Есть, однако, у них решающее преимущество перед "предшественниками" "конструкторами" лошади.
   Преимущество это - возможность непрерывного увеличения мощности объекта усовершенствования...
   Впрочем, начать следовало бы не с преимуществ, а с недостатков. Вот, например, коэффициент полезного действия. Лошадь и вообще живая мышца в этом отношении образец для подражания. Их КПД - 90-94 процента!
   Сейчас живые двигатели, несмотря ни на что, обслуживают большую часть человечества, чем механические.
   Однако к XXI веку моторизация планеты будет, безусловно, окончена: слишком велик расход кормов на содержание "живого тягла", слишком много земли требуется для их выращивания и слишком мала производительность труда. Можем ли мы, однако, заменив лошадь трактором, подтянуть КПД его двигателя до "лошадиного уровня"?
   С 1936 года, когда в нашей стране началась сплошная дизелизация тракторов (перевод с керосиновых карбюраторных двигателей на дизель), и до 1946 года расход горючего удалось снизить с 230 до 195 граммов на одну лошадиную силу в час. В последующие 10 лет указанный расход уменьшился только на 15 граммов, а с 1956 по 1976 он и вовсе стал незаметным.
   Совершенно очевидно: это говорит о том, что мы близки к "порогу возможностей" дизеля. В первом поршневом двигателе, созданном в 1867 году немецким инженером Н. Отто, только 15 процентов химической энергии топлива превращалось в механическую работу.
   В современных тракторных двигателях КПД возрос до 34 процентов, но очень сомнительно, чтобы когда-нибудь он превысил 35-40. И действительно, разве получать механическое движение путем промежуточного превращения химической энергии топлива в тепло не расточительно?! Добавьте к этому, что топливо в двигателе внутреннего сгорания фактически не горит, а взрывается. Вспомните, как выглядит этот цикл: всасывание - сжатие - взрыв - расширение...
   Ну и, кроме того, будущее двигателя внутреннего сгорания омрачают еще одни родственные связи - с паровым двигателем.
   В 1780 году известный английский изобретатель - он же и один из первых фабрикантов паровых двигателей Д. Уатт - попал в затруднительное положение.
   Пока его машины использовались при откачке воды из шахт, привод, обеспечивающий возвратно-поступательное перемещение, был очень удобен: именно такое движение совершали длинные штанги и поршни тогдашних водяных насосов (благополучно, между прочим, доживших до наших дней). Паровые двигатели Уатта легко справлялись с этой задачей: ведь и поршни этих машин движутся точно так же... Но вот их начали заказывать текстильщики и металлисты. И сразу - рекламации:
   для станков более удобно непрерывное вращение.
   Уатт прекрасно знал, как превратить возвратно-поступательное движение поршня во вращение махового колеса. Для этого следовало применить давно всем знакомую конструкцию кривошипно-шатунного механизма.
   Но была здесь одна неприятная загвоздка: указанный механизм ухитрился запатентовать другой известный изобретатель того времени - француз А. Пикар. Уатту же вовсе не хотелось платить за право использования патента...
   Нам неизвестно, как обогатил Пикара его патент.
   Зато совершенно определенно можно сказать: получи он все причитающееся ему по закону в наше время, слава Крезов и Ротшильдов стала бы совсем негромкой...
   Уж очень совершенен и универсален кривошипно-шатунный механизм!
   Вот уже около 200 лет он остается незаменимым во всех поршневых двигателях (автомобильных, тракторных, судовых, железнодорожных и пр. и пр.). Так что ничего удивительного в родстве "древнего" паровика и двигателя внутреннего сгорания нет.
   Основной рабочий орган этих двигателей - цилиндр с перемещающимся внутри него поршнем. Поршень в цилиндре движется возвратно-поступательно. Это значит, что в крайних точках он на мгновение останавливается, прежде чем начать движение в обратную сторону. Прерывистость, "импульсивность" далеко не лучший способ движения. Именно поэтому в борьбе за скорость и экономичность весла были заменены колесными лопастями, а эти последние винтом. Прерывистость движения приводит к возникновению инерционных нагрузок, снижению полезной отдачи и коэффициента полезного действия.
