Данный принцип используется при радиосвязи способом "рассеивающего распространения". Антенная система передающей станции излучает в небо мощные радиосигналы. И только незначительная часть сигналов достигает приёмной станции.
   Через несколько лет мы, видимо, окончательно сможем судить об этом способе передачи. Тем не менее, решение проблемы передачи сигналов телевидения надо искать в другом направлении; оно заключается в применении искусственных спутников Земли. Когда высоко в небе установят рефлектор, изготовленный человеческими руками, мы не будем зависеть от влияний ионосферы и сможем обеспечить надёжную связь между двумя любыми точками земного шара.
   Такие спутники, играющие роль рефлекторов радиоволн, представляются в виде баллонов диаметром в несколько десятков метров, окрашенных для лучшего отражения металлической краской. Их можно будет вывести на орбиту с помощью обычных ракет. Днём спутники были бы видны невооружённым глазом, так как высота их сравнительно невелика, а ночью наблюдались бы в виде ярких звёзд.
   Идея запуска спутников-радиорефлекторов привлекательна своей простотой, и её можно было бы осуществить сегодня же, если бы не один её серьёзный недостаток. Дело в том, что на небольшой высоте, порядка 800 - 1500 километров, спутники двигались бы с колоссальной скоростью и делали бы оборот вокруг Земли менее чем за два часа. Использовать их как рефлекторы радиоволн было бы просто невозможно. Этого можно избежать, если сделать вокруг Земли кольцо из радиоспутников, но такое кольцо будет серьёзной помехой для запуска ракет и других летательных аппаратов в космос. По этим причинам изложенная идея неосуществима.
   Проблема решается просто, если спутники-радиорефлекторы поднять на орбиту, проходящую на высоте 36 000 километров от экватора. Оборот спутника вокруг Земли на этой орбите займёт 24 часа, т.е. практически спутник будет неподвижен относительно определённой точки Земли. Три спутника, расположенных по орбите на равном расстоянии один от другого, вполне обеспечат радио- и телевизионную связь на всём земном шаре. На Земле не будет такой точки, из которой не был бы виден хотя бы один спутник.
 
 
    Рисунок из публикации А. Кларка, в которой он изложил идею о комбинации 3-х геостационарных спутников
   Такие спутники уже не играли бы роли пассивных рефлекторов. Их следует оборудовать различной аппаратурой и, в первую очередь, усилительной, для обеспечения качественной ретрансляции на Землю. К сожалению, человечество пока ещё не в состоянии обеспечить работу постоянно действующих станций на столь далёкой орбите. Но нет сомнения, что это будет сделано до того, как трансатлантический телефонный кабель отпразднует своё двадцатилетие.
   Для дальней связи будут использованы волны всех частот, которые смогут проникнуть через ионосферу  [67]. Диапазон частот настолько увеличится, что станет возможно вести передачу по тысячам телевизионных каналов. В будущем это приведёт к единой системе радио и связи на всей Земле.
   Лорды Адмиралтейства, которые были в общем-то неглупыми людьми, в 1820 году не смогли увидеть преимуществ электрического телеграфа как средства связи, по сравнению с устаревшей системой семафоров между Портсмутом и Уайтхоллом. В те времена не смогли понять, что телеграф основан на совершенно ином принципе.
   Распространение радио и телевидения есть не что иное, как продолжение этого прогресса. Человеческое общество совершенствует свою "нервную систему", стараясь "чувствовать" каждую часть своего организма. Связь и есть та нервная система, которая позволяет знать, что делается в данный момент в любой части мира.
   Мы ещё далеки от создания единой системы связи на земле, но рано или поздно придём к этому. И может быть, подводный трансатлантический кабель, о котором мы говорили в настоящей книге как о большом техническом достижении, будет вытеснен другим, более совершенным средством связи. Но нет сомнения, что ещё много десятилетий он будет верно служить человечеству.
   Нередко учёные, совершая то или иное открытие, не знают, к каким практическим результатам оно приведёт. В настоящей книге дано достаточно примеров этого. Заканчивая её, хотелось бы привести слова английского электротехника профессора Уильяма Эйртона, который отчётливо представлял себе будущее средств связи.
