Разумеется, эти соображения не доказывают, что телепатии нет. Они только доказывают, что ее существование неправдоподобно.
   Здесь проявляется еще одна особенность научного подхода. Подобно тому как юристы исходят из презумпции невиновности, наука исходит из презумпции отсутствия чуда. Мы не обязаны доказывать, что нет странных или необычных явлений. Доказать нужно, что они есть. Поэтому, пока категорически не исключены все естественные, то есть более правдоподобные, объяснения, не следует принимать менее правдоподобные. Очень хорошо об этом сказал замечательный американский фи-
   зик Ричард Фейнман: «На основании своих представлений об окружающем мире я считаю, что сообщения о летающих тарелках являются скорее результатом известной мне иррациональности мышления жителей нашей планеты, чем результатом рациональных усилий мыслящих существ с другой планеты. Первое из предположений гораздо правдоподобнее».
   Задача науки - отбирать более правдоподобные объяснения и придерживаться их до тех пор, пока опыт не заставит от них отказаться. Это не означает, что следует запретить попытки обнаружить неправдоподобные явления. Фейнман говорил: «Один из верных способов остановить прогресс науки - разрешить эксперименты лишь в тех областях, где законы уже открыты».
   Я был бы очень рад, если бы серьезные экспериментаторы непредвзято изучали явления такого рода, как телепатия. Можно сомневаться или не верить, что они обнаружат телепатию, но несомненно, что они откроют много других интересных явлений.
   Разумеется, экспериментаторы не должны ставить задачу доказать или опровергнуть существование телепатии. Задача состоит в том, чтобы всесторонне изучить все способы возможного взаимодействия между людьми, начиная с физических полей, окружающих человека. Стремление доказать или опровергнуть часто приводит к недобросовестным экспериментам. Открытие возникает только как побочный продукт глубокого исследования.
   В науке давно уже принято очень простое и убедительное предположение, что процессы, происходящие в живой природе, определяются в конечном счете законами взаимодействия электронов, атомов и молекул, установленными в физических экспериментах. До сих пор эта гипотеза подтверждалась. Более того, она оказалась настолько плодотворной, что привела к объяснению даже такого таинственного явления, как наследственность.
   Но нам придется от этой гипотезы отказаться, если убедительные эксперименты докажут, что в живой природе есть процессы, не сводящиеся к физическим законам. Например, если будет обнаружено поле, не проявляющееся в физическом эксперименте. Однако, прежде чем прийти к такому важному заключению, как существование нефизических полей, передающих информацию, следует со всей возможной убедительностью установить само явление, исключив все более простые объяснения.
   Надеюсь, что эти критические рассуждения не заденут чувств тех, кому дорога поэтическая сторона легенд и поверий, и не ослабят естественного интереса к таинственному и непознанному.

«…Беда, коль пироги начнет печи сапожник…»

   (И. А. Крылов)
   Я часто говорю: «по утверждениям специалистов». Это не означает, что я не составил собственного мнения. Я только подчеркиваю, что право на суждение остается за специалистами в данной области науки. Если вам придется слушать рассказы о Бермудском треугольнике или о летающих тарелках, вы вправе спросить у рассказчика, кто он по специальности и почему его мнению нужно доверять больше, чем мнению океанологов или специалистов по атмосферной оптике.
   Для того чтобы составить мнение, необязательно самому быть специалистом. Но надо иметь достаточную квалификацию, чтобы знать, чье мнение наиболее авторитетно.
   Надеюсь, никого не надо убеждать в необходимости предельного профессионализма в науке. Впрочем, любая специальность требует профессионального подхода и профессионального обучения. Никто не захочет, чтобы ему делал операцию хирург-любитель. Певец даже с очень хорошими данными делается певцом после длительного обучения. Без специального образования, пользуясь только здравым смыслом, нельзя анализировать произведение искусства, хотя, к сожалению, это часто делается. Нельзя даже сказать «плохо» или «хорошо», покуда вы не уверены, что понимаете задачи, которые ставит автор, и средства, которыми он пользуется. По поводу произведения искусства зритель или слушатель независимо от своей квалификации вправе сказать, нравится оно ему или нет. В науке даже такое заявление требует определенного уровня знаний. Нельзя сказать: «Мне не нравится теория относительности». Для этого надо хотя бы понимать смысл утверждений этой теории.
