Обед закончился, и мы вернулись в зал. Мне очень понравился доклад Chris Impey – профессора из Аризонского университета, где он изучает квазары в Steward Observatory. Прекрасный лектор Крис воспользовался микрофоном, чем сразу привлек к себе внимание аудитории. Крис и его группа, используя Alcock-Paczynski Test, провели геометрическое измерение темной энергии, пользуясь парами квазаров [13]. После доклада я подошел к Крису и, выразив ему свое почтение, стал что-то уточнять. Его глаза загорелись, и он еще раз мне все пояснил.
   На следующий день мы отправились всем составом конференции на экскурсию в город Тринидад, находящийся где-то в двух с половиной часах от Санта-Клары, на побережье Карибского моря.
   Тринидад заложил в 1514 г. Диего Веласкес, выбрав местечко возле рек Агабамо и Таябо, тогда еще приносивших золото. Поначалу основным занятием жителей Тринидада была контрабанда. Однако их самих не раз грабили пираты, поэтому в XVIII в. они занялись делом более трудоемким, но зато легальным – выращиванием сахарного тростника. В период сахарного бума Тринидад переживал золотой век. Но когда центрами торговли стали Гавана и Сьенфуэгос, когда уже не за горами была отмена рабства, Тринидад утратил свое значение так же быстро, как когда-то его приобрел. Но именно благодаря упадку здесь сохранилась колониальная архитектура, которую мы и явились осматривать.
   Самым страшным, и я бы сказал, коварным элементом этой архитектуры оказалась мостовая, выложенная из круглых, словно бы речных камней. Каждый раз, ступая по ним, мы рисковали подвернуть ногу.
   Так мы поплутали под нещадно палящим в два часа дня солнцем (отличное время для прогулок на Кубе в июне) и присели отдохнуть в тени на паперти церкви. В вязком от жары воздухе появились фигуры пиратов. Мне казалось, что я брежу. Но моя жена подтвердила мои галлюцинации. Оказалось, на площади перед церковью кубинцы взялись снимать кино.
   Наша группа степенно протащилась мимо нас, сидящих на паперти, и мы поднялись следовать за ними. Не успел я оглянуться, как супруга подвернула ногу, да так сильно, что она у нее распухла, словно была из дрожжевого теста… Оперевшись на меня, она, видимо, чего-то немного повредила в моем подагрическом суставе, и я тоже захромал, хотя на одной ножке не прыгал…
   Таким образом мы всем эмпирически доказали, что с гравитацией на Острове свободы всё в порядке.
   Дома нас встретили наши дети, которые не удивились, увидев своих родителей хромоногими:
   – Мы вам говорили: не лезьте вы к этим космологам. Мы так и знали, что они вам накостыляют.

Глава 4
Уникальность Вселенной

   На первый взгляд космология мало влияет на нашу повседневную жизнь. Однако несмотря на то, что эта наука кажется чрезвычайно далекой от наших текущих забот и мирских треволнений, космологические идеи веками играли и продолжают играть основополагающую роль в формировании философских взглядов, которые в свою очередь оказывают значительное влияние на многие аспекты религиозной и политической жизни разных стран, входящих в состав современной цивилизации.
   Космология как наука ограничивается изучением Вселенной в целом, ее содержимого, структуры и эволюции. Космологические идеи основываются на выводах, извлеченных из астрономических наблюдений и математических моделей, но, несмотря на свою кажущуюся удаленность от нашей повседневной жизни, они привлекают внимание прессы и вызывают интерес у широких слоев общества [14].
   С течением столетий методы, применяемые в космологии, видоизменялись, постепенно переходя от спекулятивного мифотворчества к применению научного подхода, основанного на объективных данных. В настоящее время космология является частью современной стандартной физической теории и, как принято полагать, многие ее положения подтверждаются астрономическими наблюдениями.