   15 февраля 1897 года в лондонском Королевском обществе на лекции по основам подводной телеграфной связи Эйртон сказал следующее:
    "Нет сомнения, что придёт день, когда мы все будем забыты, а медную проволоку, гуттаперчевую изоляцию и стальную броню поместят в музей антикварных вещей. В будущем, если кто-нибудь захочет поговорить со своим другом, он свяжется с ним посредством совершенных аппаратов, работающих с помощью электромагнитных колебаний, и тут же получит ответ. «Где Вы находитесь?» - спросит он. «Я на дне угольной шахты», - последует ответ; или «Я пересекаю Анды», или «Я посреди Тихого океана». А может быть, ответа не будет, и тогда станет ясно, что друг в беде".
   Так представлялось будущее учёному XIX века. А будущее, которое многие из вас увидят собственными глазами, принесёт куда более совершенные средства связи. И хотят этого некоторые из нас или нет, но связь настолько сократит расстояния, что все люди Земли станут близкими соседями.

Послесловие Д.Л. Шарле

Через любой океан
   Артур Кларк написал "Голос через океан" в 1957 г. и внёс несколько дополнений в последнюю главу при переиздании книги в 1959 г. Он закончил рассказ тем временем, когда с успехом были доказаны возможность и преимущества телефонной связи через океан по проводам. Последующие годы ознаменовались бурным расцветом трансокеанской подводной телефонии. За первой трансатлантической телефонной линией ТАТ-1 последовала в 1957 г. первая тихоокеанская линия между Сан-Франциско и Гонолулу на Гавайских островах. Эта линия так же, как и ТАТ-1, двухкабельная, рассчитанная на уплотнение 36 каналами связи в спектре частот 20-164 кгц. Однако она длиннее, чем ТАТ-1, на 400 км, и каждый кабель содержит уже не 51, а 57 гибких усилителей.
   В течение почти тридцати лет между двумя полушариями одновременно вели радиотелефонные разговоры не более нескольких десятков абонентов. Сооружение первого трансатлантического телефонного кабеля практически удвоило переговорные возможности и... этого сразу же оказалось мало. В который раз оправдалась поговорка об аппетите, который приходит во время еды. Через три года после первой была проложена вторая трансатлантическая телефонная линия ТАТ-2. Эта по-прежнему двухкабельная и 36-канальная линия длиной в 3700 км связала Ньюфаундленд с мысом Пенмарк на побережье Франции.
   В отличие от линии ТАТ-1, оба кабеля линии ТАТ-2 были проложены не за два, а за одно лето в 1959 г. Не обошлось без осложнений. Для прокладки линии были выделены суда "Монарх" и "Океанский укладчик". "Монарх" проложил кабель с востока на запад, затем часть параллельного кабеля - с запада на восток и возвратился в Англию, чтобы принять на борт кабель, предназначенный для участка Ньюфаундленд-Новая Шотландия. "Океанский укладчик" продолжал прокладывать второй кабель с запада на восток. 15 июня 1959 г., когда до берегов Франции оставалось ещё 1200 км, на судне возник пожар. Быстро распространившийся огонь охватил все помещения; справиться с ним оказалось невозможным. Команде пришлось покинуть корабль. В пламени пожара бронированный кабель перегорел, и его свободный конец упал на дно на глубину 4200 м. Пришлось "Монарху" погрузить в баки 1200 км глубоководного кабеля и отправиться к месту аварии завершать работу. Снова пошла в ход грапнель. Выловить кабель с такой глубины - весьма нелёгкое дело. Подобная операция могла длиться несколько дней, но, к счастью, кабель был зацеплен и поднят всего через семь часов. Что касается "Океанского укладчика", то он был отбуксирован в Англию и ввиду серьёзности повреждений пущен на слом.
   В 1961 г. началась прокладка ещё одной трансатлантической телефонной линии. Из Шотландии линия взяла направление на север к Фарерским островам и далее на запад к Исландии. От Исландии она повернула на юг, через Гренландию, к Канаде. Как тут не вспомнить полковника Тала Шаффнера из Кентукки, доставившего в прошлом веке так много беспокойства Атлантической телеграфной компании. Вот и осуществился сто лет спустя его проект, но не в порядке конкуренции с прямым кабелем Шотландия-Ньюфаундленд, а в виде линии специального назначения, состоящей из четырёх участков с тремя промежуточными наземными станциями. Эта линия обеспечивает связь между контрольными постами Международной организации гражданской авиации и между метеостанциями, расположенными на одной из основных трасс самолётных рейсов через Атлантику. Прокладка первой половины линии, сокращённо именуемой "Шот-Ис", была осуществлена в 1961 г., а её второй половины "Ис-Кан" - в 1962 г.