   Стряхнуть груз "паровых традиций" с двигателя внутреннего сгорания, заменить возвратно-поступательное движение его поршней на вращение рабочего ротора пытались очень давно. Собственно вращение, как начальный момент машины, исходная точка ее движения, использовалось куда чаще, чем движение ползуна: вспомните о разных видах мельниц, водяных колесах и многих других устройствах, известных человеку задолго до того, как он познакомился с паровозом. Однако создать роторно-поршневой двигатель внутреннего сгорания оказалось делом далеко не простым. Первым достиг успеха Ф. Ванкель, по имени которого в соответствии с традицией и окрестили новый двигатель.
   Первый ванкель заработал в 1957 году. За прошедшие с этого времени 20 лет инженеры успели полностью "выяснить с ним отношения".
   Отказ от "кривошипно-шатунной древности" и переход к выполненному в форме сложной треугольной кривой - гипотрохоиды - поршню, вращающемуся в очерченном по еще более сложной эпитрохоиде цилиндре, принес моторостроителям одновременно и надежды -и разочарования.
   Ванкель имеет вдвое меньший вес, чем дизель при одинаковой мощности, проще и компактнее. По-видимому, у ванкеля больше шансов стать "чистым", то есть меньше загрязнять среду, и, пожалуй, он может оказаться более дешевым. Зато ванкель съедает на 10-15 процентов больше топлива и масла. В эпоху энергетического кризиса это очень крупный недостаток, и трудно сказать, удастся ли его снять в дальнейшем.
   Однако Ванкель был не первым, кто сделал вращение основным идейным принципом машины: Герои Александрийский опередил его на 2 тысячи лет. Как известно, именно он построил эолипил - прообраз современной турбины...
   Сейчас газотурбинная установка считается одним из основных претендентов на звание "ведущего" транспортного двигателя. Объясняется это не столько заменой кривошипно-шатунного механизма вращающимся ротором, сколько малочувствительностью генераторов газа к качеству топлива, уравновешенностью всех движущихся частей, простотой устройства и низким весом. Помимо этого, коэффициент полезного действия турбины может достигать 40 процентов и даже немного более.
   И все же это предел. Чтобы его перешагнуть, нужны принципиально новые решения, например, связанные с перспективой использования электроэнергии.
   Мечта использовать электроэнергию для передвижения по планете преследовала человека с того самого времени, как он познакомился с аккумуляторными батареями. Электропривод для мобильных машин привлекает бесшумностью, безвредностью и еще многими другими "без", не присущими, к сожалению, тепловым двигателям.
   Сейчас, например, трактору необходимо иметь сложнейшие механические передачи, коробки скоростей, карданные и обычные валы - и все это только ради передачи движения на собственные колеса и к рабочим органам агрегатируемой с трактором машины. Сложно, дорого, ненадежно! А чтобы передать электроэнергию от ее источника (генератора) к двигателю (электромотору), достаточно обычного гибкого кабеля. Электромотор может быть буквально "встроен" в ступицу ходового колеса, посажен на вал молотильного аппарата комбайна, он без всяких передач способен крутить мощные вентиляторы опыливателей, насосы дождевальных машин...
   Удивительно: история электромобильных установок почти так же стара, как и история автомобиля и трактора! Она начинается тоже в 80-х годах прошлого cxoj летия, когда инженер А. Романов создал свой первый электробус. Питался он от аккумуляторов его же конструкции.
   За прошедшие 100 лет развития электропривода мобильных машин сделано немало, особенно в области совершенствования аккумуляторов. В результате количество получаемой энергии на единицу их веса увеличилось в 5 раз. И все же по удельной энергоемкости аккумуляторам еще далеко до обычного двигателя, о чем свидетельствует предпринятая англичанином П. Олбрайтом попытка решить спор между этими источниками энергии крайними мерами. Он предложил выбросить аккумуляторные коробки, заменив их... автомобильным кузовом, между двойными стенками которого заливается электролит.
   "Электромобильный бум" только начался. Однако результаты уже налицо: сейчас серийный (!) электромобиль грузоподъемностью до одной тонны вполне конкурентоспособен по отношению к своим изрыгающим дым городским родственникам. А вот что касается более тяжелых грузовиков и тем более тракторов, то здесь прогресса мало. Ставить на них аккумуляторы - затея пока бесполезная.