   Если даже согласиться с общепринятым мнением, что к описанию Вселенной можно подходить с обычными человеческими мерками, основывающимися на осознаваемом нами, но имеющим мало физического смысла, течении времени, то некоторые теоретические выкладки, особенно касающиеся наиболее ранних стадий существования Вселенной, не имеют и, возможно, никогда не будут иметь подтверждения, основанного на астрономических наблюдениях.
   Таким образом, космология в какой-то мере остается наукой, основывающейся на принципах, которые подразумевают допустимость ситуации, когда теория превалирует над наблюдениями. Это не может не означать, что сами основы этой науки заведомо обречены зиждиться на спекулятивном мышлении, обычно не свойственном другим современным наукам.
   Давайте предпримем путешествие к самым корням философии космологии, чтобы установить степень спекулятивности этой науки и попытаться определить границы человеческого познания и понять, что мы можем и чего мы не можем знать. Будем надеяться, что подобные попытки не встретят обычных в таких случаях обвинений в агностицизме. Давайте оставим в покое знаменитое изречение Сократа: «Я знаю лишь то, что я ничего не знаю». В конце концов, пользуясь небывалым прогрессом, произошедшим со времен этого древнегреческого мудреца, мы можем позволить себе порассуждать о том, чего именно мы пока не знаем, а чего никогда так и не сможем узнать.
   Первая сложность, с которой сталкивается философия космологии, – это уникальность Вселенной. Наиболее фундаментальное препятствие на пути ее научного изучения заключается в том, что мы можем обозревать только одну вселенную. Именно уникальность предмета изучения, его наличие только в единственном числе отличает космологию от других наук. Говоря точнее, согласно официально принятой в космологии концепции, уникальные начальные условия, приведшие к сегодняшнему состоянию Вселенной, были заданы еще до того, как известные нам физические законы начали управлять эволюцией Вселенной. Мы не можем изменить этих гипотетических начальных условий и посмотреть, что было бы, если бы эти условия были иными. Они даны нам в абсолютном и неизменном виде. Одним из главных последствий того, что Вселенная является уникальной, является то, что мы не можем экспериментировать с ней. Очевидно, что мы не можем создать вселенную заново и пронаблюдать ее развитие с теми же или другими начальными условиями. Мы не можем проводить научных экспериментов на этом основном объекте изучения космологов. Более того, ввиду уникальности наблюдаемого объекта мы не можем сравнить вселенную ни с какой другой Вселенной.
   Например, законы наследственности Грегора Менделя, заложившего основу современной генетики, были выведены на основе экспериментов с двадцатью восемью тысячами растений гороха. Эти опыты были бы невозможны, если бы ученый имел только одно растение или только одну горошину.
   К сожалению, подобно одной горошине,у нас есть только одна Вселенная,да и ту мы наблюдаем только частично. Поскольку мы не можем сравнить нашу вселенную ни с какой другой Вселенной, мы значительно ограничены в своих возможностях выводить определенные законы, которые были бы справедливы не только для нашей Вселенной, но и для группы подобных объектов; более того, мы не можем утверждать, что другие вселенные существуют.
   Пример с горошиной достаточно наглядно иллюстрирует весьма интригующую мысль, что концепция «законов физики» неправомерна, когда она применяется только к одному объекту, и нет возможности подтвердить или опровергнуть эти законы путем сравнения данного объекта с ему подобными. Мы не можем научно установить «законов Вселенной», которые могли бы описывать целый класс подобных объектов, потому что мы не можем проверить ни один из таких законов, кроме как только на одном имеющиеся у нас объекте. Действительно, сама правомерность использования понятия «закон» должна быть поставлена под сомнение, если изучаемый объект существует
   только в единственном числе. Главная идея физического закона заключается в том, что он должен быть верным в отношении группы объектов или явлений, имеющих сходные характеристики, при допущении некоторых вариаций. Эти различия могут быть результатом разных начальных условий систем, к которым приложены данные законы.
   Научные эксперименты позволяют нам изменять начальные условия изучаемых систем. Это невозможно в случае космологии, потому что мы не можем перезапустить Вселенную в лаборатории.