   Четвёртая по счёту телефонная кабельная линия через Атлантику также была сооружена в 1961 г. Назвали её "Кантат", так как она была целиком предназначена для связи Англии с Канадой.
   Интересно проследить, как возрастала длина подводных кабельных телефонных линий. В 1954 г. первенство в этом отношении принадлежало линии Шотландия-Норвегия протяженностью в 572 км с семью подводными усилителями. В последующие два года успешный прыжок через Атлантику линии ТАТ-1 увеличил рекордную длину в шесть с лишним раз, однако полностью ограничивающий предел ликвидирован не был. Не случайно для всех первых трансатлантических линий выбиралась кратчайшая трасса длиной до 4000 км с опорным пунктом в Ньюфаундленде, откуда телефонные разговоры передавались дальше, в Нью-Йорк и Монреаль.
 
 
   Длину подводного телефонного кабеля ограничивает напряжение тока, подаваемого по внутреннему проводнику для питания всех промежуточных усилителей. Представим себе, что мы украшаем новогоднюю ёлку. У нас гирлянда разноцветных маленьких электрических лампочек. Все они последовательно включены в общий провод. Пусть напряжение каждой лампочки 12 в, а напряжение сети в квартире - 127 в. В этом случае в нашей гирлянде может быть лишь 10 лампочек. Но нам этого мало, ёлка высокая, пушистая. Как увеличить число лампочек в гирлянде? Если просто включить вместо 10, например, 20 лампочек, то тогда на каждую из них придётся напряжение, равное уже не 12, а 6 в. Лампочки будут гореть в полнакала. Можно, конечно, заменить 12-вольтовые лампочки 6-вольтовыми, но при условии, что такие изготавливаются и имеются в продаже. Есть ещё один путь - повысить общее напряжение питания всей гирлянды, включив в сеть трансформатор, повышающий напряжение со 127 до 220 в. При этом количество лампочек в гирлянде можно без ухудшения условия их питания током увеличить до 18. Однако и этот путь небеспределен. Если слишком повышать напряжение, может пробиться изоляция провода.
   Аналогичная картина наблюдается в подводных телефонных линиях. Для нормальной работы усилителей к зажимам каждого из них должно быть подведено напряжение в несколько десятков вольт. При использовании гибких усилителей в линиях ТАТ-1 и ТАТ-2 оно равнялось 62 в. Суммарное напряжение питания всех последовательно встроенных в кабель усилителей составляло, следовательно, 3000-3500 в. Часть энергии теряется при прохождении тока питания по кабелю, обладающему определённым сопротивлением. Как ни малы значения тока питания (всего четверть ампера) и электрического сопротивления внутреннего проводника (порядка 1 ом на километр), падение напряжения на длине в 4000 км составит всё же около 1000 в.
   Вот почему для питания усилителей линий ТАТ-1 и ТАТ-2 требовалось напряжение порядка 4000-4500 в. Опасались, что такого напряжения не выдержат ни изоляция кабеля, ни многочисленные конденсаторы, входящие в схемы усилителей. Поэтому решено было питать каждую линию с обоих концов, прикладывая "половинное" (т.е. равное половине номинального) напряжение разной полярности.
   Дальнейшие усовершенствования конденсаторов, технологии изолирования кабелей и конструкций усилителей позволили поднять допустимое напряжение питания в несколько раз и в то же время заметно снизить потребляемую усилителями мощность.
   Линия "Кантат" питается с каждого конца постоянным током при напряжении +5000 в и -5000 в. Благодаря этому в линию встроено 90 подводных усилителей двустороннего действия.
   Следующие два скачка но шкале длин подводных телефонных кабельных линий были сделаны в 1963 г., сначала в бассейне Тихого океана, затем снова в Атлантике.