   Необязательно иметь диплом об окончании университета. Профессиональные качества можно приобрести и самому. Не всякий окончивший Литературный институт - писатель, но инженер Достоевский, артиллерийский офицер Толстой, врач Чехов - профессионалы в литературе.
   Профессионал - это человек, в совершенстве владеющий методом, знающий все подводные камни, опасности и секреты своего ремесла.
   Профессионализм - необходимое, но, конечно, недостаточное условие, это как бы здравый смысл научной работы. Еще важнее внезапные скачки мысли, озарения, интуиция… Однако неожиданные идеи, выживающие после проверки, рождаются только на основе профессионализма.
   Без профессиональных качеств не только нельзя сделать научную работу, но без них не может возникнуть сколько-нибудь разумная идея. Научная интуиция, необходимая для рождения идей, возникает в результате серьезной научной работы. В науке, так же как в цирке, сложные вещи удаются лишь на самом высоком профессиональном уровне.
   Разговоры о пользе дилетантизма происходят от недоразумения: люди забывают, что, прежде чем физик становится скульптором или слесарь - писателем, они овладевают тайнами мастерства своей новой профессии.
   Игривые умы дилетантов, не обременные излишними познаниями, не знают предела, им доступна любая область науки и искусства, а как романтичны бывают их построения! Ведь дух захватывает от сообщения, что основные идеи теории относительности можно найти в древнеиндийских сказаниях! Достоевский обливает фантазеров холодной водой, заявляя в «Дневнике писателя»: «Но принесите мне, что хотите… «Записки сумасшедшего», оду «Бог», «Юрия Милославского», стихи Фета, - что хотите, - и я берусь вам вывести из первых же десяти строк, вами указанных, что тут именно аллегория о франко-прусской войне или пашквиль на актера Горбунова, одним словом, на кого угодно, на кого прикажете…» Научная теория так же далека от древнего мифа, как современный реактивный лайнер от ковра-самолета.
   Когда дилетантизм не выходит за рамки хобби, когда это отдых после основной работы, к тому же расширяющий кругозор, - это прекрасно. Но заниматься работой всерьез можно, только будучи профессионалом. Открытие древней Трои - редчайший случай удачи непрофессионала. Но замечательный энтузиаст Генрих Шлиман, торопясь сделать открытие, допустил уничтожение верхних слоев, и они погибли для науки навсегда.
   Огорчительно, когда люди, не имеющие к науке прямого отношения, не только берутся судить о вещах, требующих профессиональных навыков мышления, но и надеются, минуя стадию обучения, совершить переворот в науке.
   Имеется много профессиональных приемов, общих для всех точных наук. Есть методы, дающие возможность проверить ошибочность идеи еще до начала работы. Существуют способы разбить задачу на более легкие, которые сравнительно просто решать. После того как решена упрощенная задача, несравненно легче решать сложную. И очень важно обсуждать работу со специалистами на всех стадиях, от первой догадки до полного завершения. Но об этом позже.
   Самое главное, без чего даже высокие профессиональные качества не приводят к успеху, - это способность радоваться и удивляться каждой, даже малой удаче, каждой разгаданной загадке и относиться к науке с тем благоговением, о котором говорит Эйнштейн: «Я довольствуюсь тем, что с изумлением строю догадки об этих тайнах и смиренно пытаюсь мысленно создать далеко не полную картину совершенной структуры всего сущего».
   Недавно я слышал рассказ талантливой актрисы о человеке, который в присутствии многих зрителей подвешивал в пространстве ее сапог «силой духа», заявляя, что этой силы у него 9 тысяч единиц, тогда как мировой рекорд составляет только 7 тысяч.