   Мы можем наблюдать законы физики локально, подтверждая, что на относительно малой шкале они одинаковы во всей Вселенной, однако нам трудно перенестись эти законы на более высокие уровни иерархии организации Вселенной. Например, Всемирный закон тяготения Ньютона [15]прекрасно работает на уровне нашей Солнечной системы, однако он не может быть с той же степенью определенности применен, когда мы изучаем орбитальные скорости звезд, вращающихся вокруг галактического центра. Эти скорости оказались значительно выше, чем в соответствии с законом Ньютона. Другим фактом, поставившим под сомнение применимость законов тяготения на межгалактическом уровне, оказалось несоответствие между массой видимого вещества и тем, что галактики остаются вместе в кластерах [16], а не разлетаются друг от друга.
   Несмотря на то что современная космология объясняет эти явления присутствием скрытой массы, названной «темным веществом» – “dark matter”, существуют некоторые альтернативные теории, например модифицированная ньютоновская Динамика (MOND) [17]. Эти теории ставят под сомнение верность выкладок, лежащих в основе официальной космологии. Так, модель под названием «Лямбда холодное темное вещество» (Lambda Cold Dark Matter) в настоящее время (в 2007 г.) является ведущей теорией и подтверждается фактическими наблюдениями [18].
   На более высоком уровне законами гравитации невозможно объяснить, что заставило космологов прийти к выводу, будто Вселенная расширяется, да еще и с ускорением. Ведь согласно законам гравитации Вселенная, наоборот, должна сжиматься, подчиняясь силе притяжения. Существует потребность в новых законах, которые описали бы скрытую энергию, названную «темной энергией» “dark energy”, которая отвечала бы за подобное расширение. (Иногда ее именуют «антигравитацией».)
   В настоящее время космологи ведут споры, что представляет собой эта самая скрытая энергия. Некоторые считают, что она есть некая «космическая постоянная» (cosmological constant) или так называемая квинтэссенция (quintessence). Несмотря на то что подобные законы могли бы дать удовлетворительное объяснение упомянутым выше явлениям, они не могут быть проверены ни на каком другом объекте, кроме как на нашей Вселенной, что лишит их статуса универсальных законов ввиду того, что, как мы уже отмечали, Вселенная у нас одна, и поэтому нет возможности выявить закономерность тех или иных явлений для группы подобных объектов.
   Мы можем предположить, что имеем дело с миллиардами «мини-вселенных», на которых мы могли бы протестировать законы, регулирующие локальную часть Вселенной, но такая «мини-Вселенная» ни в коей мере не является всей Вселенной. Поэтому и такая уловка не может быть состоятельной. Однако, проверяя мини-вселенные и убеждаясь, что законы физики в них работают одинаково, мы можем подтвердить основной вывод современной космологии, что Вселенная одинакова во всех своих частях и во всех направлениях. Тем не менее, убеждаясь в гомогенности Вселенной, мы не получаем ответа на вопрос, почему она одинакова во всех своих частях и во всех направлениях.
   Наконец, концепция статистической вероятности в отношении Вселенной также проблематична, поскольку речь идет о единичном объекте. Проблемы возникают при попытке применить теорию вероятности к космологии в целом, тогда как именно эта концепция и лежит в основе современной космологической аргументации.
   Например, мы говорим о низкой вероятности «тонкой настройки» Вселенной (fine tuning), то есть все известные физические константы имеют такие точные параметры, что во Вселенной могут создаваться условия не только для существования такой сложной формы организации материи, как жизнь, но и для существования самих атомов. Если бы эти константы были иными, атомы никогда не смогли бы сформироваться, звезды никогда не зажглись бы, термоядерные реакции в них не были бы возможны, а тем самым не могло бы появиться то разнообразие элементов во Вселенной, которое мы наблюдаем [19].
   Таким образом, можно предположить, что если бы константы были иными, мы могли бы исследовать различные вероятности, сравнивая их между собой, но это не имело бы смысла, поскольку не могло бы быть доказано путем астрономических наблюдений. Как же можно говорить о различных вероятностях по отношению к развитию Вселенной, если Вселенная, которую мы можем наблюдать, присутствует только в единственном числе?