   В 1962-1963-х годах сооружена так называемая линия "Компак", соединившая Сидней в Австралии с Ванкувером в Канаде. Вся линия общей протяжённостью в 15 000 км состоит из четырёх самостоятельных участков: Сидней (Австралия)-Окленд (Новая Зеландия), Окленд-Сува (остров Вити-Леву из группы островов Фиджи), Сува- Гонолулу и, наконец, Гонолулу-Ванкувер. Длина самого протяжённого из этих участков - между Сувой и Гонолулу - 5500 км. В него встроено 118 усилителей двустороннего действия, подобных усилителям линии "Кантат". Напряжение питания линии ±6300 в.
   В конце 1963 г. пятая по счёту телефонная кабельная линия пересекла Атлантический океан. Эта линия, условно именуемая ТАТ-3, интересна тем, что её трасса минует Ньюфаундленд (см. карту выше).
   ТАТ-3 - первая телефонная кабельная линия, проложенная непосредственно между берегами Англии и США. Она соединяет полуостров Корнуэлл на юго-западе Англии с городом Такертон в штате Нью-Джерси. Её обслуживает 182 усилителя двустороннего действия, питаемых с каждого конца линии током при напряжении +5500 в и -5500 в. Таким образом, современный уровень техники допускает сооружение подводных телефонных кабельных линий длиной до 6500-7000 км, что вполне достаточно для пересечения любого океана.
   С 1961 г. осуществляется рассчитанный на десятилетие проект создания так называемой Глобальной телефонной линии общей протяжённостью свыше 50 000 км, которая опояшет весь земной шар. Её первым подводным звеном явился трансатлантический кабель "Кантат", вторым - тихоокеанский кабель "Компак" (название "Компак" образовано из букв, входящих в английские слова "Коммонуэллс", что означает "содружество", и "Пасифик", т.е. тихоокеанский).
 
 
    Действующие участки глобальной системы телефонно-телеграфной связи
   Из Лондона телефонный разговор передаётся по подземному кабелю в Обан, затем по кабелю "Кантат" к восточному побережью Канады, далее по радиорелейной 5000-километровой линии, пересекающей Канаду, к западному её побережью и, наконец, по кабелю "Компак" в Сидней. Общее расстояние, проходимое телефонными токами при таком разговоре, составляет 25 000 км. Таким образом, половина Глобальной линии связи уже действует. Австралию предстоит связать через Новую Гвинею и Борнео с Сингапуром и Гонконгом. Далее трасса пойдёт к Цейлону, Индии и Пакистану, затем вдоль восточного побережья Африки на юг к Кейптауну и повернёт вдоль западной Африки на север. Закончится кругосветная телефонная трасса снова в Англии.
   Сейчас в различных морях и океанах проложено свыше 80 000 км подводных телефонных кабелей. Около 2000 ламповых усилителей безотказно несут круглосуточное дежурство на глубинах от нескольких сот метров до пяти с лишним километров. Старейший из них - единственный подводный усилитель 366-километровой линии Англия-остров Боркум (Северное море) - надёжно работает с 1946 г., т.е. без малого 20 лет.
 
 
    Так возрастали предельные протяжённости подводных телефонных кабельных линий и количество встроенных в них промежуточных усилителей
Кабель без брони
   В истории подводных кабелей связи немало примеров совпадения знаменательных дат. Первая морская телеграфная линия (через пролив Па-де-Кале) начала работать в 1851 г., а первый морской телефонный кабель был проложен там же спустя 40 лет, в 1891 г. Год 1866 знаменует начало телеграфной связи через Атлантику, а в 1956 г. вступила в строй первая подводная трансатлантическая телефонная кабельная линия. Ожидается, что к столетию трансокеанской связи по проводам будет создан подводный межконтинентальный телевизионный кабель.
   Стальная проволочная броня для защиты морских подводных кабелей была впервые применена в 1851 г. на кабеле Дувр-Кале. С той поры броня считалась неотъемлемой частью абсолютно всех морских и океанских кабелей. Ровно век длилось незыблемое господство прочных стальных проволок, обвивающих любой подводный кабель и придающих приличествующие его роли солидность и вес. Кабель без брони казался немыслимым. Но вот в 1951 г., сто лет спустя, английский инженер Р.А. Брокбэнд предложил ликвидировать броню и сконструировал принципиально новый тип глубоководного кабеля. А ещё через 10 лет, в 1961 г., этот кабель лёг на трассе четвёртой трансатлантической телефонной линии "Кантат". Эра бронированных подводных кабелей кончилась. Будущее принадлежит кабелям без брони.