   Ежедневно на головы несведущих в естественных науках людей обрушивается поток непроверенных фактов и слухов - верить в сверхъестественное стало модой и этаким признаком утонченности. Надеюсь, что сказанное здесь поможет научиться - хотя бы отчасти - отличать разумное от неразумного, ловкий трюк от науч
 
ОТЛИЧИМА ЛИ ИСТИНА ОТ ЛЖИ?
   Разуму не приходится выбирать, если выбор между истиной и выдумкой.
   Цицерон
   ной истины, чудо мнимое от подлинного чуда гармонии Вселенной.
   Постараемся ответить на несколько вопросов.
   Из чего складывается научный метод познания?
   Как рождаются заблуждения? Каковы те малые ошибки в рассуждениях, которые приводят к антинаучным заключениям?
   И наконец, как отличить научную истину от заблуждения?
   «Сомнение доставляет мне не меньшее наслаждение, чем знание» (Данте)
   Задачи науки лежат на границе между известным и неожиданным. Отсюда одна из главных ее черт - открытость новому, способность пересмотреть привычные представления и, если надо, отказаться от них.
   Науку образуют факты, соотношения между ними и толкование этих соотношений. Факты и соотношения надо чтить, как Уголовный кодекс. Хорошо установленные факты неизменны, соотношения только уточняются с развитием науки. Но толкования фактов и соотношений, то есть представления, основанные на сознательно упрощенной картине явления, нельзя абсолютизировать. Представления, или модели, развиваются и видоизменяются с каждым открытием.
   В нобелевской речи Альбер Камю сказал, что искусство шагает по узкой тропинке меж двух бездн: с одной стороны - пустота, с другой - тенденциозность. В науке такие бездны - верхоглядство и догматизм, две стороны лженауки. Верхогляды строят свои концепции, не считаясь с фактами и соотношениями, основываясь на непроверенных догадках. Догматики абсолютизируют представления сегодняшнего дня. Что опаснее - трудно сказать.
   Очень часто ученые, неспособные отказаться от установившихся представлений, широко образованны в науке и даже делают хорошие работы, хотя и не выходящие за рамки общепринятого. Покуда они ограничиваются такой деятельностью, они приносят пользу. Вред начинается, когда они пытаются делать прогнозы и влияют на выбор направления поисков.
   К счастью, у науки есть свойство самоочищения - обратная связь, обеспечивающая устойчивость. После нескольких неудач и догматики и верхогляды перестают влиять на развитие науки.
   Двадцатый век явил удивительные примеры отказа от привычных представлений в физике: теория относительности возникла в результате пересмотра интуитивного понятия одновременности, существовавшего сотни лет. Классическая механика исходит из предположения, что явления можно описывать, задавая координаты и скорости частиц. Квантовая механика требует отказа от этого предположения.
   Но не свидетельствует ли такой отказ о несостоятельности всей предшествующей науки?
   «Чтобы не нарушить, не расстроить, чтобы не разрушить, а построить…» (В. Высоцкий)
   Существует заблуждение, будто ценность научного открытия измеряется тем, насколько оно ниспровергает науку.
   Значительность научной революции в ее созидательных, а не разрушительных возможностях, в том, какой толчок она дает развитию науки, какие новые области открывает.
   Очень часто при этом основные представления предшествующей науки остаются неизменными. Бескровный переворот произошел в астрофизике с появлением радиоастрономии; в теоретической физике - с открытием «графиков Фейнмана» - способа получать соотношения между физическими величинами с помощью рисунков, которые расшифровываются в конце работы.
   Физика элементарных частиц категорически изменилась за последнее время без смены основных принципов физического описания.
   Но даже коренная научная революция не отменяет, а только пересматривает, переосмысливает прежние соотношения и устанавливает границы их применимости. В науке существует «принцип соответствия» - новая теория должна переходить в старую в тех условиях, при которых старая была установлена.