   Это обстоятельство было очевидно уже очень давно.
   И потому история электротрактора начинается с передвижной электролебедки, такой же передвижной электростанции или подстанции и огромных барабанов с электрокабелями.
   Электролебедки оказались нежизненными, и от них быстро отказались: используемая в них канатная тяга далеко не лучший и, главное, не универсальный вариант механизации сельского хозяйства. Начались попытки тащить кабель за трактором, установив на нем сматывающуюся и разматывающуюся кабель-катушку - операция не слишком легкая и к тому же небезопасная.
   Работали над ней немало, а результаты чуть видны.
   В итоге пришли к выводу, что электротрактор станет выгодным, лишь когда будет разработан способ передачи энергии без проводов. Для многих энтузиастов этот вывод прозвучал как "никогда", и работы над электротрактором были приторможены.
   А между тем появился новый вариант...
   Мы уже говорили, что один из недостатков двигателя внутреннего сгорания - взрывной характер сжигания топлива. Чем "медленнее" горение, тем полнее сгорание топлива. Двигатель становится более экономичным и менее вредным...
   Пожалуй, "предельно медленны" как источники горения топливные элементы. Горючее здесь не взрывается, а горит. Его химическая энергия сразу же трансформируется в электрическую, без "промежуточной инстанции". И это позволяет получать 70-процентный КПД.
   Топливные элементы известны давно. Немало труда вложил в их совершенствование профессор О. Давтян, опубликовавший первую посвященную им монографию еще в 1947 году. Тогда у него не оказалось последователей: дороговизна изготавливаемых из благородных металлов электродов, необходимых для этих элементов, отпугнула потребителей. Но вот началась эпоха полетов в космос... Космический корабль не трактор, здесь решающий критерий - надежность и удобство. Топливные элементы отвечали этим требованиям, и ими принялись усиленно заниматься. В 60-х годах появились первые тракторы на топливных элементах. Пока что они дороги, но это пока...
   Очень сложно пока использовать и атомную энергию. Так что сельскохозяйственный трактор с атомным двигателем еще не проектируется. Однако кто знает, что сулит будущее. Мнения прогнозистов в этом отношении расходятся. Согласны они в одном: по коэффициенту полезного действия своего двигателя трактор лошадь никогда не обскачет, разве что появятся некие бионические двигатели. Но это уж из области фантастики.
   По мощности трактор далеко перегнал лошадь.
   С 1920 по 1945 год средняя мощность тракторов американского производства возросла с 17,5 до 22,5 лошадиной силы. В следующие 15 лет опл выросла на 20 лошадиных сил и составила 43, а в 1975 году приблизилась к 90 лошадиным силам. Приблизительно так же быстро росла мощность и советских тракторов.
   Похоже, что во всех промышленно развитых странах к началу 80-х годов средняя мощность тракторов возрастет до 80-110 лошадиных сил. Появятся (и уже появились) буквально тракторные геркулесы: сейчас советский К-700, например, имеет двигатель, мощность которого превышает 200, а Т-330 Чебоксарского тракторного завода - 300 лошадиных сил, харьковчанин Т-150 располагает 150 лошадиными силами. Уже созданы первые образцы 500-сильных тракторов...
   Чем больше мощность двигателя, тем относительно меньше затраты на его эксплуатацию, кроме того,, более мощные трактора позволяют производить сельскохозяйственные работы в более сжатые сроки. А ведь давно известно, что в земледелии "день год кормит", и что "на день раньше посеешь - на неделю раньше соберешь".
   Конечно, мощность трактора беспрерывно расти не может. С повышением ее до 300 сил ему уже не хватает четырех колес. Для реализации такой мощности (обеспечения соответствующей ей силы тяги) нужны все шестеро колес, то есть три оси. Ширина колес тоже должна быть увеличена. В результате трактор очень сильно "полнеет в боках".
   Существенно усложняются и условия управления:
   трактор становится менее маневренным, на нем труднее двигаться по пересеченной местности. Излишне солидный вес, наконец, препятствует развитию высоких скоростей движения, а увеличение их - одна из главных тенденций развития сельскохозяйственной техники.