   "В чём же дело?" - недоуменно спросит читатель. - "Неужели сто лет человечество заблуждалось относительно роли брони?"
   Чтобы оценить эту веху в истории подводных кабелей, задумаемся над тем, для чего собственно нужна броня в кабелях, прокладываемых по дну океана. Вспомним, как родилась броня. Первый морской телеграфный кабель, пересекший в 1850 г. Ла-Манш, был через несколько часов зацеплен рыбачьим неводом и оборван. На следующий год кабель защитили бронёй из массивных стальных проволок. Теперь ему не страшны были ни сети рыбаков, ни случайные удары корабельных якорей, ни трение о камни во время приливов и отливов. Но ведь все эти опасности угрожают прибрежным кабелям и кабелям, проложенным на мелководье. Они и по сей день нуждаются в надёжной защите и обязательно покрываются слоем, а иногда даже двумя слоями толстых, диаметром в 5-7 мм, стальных бронепроволок.
   По мере удаления от берегов дно океана опускается. На глубине нескольких тысяч метров кабель не достанут ни якоря, ни тралы, он спокойно лежит на мягкой илистой подушке; постепенно слой ила заносит его сверху. Жизнь такого кабеля лишена каких-либо треволнений. Для чего же глубоководному кабелю броня?
   Как ни парадоксально, но броня нужна всего лишь на несколько часов, только на время прокладки линии, да иногда на случай подъёма кабеля с целью его ремонта. Броня служит как бы пропуском кабелю, опускающемуся на океанское дно. Без стальных проволок невозможен ни "вход" кабеля в морские пучины, ни "выход" из тысячеметровых глубин. Только благодаря прочным стальным проволокам не разрывается от собственного веса отрезок кабеля длиной в несколько километров, висящий между судном и дном океана.
   Убедимся в этом сами, пользуясь простейшими соотношениями. Удельный вес меди, из которой изготовляются проводники кабеля, почти 9 г на кубический сантиметр, следовательно, 1 км медной проволоки сечением в 1 мм 2весит почти 9 кг в воздухе и около 8 кг в воде. Предел прочности на разрыв составляет для мягкой медной, так называемой "электротехнической" проволоки 27 кг на 1 мм 2её сечения.
   Свободно висящая медная проволока не разорвётся под влиянием собственного веса до тех пор, пока ее вес будет меньше её разрывной прочности. Для проволоки сечением в 1 мм 2предельным значением собственного веса будет 27 кг, что соответствует её длине в воде, равной 3,5 км. При большей длине медная проволока не выдержит. Это в спокойных условиях. А ведь океанский кабель прокладывается с движущегося судна, притом иногда в штормовую погоду. Висящий за кормой судна кабель испытывает порой рывки, сила которых значительно превосходит силу натяжения от собственного веса. Вспомним, сколько роковых обрывов претерпел кабель в период десятилетних попыток прокладки первой трансатлантической телеграфной линии.
   Изоляция не только не упрочняет, но даже несколько ослабляет кабель. Полиэтилен в 10 раз легче меди, но его разрывная прочность в 15-20 раз меньше прочности медной проволоки. Следовательно, полиэтиленовая изоляция ложится на медную проволоку дополнительным грузом.
   Как же при этих условиях опустить без обрыва кабель на глубину в несколько километров? Тут и приходит на помощь спасительная стальная броня. Удельный вес стали около 8, а разрывная прочность стальной проволоки достигает 150-175 и даже 200 кг на 1 мм 2. Следовательно, стальная проволока выдержит в воде, не разрываясь, вес собственной 20-30-километровой линии. А это уже не только превосходит самые большие океанские глубины, но и обеспечивает приличный запас прочности. Проволочная броня не даёт глубоководному кабелю разорваться в процессе его прокладки. Именно она в течение столетия являлась той единственной опорой, тем несущим элементом, который удерживал многотонный вес опускающегося с судна кабеля.