   Стабильность науки - важнейшее ее свойство, иначе приходилось бы начинать все заново после каждого открытия.
   Физики отказались от представления о тепле как о жидкости - теплороде, - перетекающей от нагретого тела к холодному, после того как была установлена эквивалентность механической и тепловой энергии («механический эквивалент тепла»). Но законы теплопроводности, установленные во времена теплорода, не изменились.
   В начале XX века атомистическая теория вещества стала доказанной и общепризнанной истиной, но все соотношения «макроскопических» наук - термодинамики, гидродинамики, теории упругости - остались без изменений. Эти науки продолжали предсказывать новые явления, выяснились лишь границы их применимости.
   Тогда же, в начале века, произошел переворот в наших взглядах на пространство, время и тяготение, но наука «малых скоростей» сохранилась не только в смысле принципа соответствия - она продолжала развиваться, и практически вся современная техника - ЭВМ, телевидение, радио, космические полеты, современные химия и биология - обходится ньютоновыми представлениями о пространстве и времени.
   Хороший пример переплетения старых и новых идей дает история эфира (см. с. 198).
   В XIX веке его наделяли сложнейшими противоречивыми свойствами для объяснения законов распространения света в пустоте и в движущихся телах. Теория относительности разрешила все противоречия эфира. Более того - исчезла необходимость в этом понятии. Однако позже выяснилось, что пустота - бывший эфир - носитель не только электромагнитных волн; в ней происходят непрерывные колебания электромагнитного поля («нулевые колебания»), рождаются и исчезают электроны и позитроны, протоны и антипротоны и вообще все элементарные частицы. Если сталкиваются, скажем, два протона, эти мерцающие («виртуальные») частицы могут сделаться реальными - из «пустоты» рождается сноп частиц.
   Пустота оказалась очень сложным физическим объектом. По существу, физики вернулись к понятию эфира, но уже без противоречий. Старое понятие не было взято из архива - оно возникло заново в процессе развития науки. Новый эфир называют «вакуумом» или «физической пустотой».
   История эфира на этом не закончилась.
   Теория относительности строится на предположении, что в нашем мире не существует выделенной системы координат и поэтому не существует абсолютной скорости, мы наблюдаем только относительные движения. Но с открытием реликтового излучения такая система координат появилась - это система, в которой кванты реликтового излучения распределены по скоростям сферически симметрично, как частицы газа в неподвижном ящике. (Реликтовое излучение - это электромагнитные волны, возникшие примерно 20 миллиардов лет назад, когда Вселенная была горячей. Исследуя реликтовое излучение, можно увидеть Вселенную, какой она была на ранних стадиях развития.) В «новом эфире» есть абсолютная скорость, тем не менее следствия теории относительности сохраняются с колоссальной точностью в согласии с принципом соответствия.
   История эфира продолжается.
   Применение квантовой механики к теории тяготения привело к важнейшему результату - кроме нулевых колебаний элементарных частиц, о которых мы только что говорили, в вакууме существуют нулевые колебания поля тяготения. Но, как следует из теории тяготения Эйнштейна, изменение гравитационного поля приводит к изменению геометрических свойств пространства. Отношение длины окружности к радиусу колеблется около значения 2л, соответствующего евклидовой геометрии. Для больших радиусов эти колебания практически не наблюдаемы, но чем меньше масштаб расстояний, тем больше амплитуда «дрожаний» геометрии вакуума.
   В последнее время физики-теоретики пытаются выяснить взаимное влияние этих колебаний геометрических свойств и нулевых колебаний элементарных частиц. Эйнштейн надеялся объединить тяготение и электродинамику, а такая теория пошла бы гораздо дальше - она означала бы «сверхобъединение» всех известных физических взаимодействий.
   Романтика и поэзия науки не в разрушении старого, а в переплетении и проникновении друг в друга новых и прежних идей. В науке, как и в искусстве, новое не отменяет красоты старого, а дополняет ее.