   Итак, мы не можем научно установить законов возникновения Вселенной с учетом различных начальных условий и различных вероятностей ее развития. Прежде всего, существует разница между экспериментальными науками, такими как физика, химия, микробиология, и «историческими», «географическими»науками, каковыми, например, являются астрономия, геология, теория эволюции. Говоря о научном подходе, мы обычно имеем в виду экспериментальные науки. Наблюдая и проводя эксперименты над классом идентичных или почти идентичных объектов, мы пытаемся установить закономерности в их поведении и убедиться в их идентичности. Например, кварки [20], протоны, электроны совершенно идентичны между собой и ведут себя совершенно одинаково (именно это свойство легло в основу хорошо протестированной квантовой статистики). Каждая молекула ДНК похожа на другую молекулу, хоть и отличается от нее. Все лягушки похожи друг на друга. То же можно сказать и о людях. Мы все достаточно похожи друг на друга, чтобы применять к нам законы, построенные на соответствующих общих характеристиках. Если бы это было не так, было бы ошибочно относить перечисленные виды к одним и тем же классам объектов. Молекулы воды, газы, жидкости, твердые вещества практически одинаковы по своим свойствам, и их можно описывать общими для них физическими и химическими законами. Что же касается географических и историческихнаук, в них существуют уникальные объекты – Большой Каньон, континент Антарктида, Солнечная система, галактика Андромеда или уникальные события – образование Солнечной системы, эволюция жизни на Земле, взрыв определенной сверхновой звезды. Поскольку эти уникальные объекты и события доступны только для обозрения, а не для экспериментирования, особые начальные условия, которые привели к возникновению этих объектов и событий, не могут быть изменены. Между тем существуют целые классы подобных объектов (другие каньоны, континенты, солнечные системы, галактики и т. д.), которые мы можем наблюдать и сравнивать. В отличие от космологии, в других науках мы можем проводить статистический анализ с целью выявления закономерностей.
   Но если в космологии мы действительно не можем проводить подобный анализ, то необходимо задать вполне законный вопрос о природе космологии как науки. Мы должны либо допустить, что физические феномены на большой шкале космических расстояний (такие, как зарождение Вселенной) происходят только один раз, и именно они и являются предметом изучения космологии, либо, наоборот, предположить, что подобные события не уникальны, даже если мы не можем их наблюдать, и тогда эти события находятся вне сферы интересов космологии, поскольку ее методы не приспособлены для изучения классов объектов.
   Некоторые ученые пытаются обойти эти проблемы, отрицая уникальность Вселенной. Они предполагают наличие множества вселенных (many universes), что само по себе противоречит общепринятому определению Вселенной как вместилища всего сущего. Так или иначе, принимая предположение о существовании множества вселенных, мы можем применять концепции статистических вероятностей к этим гипотетическим объектам, рассматривая их как чрезвычайно удаленные области пространства с различными характеристиками, как в теории хаотических инфляций (chaotic inflation), или как совершенно разделенные вселенные без какой-либо физической связи между ними. В обоих случаях степень спекулятивности выходит далеко за рамки допустимого в науке.
   Поскольку до сих пор не доказано, что другие вселенные существуют или, по крайней мере, могут существовать, мы должны оставаться на позициях, что наша Вселенная уникальна, по крайней мере с нашей точки зрения, и, таким образом, нам придется согласиться с философскими последствиями такого утверждения.

Глава 5
Вселенная в пространстве и времени на большой шкале

   Проблемы, возникающие из признания уникальности Вселенной, осложняются ее огромными размерами и протяженностью в пространстве и времени. Именно это составляет серьезное препятствие на пути ее изучения и ставит космологию в незавидное положение. Таким образом, помимо наблюдений и теоретических выкладок возникает необходимость в разработке рабочих моделей, позволяющих поддержать теоретические выкладки и позволить верно предвидеть результаты будущих наблюдений с достаточной степенью точности.