   И всё же очень досадно покрывать бронёй кабель только ради того, чтобы благополучно доставить его на дно. Ведь сразу же после того, как кабель улёгся на своём глубинном естественном ложе, броня на долгие годы, а большей частью навсегда становится совершенно ненужной. Вот уж поистине мёртвый капитал! И какой огромный капитал! Стальная броня весит столько же, если не больше, чем все остальные элементы конструкции кабеля. На её долю приходится от одной до двух третей веса всего кабеля. Лишь на 50% броня "работает" на сердцевину кабеля, половина её мощи расходуется на удержание самой себя. Поистине заколдованный круг!
   Вес стальной брони на 1 км глубоководного кабеля составляет около 1000 кг. Значит, на сооружение каждой трансатлантической кабельной линии расходовалось по 4000 т стальной проволоки. Таких (преимущественно телеграфных) линий около тридцати только в одной Атлантике. А в Тихом и Индийских океанах? За сто с лишним лет в океанах и морях проложено более миллиона километров подводных кабелей. Следовательно, в морских глубинах бесполезно погребено свыше миллиона тонн высококачественной стальной проволоки.
   Но и это ещё не всё. Наличие брони в конструкции подводного кабеля усложняет процессы его производства и особенно прокладки. Стальные бронепроволоки накладываются на кабель по спирали в каком-либо одном направлении - правом или левом. Когда с кормы судна свободно свисает длинный конец кабеля, броня, наложенная, предположим, вправо, стремится раскрутиться влево и тем самым закручивает кабель вокруг его оси. В процессе прокладки бронированный кабель делает сотни и тысячи оборотов и вследствие этого может быть свёрнут кольцами, запутан и даже повреждён. Особенно опасно это явление для кабеля со встроенными усилителями. Именно поэтому укладка на большие глубины усилителей в жёстких корпусах была в течение ряда лет невозможной. Устранить явление закручивания кабеля можно было, наложив второй повив бронепроволок в направлении, противоположном направлению первого слоя, однако это чересчур удорожило бы кабель.
   Вот почему инженеры стали искать более эффективное решение и нашли его в отказе от брони вообще. Её опорная роль была передана стальному несущему сердечнику, расположенному в самом центре кабеля. Если в обычных кабелях броня внешне создавала впечатление солидной защиты кабеля, то теперь, наоборот, сам кабель как бы защищает свою опору - центральный несущий трос, скрученный из высокопрочных тонких стальных проволок. Проволоки располагаются в два повива, наложенные во взаимопротивоположных направлениях, благодаря чему кабель не испытывает стремления к закручиванию и допускает прокладку вместе с жёсткими усилителями на любые глубины. Внутренним проводником коаксиального кабеля служит медная трубка толщиной 0,3-0,6 мм, образованная из ленты, продольно накладываемой на стальной сердечник и сворачиваемой вокруг него. Соприкасающиеся края ленты непрерывно свариваются в атмосфере аргона. Далее следуют, как обычно, сплошная полиэтиленовая изоляция и внешний проводник, также из медной или алюминиевой (для облегчения веса кабеля) ленты. Защитой внешнего проводника служит наружная полиэтиленовая оболочка.
 
 
    Современный глубоководный небронированный телефонный кабель
    с многослойным несущим сердечником, скрученным из стальных проволок.
    Внутренним и внешним проводниками служат медные трубки, разделённые полиэтиленовой изоляцией
   Новый кабель получил название облегчённого, или легковесного (отнюдь не в ироническом смысле этого слова), или небронированного глубоководного кабеля. Помимо стойкости к закручиванию, небронированный кабель имеет и другие решающие преимущества перед бронированным. Прежде всего он значительно легче. И это вполне естественно, ибо суммарное сечение стальных проводок, сходящихся в самом центре кабеля, в несколько раз меньше сечения бронепроволок, располагающихся на периферии. При одинаковых электрических характеристиках вес небронированного кабеля в воде почти в пять раз меньше веса бронированного кабеля. Если же приравнять наружные диаметры кабелей, то небронированный кабель в воде будет в 2-3 раза легче бронированного. Кроме выигрыша в весе, облегчённый кабель обеспечивает меньшие потери мощности передаваемых сигналов.