   Итак, наука оберегает свои завоевания. Но как устанавливаются научные истины? Один из важнейших методов - проверка теоретических предсказаний опытом.
   «Штатские люди любят судить о предметах военных, даже фельдмаршальских, а люди с инженерным
   образованием судят больше о философии и политической экономии» (Ф. Достоевский)
   «Эксперимент есть эксперимент, даже если его поставили журналисты», - было сказано в одном из наших журналов по поводу встречи редакции с экстрасенсом, с «медиумом», как сказали бы сто лет назад. Я не встретил ни одного экспериментатора, который бы не рассмеялся, услышав эту фразу. Самое тонкое и сложное - постановка недвусмысленного эксперимента, и здесь необходим строжайший профессионализм.
   Чтобы установить истину, нужно поставить научный эксперимент, то есть эксперимент, проведенный специалистами, дающий повторяемые результаты и подтвержденный независимыми опытами других исследователей. Это в равной мере относится ко всем опытным наукам - к физике, химии, астрономии, биологии, психологии… В астрономии вместо слова «эксперимент» (словарь определяет его так: проба, опыт, проверка гипотезы) принято употреблять слово «наблюдение», подчеркивающее невозможность изменить ход событий по желанию экспериментатора, но суть остается - астрономический эксперимент состоит в том, что место, время и способ наблюдения отбираются так, чтобы получить ответ на поставленный вопрос. Впрочем, в наши дни с помощью спутников стали возможны астрономические эксперименты и в обычном смысле слова.
   Даже в математике при поисках доказательств
   делают правдоподобные предположения, которые предстоит проверить, то есть ставят эксперимент.
   В опытных науках процесс доказательства никогда не прекращается, поскольку постоянно расширяются границы, в которых проверяется правильность предположения.
   Вот пример астрономического эксперимента. Согласно классической, ньютоновой механике планеты должны двигаться по эллипсам, причем оси эллипса неподвижны в пространстве. Это было проверено многочисленными наблюдениями траектории Меркурия. Было доказано, что предсказание теории Ньютона выполняется с колоссальной точностью: орбита Меркурия хотя и поворачивается, но крайне медленно - один оборот за три миллиона лет. Одновременно с блестящим подтверждением предсказаний классической механики возник и парадокс - надо было объяснить это малое, но принципиально важное отклонение от ньютоновой теории, согласно которой орбита строго неподвижна. Объяснение появилось только после создания теории тяготения (общей теории относительности), которая позволила вычислить угловую скорость вращения орбиты, выразив ее через постоянную тяготения, массу Солнца и скорость света. Это один из удивительных примеров красоты науки ¦- теория связала воедино такие разнородные явления, как тяготение и распространение света.
   Даже в физике, химии и астрономии не всегда удается повторить условия эксперимента. Как быть с биологией или психологией, где объекты отличаются друг от друга? Можно ли там требовать повторяемости и воспроизводимости результатов? Да, можно и нужно - без этого нет науки! Разумеется, здесь гораздо труднее поставить недвусмысленный эксперимент, но зато не требуется той неслыханной точности, которая необходима была, чтобы обнаружить астрономические отклонения от классической механики. В этих науках, по крайней мере на их современной стадии, часто довольствуются не количественными, а качественными результатами.
   Биологические объекты, конечно, не столь одинаковы, как молекулы, но общность биологических соотношений поразительна! Эта общность, сходство соотношений позволяет установить закономерности и является основой науки. Законы генетики были открыты Грегором Менделем на горохе и Томасом Морганом на дрозофиле, а оказались применимыми ко множеству биологических объектов.
   Даже разброс свойств может быть объектом научного, то есть повторяемого, эксперимента. Можно изучать статистические характеристики объектов, измеряя вероятность появления того или иного признака.
   Нужно сказать, что любой тонкий эксперимент, к какой бы области науки он ни относился, плохо повторяем. В физике, когда изучаемый эффект сравним с фоном мешающих явлений, приходится делать многократные измерения и «набирать статистику», чтобы результат стал достаточно убедительным.