   Для того чтобы понять, в чем заключается проблемы наблюдения Вселенной на большой шкале, давайте проанализируем расстояния, с которыми мы имеем дело.
   Так, расстояние до ближайшей крупной галактики Андромеды таково, что свету требуется около двух миллионов лет, чтобы долететь от нее до Земли, и это при том, что скорость света – триста тысяч километров в секунду.
   В настоящее время размеры наблюдаемой Вселенной примерно в пять тысяч раз больше расстояния до галактики Андромеды. Эти огромные масштабы накладывают значительные ограничения на наши возможности наблюдать удаленные области Вселенной (и конечно же, лишают какой либо возможности экспериментировать с ними). Таким образом, уникальность космологии заключается в том, что она имеет дело с наибольшими расстояниями, в пределах которых мы можем что-либо обозревать. Астрономические наблюдения ограничены так называемым понятием «past null cone» —линией наблюдения объектов, теряющих отчетливость с расстоянием. Мы можем эффективно наблюдать вселенную на космологической шкале, только приняв во внимание, что то, что предстает перед нами, случилось «там и тогда»,и не можем наблюдать, что происходит там сейчас. Мы не можем знать, что происходит в галактике Андромеда сейчас. Мы способны видеть лишь те явления и события, которые обозревал бы локальный наблюдатель два миллиона лет назад. То есть мы неизбежно смотрим назад во времени, и чем большее расстояние до объекта нашего наблюдения, тем длиннее период времени, отделяющий нас от наблюдаемых нами событий. С одной стороны, это дает уникальную возможность заглянуть в прошлое нашей Вселенной, с другой стороны, это ограничивает наши возможности проанализировать, что представляет собой Вселенная в настоящий момент. В космологии неопределенность растет со временем и расстоянием.
   Вместе с тем огромная шкала Вселенной предполагает, что мы можем эффективно наблюдать ее только из одного пункта – «здесь и сейчас».Мы не можем улететь со скоростью света на десять тысяч световых лет и понаблюдать вселенную оттуда. Но даже проделав такое огромное расстояние, мы не покинем нашу галактику, и с космологической точки зрения такое перемещение пункта наблюдения не будет иметь смысла. И даже если бы мы смогли поставить долгосрочный астрономический эксперимент длиной в двадцать тысяч лет, этого все равно совершенно недостаточно для принятия каких-либо космологических выводов, где временные шкалы измеряются миллиардами лет (в настоящее время считается, что возраст Вселенной равен 13,7 миллиардам лет, если понятие возраста вообще применимо в отношении к такому объекту, как Вселенная). Таким образом, космология весьма отличается от географическихнаук, изучая которые, мы можем путешествовать и делать непосредственные наблюдения за интересующими нас объектами. Принимая во внимание возможный истинный размер Вселенной, та часть, которую мы можем наблюдать, сравнима с панорамой, открывающейся с невысокого холма. На основании того, что мы видим с холма, космология пытается делать вывод о размерах и форме Земли. Увы, обзора окружающих наш холм видов отнюдь недостаточно для таких выводов.
   Кроме того, мы можем наблюдать Вселенную только на основе анализа электромагнитного излучения, приходящего к нам в виде радиоволн, инфракрасных волн, света, ультрафиолетовых волн, рентгеновского излучения и жесткой радиации (последние два по большей части не доходят до Земли благодаря ее атмосфере, и для их изучения необходимо проводить наблюдения на орбите или в верхних слоях атмосферы).
   Так же мы можем анализировать элементарные частицы, которые прилетают к нам из космоса, но все они подвержены той же проблеме ограничения скорости передачи информации скоростью света. Хотя в квантовой физике и рассматриваются феномены мгновенной передачи информации между парой фотонов [21], практического применения в астрофизике это не имеет.
   Несмотря на то что мы не можем проанализировать вещество удаленных астрономических объектов в лаборатории, мы все же получаем достаточно информации о их природе только на основе анализа излучения и элементарных частиц, прибывающих к нам от этих объектов. Мы можем получать визуальные изображения, спектральный анализ [22]и так далее. В будущем, возможно, мы сможем делать выводы об удаленных объектах по анализу нейтрино, частицы, которую весьма трудно уловить [23]а также по анализу гравитационных волн (возможность определения которых – пока только гипотеза).
