управляются операторами new и delete, см. #7.2 и #9.14

4.5 Основные Типы

   Объекты, описанные как символы (char), достаточны для хранения любого элемента машинного набора символов, и если принадлежащий этому набору символ хранится в символьной перменной, то ее значение равно целому коду этого символа.
   В настоящий момент имеются целые трех размеров, описывемые как short int, int и long int. Более длинные целые (long int) предоставляют не меньше памяти, чем более короткие целые (short int), но при реализации или длинные, или короткие, или и те и другие могут стать эквивалентными обычным целым. «Обычные» целые имеют естественный размер, задаваемый архтектурой центральной мащины; остальные размеры делаются такми, чтобы они отвечали специальным потребностям.
   Каждое перечисление (#8.9) является набором именованных констант. Свойства enum идентичны свойствам int.
   Целые без знака, описываемые как unsigned, подчиняются правилам арифметики по модулю 2n, где n – число бит в их представлении.
   Числа с плавающей точкой одинарной (float) и двойной (double) точности в некоторых машинных реализациях могут быть синонимами.
   Поскольку объекты перечисленных выше типов вполне можно интерпретировать как числа, мы будем говорить о них как об арифметических типах. Типы char, int всех размеров и enum бдут собирательно называться целочисленными типами. Типы float и double будут собирательно называться плавающими типами.
   Тип данных void (пустой) определяет пустое множество значений. Значение (несуществующее) объекта void нельзя ипользовать никаким образом, не могут применяться ни явное, ни неявное преобразования. Поскольку пустое выражение обозначает несуществующее значение, такое выражение такое выражение мжет использоваться только как оператор выражение (#9.1) или как левый операнд в выражении с запятой (#7.15). Выражение может явно преобразовываться к типу void (#7.2).

4.4 Производные Типы

   Кроме основных арифметических типов концептуально сществует бесконечно много производных типов, сконструированых из основных типов следующим образом:
   массивы объектов данного типа;
   функции, получающие аргументы данного типа и возвращащие объекты данного типа;
   указатели на объекты данного типа;
   ссылки на объекты данного типа;
   константы, являющиеся значениями данного типа;
   классы, содержащие последовательность объектов различных типов, множество функций для работы с этими объектами и набор ограничений на доступ к этим объектам и функциям; структуры, являющиеся классами без ограничений доступа;
   объединения, являющиеся структурами, которые могут в разное время содержать объекты разных типов.
   В целом эти способы конструирования объектов могут прменяться рекурсивно.
   Объект типа void* (указатель на void) можно использовать для указания на объекты неизвестного типа.
   5. Объекты и Lvalue (Адреса)
   Объект есть область памяти. lvalue (адрес) есть выражние, ссылающееся на объект. Очевидный пример адресного выржения – имя объекта. Есть операции, дающие адресные выражния: например, если Е – выражение типа указатель, то *Е – адресное выражение, ссылающееся на объект, на который указвает Е. Термин «lvalue» происходит из выражения присваивания Е1=Е2, в котором левый операнд Е1 должен быть адресным (value) выражением. Ниже при обсуждении каждого оператора указывается, требует ли он адресные операнды и возвращает ли он адресное значение.