   Большинство заблуждений и суеверий возникает как следствие поспешных выводов из неубедительных экспериментов. Но что считать убедительным? Надо ли доверять тому, что видишь своими глазами?
   «Я видел утку и лису, Что пироги пекли в лесу, Как медвежонок туфли мерил И как дурак всему поверил»
   (Английская детская песенка)
   Что, если вы увидите своими глазами, как экстрасенс летает по комнате? Я бы прежде всего постарался исключить наиболее правдоподобные объяснения - ловкий фокус, галлюцинация, гипноз, обман зрения. Все это несравненно более вероятно, чем нарушение хорошо проверенных законов тяготения. Увидев неправдоподобное, протрите очки!
   Стакан может внезапно подпрыгнуть на метр под действием ударов молекул стола, которые случайно задвигались в одном направлении. Вероятность этого ничтожно мала. Когда замечательного польского физика-теоретика Мариана Смолуховского спросили, что бы он сказал в этом случае, он ответил: «Я сказал бы: несравненно более вероятно, что я ошибся».
   Удивительная доверчивость, с которой люди относятся к поразительным рассказам, основана на свойственном человеческой психике стремлении столкнуться с необычным. Мы применяем разные критерии здравого смысла в практической жизни и в оценке правдоподобности чуда. Все удивляются тому, что показывает Ако-пян, но никто не считает это чудом. Тот же фокус, проделанный экстрасенсом в полутемной комнате, объявляется сверхъестественным событием.
   Есть предметы, которые ведут полумистическое существование: ножницы, авторучки, книги… Они мгновенно исчезают из поля зрения. И все-таки нет оснований считать, что мы сталкиваемся со сверхъестественными силами - рано или поздно пропажа находится.
   Если у нас пропадет книга, нам и в голову не придет, что она перешла в другое состояние, что ее силой духа увел библиофил-экстрасенс или позаимствовал любознательный инопланетянин. Мы ни за что не поверим, что ваза разбилась «сама», но готовы поверить, что можно согнуть вилку силой духа. Даже дети сейчас менее легковерны, и Карлсону, который живет на крыше, пришлось обзавестись мотором с пропеллером. Взрослый не верит в Карлсона, но верит в инопланетянина, который одной рукой переворачивает трактор.
   В спорах о летающих тарелках, управляемых гуманоидами, существует постоянная передержка: адепты инопланетян обвиняют ученых в том, что они будто бы отрицают само существование НЛО. Но специалисты и не думают с этим спорить, они лишь утверждают, что летающие тарелки - это явление атмосферной оптики, атмосферного электричества и что пока нет ни малейших оснований считать их космическими кораблями.
   А как быть с показаниями очевидцев?
   Есть случаи, когда без них нельзя обойтись. Шаровая молния не получена в лаборатории, и пока нет научных экспериментов, изучающих ее свойства. Несмотря на то что очевидцы - ненадежный источник информации, мы убеждены, что шаровая молния существует: свидетельства сходятся. Что же касается ее свойств, то они выяснятся только после научно поставленных экспериментов.
   Описания инопланетян не менее разнообразны, чем описания привидений. Говорят, будто, по американской статистике, женщины, как правило, встречают гуманоидов с воинственной планеты Марс, а мужчины - гуманоидок со сладостной Венеры.
   Юристы хорошо знают, как неопределенны показания очевидцев. Вот что говорится о Воланде в романе Михаила Булгакова «Мастер и Маргарита»: «Впоследствии, когда, откровенно говоря, было уже поздно, разные учреждения представили свои сводки с описанием этого человека. Сличение их не может не вызвать изумления. Так, в первой из них сказано, что человек этот был маленького роста, зубы имел золотые, хромал на правую ногу. Во второй - что человек был роста громадного, коронки имел платиновые, хромал на левую ногу. Третья лаконически сообщает, что особых примет у человека не было».