   Однако все наши наблюдения будут подвержены тем же ограничениям, которые были обсуждены выше. Как следствие мы всегда будем обречены сталкиваться с указанными проблемами в интерпретации астрономических наблюдений.
   Звезды находятся от Земли во много раз дальше, чем Луна, планеты, Солнце. Определить расстояние до ближайшей к нам звезды удалось русскому ученому В. Я. Струве. Это было более ста лет назад. Для этого ему пришлось наблюдать ее не с концов земного диаметра, а с концов прямой линии, которая в 23 600 раз длиннее. Где же он мог взять такую прямую линию, которая на земном шаре не может уместиться? Оказывается, эта линия существует в природе. Это диаметр земной орбиты. За полгода земной шар переносит нас на другую сторону от Солнца. Зная диаметр земной орбиты (а он вдвое больше среднего расстояния до Солнца), измерив углы, под которыми наблюдается звезда, можно вычислить расстояние до нее. Такой метод может быть применен только для определения расстояния до относительно близких звезд. Самые близкие к нам звезды – Проксима Центавра и Альфа Центавра – находятся в 270 000 раз дальше от Земли, чем Солнце. Лучу света от этих звезд приходится лететь до Земли 4,5 года. Однако добраться до них при современных скоростях космических кораблей займет пятьдесят тысяч лет.
   Расстояния до звезд огромны, и измерять их километрами неудобно, так как получается слишком большое число километров. И ученые ввели более крупную единицу измерения: световой год. Это такое расстояние, которое свет проходит в течение одного года. Во сколько раз эта единица измерения больше, чем километр? 300 000 км/сек. надо умножить на число секунд в году. Получим приблизительно 10 триллионов километров. Значит, один световой год больше одного километра в 10 триллионов раз. Звезды могут находиться от нас на расстояниях, равных десяткам, сотням, тысячам световых лет и более. До Плутона – самой дальней планеты Солнечной системы – космический аппарат летит немногим больше десяти лет. А можно ли долететь до Большой Медведицы или Кассиопеи? Долететь до созвездий невозможно. Каждое созвездие – это тот участок неба, который виден с Земли. Из-за очень большого расстояния нам кажется, что звезды расположены рядом. На самом деле звезды, входящие в одно созвездие, находятся на разных расстояниях от Земли. Эти расстояния огромны, и поэтому звезды при приближении к ним будут расступаться, как деревья в лесу. А если вы захотите долететь до звезды? Теоретически это возможно. Но с какой же скоростью надо двигаться и сколько лет добираться, например, до Сириуса? Если со скоростью света (300 000 км/сек., самой большой скоростью в природе), то потребуется почти девять лет. А до Беги – 27. А до Полярной звезды расстояние 432 световых года, т. е. луч света от Полярной звезды к Земле летит 432 года. Это значит, что если эта звезда потухнет, то на Земле узнают об этом через 432 года, а сейчас мы видим ее такой, какой она была почти полтысячелетия назад.
   Еще не придумали таких летательных аппаратов, которые смогли бы мчаться со скоростью света или близкой к ней. Поскольку мы не можем удалиться на значительные расстояния от Земли, чтобы сменить точку наблюдения, мы всегда будем получать только двухмерную картину неба, которая несет в себе только частичную информацию настоящего трехмерного распределения вещества во Вселенной. Многие звезды, которые на небе предстают нам в близких позициях, на самом деле удалены друг от друга на огромные расстояния, и только в двухмерной проекции, и только с нашей точки наблюдения представляются близкорасположенными. Например, созвездия – группы звезд, которые мы в течение тысячелетий считали основной структурой небес, в действительности не имеют никакого смысла в астрономическом отношении, поскольку большинство звезд, входящих в их состав, только кажутся близкими. Давайте посмотрим на созвездие Малой Медведицы (Ursa Minor / Little Dipper).