   Итак, у трактора, как и у лошади, есть "порог мощности". Следовательно, существует и некоторый пропорциональный "предел энергонасыщения" гектара, обусловленный основным средством дополнительных "энергетических вливаний" - трактором. Продолжая эту мысль, нетрудно прийти к выводу, что использование тракторной энергетики в сельском хозяйстве приводит с течением времени к "порогу продуктивности" этой сферы производства.
   Многие специалисты считают широкое распространение трактора мощностью более 300 лошадиных сил экономически неоправданным; другие, что "порог" можно поднять до 500; третьи уверены, что пределы мощности тракторов должны устанавливаться... правилами уличного движения. В ФРГ, например, этими правилами запрещена эксплуатация тракторов, повышенная мощность которых приводит к необходимости увеличить их габарит по ширине более 3,5 метра.
   - И правильно сделали! А то вот на днях я видел один такой трактор на нашей улице - прямо чудовище какое-то! От него не то что лошади грузовики шарахаются! Как только земля держит?!
   - А вы не обратили внимание на его колеса?
   - Колеса как колеса...
   - Не совсем так: они должны быть не круглые.
   - Ну, еще бы! Такой трактор да на обычных колесах. Ему квадратные подавай!
   Несмотря на существенное уменьшение веса трактора на одну лошадиную силу, развиваемую им, абсолютный вес его непрерывно растет. Это вызвано увеличением мощности, реализовать которую можно, только увеличив так называемый сцепной вес.
   Вам никогда не приходилось задумываться, почему мы ходим или почему едет машина, везя вас из города на экскурсию. Впрочем, тут и размышлять не о чем:
   движение обеспечивается сцеплением с почвой ботинок или шин. Чтобы оно было лучше, на них наносят "рисунок" из выступов - впадин. В фантастическом "мире без трения" движение невозможно.
   В реальном мире трактор сможет развить тем большую мощность тяги, чем лучше удается ему упереться в землю. Слишком легким в связи с этим он быть никак не может. В этом-то и заключается основное противоречие между главным энергосредством земледелия и землей, от которой трактору приходится отталкиваться и которую одновременно он обрабатывает. Некруглые (и даже квадратные) колеса - свидетельство неустанной борьбы конструктора с этим противоречием...
   Академик ВАСХНИЛ В. Желиговский любил шутить.
   Один из разделов читаемого им в Московском институте инженеров сельскохозяйственного производства курса он обычно начинал так:
   "Сегодня мы приступаем к изучению "околесицы".
   И, повернувшись к доске, привычно-округлым движением руки выводил на ней несколько почти идеальных окружностей...
   Наука "околесица", которую преподавал маститый ученый, - раздел механики, изучающий качение колеса. Раздел важный, поскольку, как известно, человек с некоторого времени предпочитает опираться не на собственный, вполне естественный стопоходящий аппарат, а на колеса. "Неестественность" этого устройства совершенно очевидна: ведь в окружающей наших предков природе они никак и нигде не могли "подсмотреть" ничего подобного. Неудивительно поэтому, что истории науки известны "теории" космического или даже "мистического" происхождения колеса, которое вначале было будто бы не средством передвижения, а предметом культа.
   Действительно, перед колесами и колесницами преклонялись исстари, но в эпоху сплошной автомобилизации иена "религии колеса" стала огромной: сейчас человечество расходует "на колеса" примерно 30 процентов всего добываемого топлива. Так что "околесица" - занятие совсем не праздное.
   Когда вам хочется изобразить катящееся колесо, вы рисуете циркулем окружность, касательную к горизонтальной прямой - дороге. "Идеальное" колесо соприкасается с "идеальной" дорогой в одной-единственнои точке. На практике такого не бывает. Чем мягче обод колеса и дорога, тем больше "пятно контакта" между ними, тем сильнее точка касания расплывается в площадку.
   Плохо это или хорошо? Мягкая дорога - нелегкая езда: это известно всем. Потому что жесткое колесо продавливает в мягком грунте колею и таким образом утопает ниже уровня той прямой, которую вы изобразили на листе бумаги. Легко сообразить, что в таком случае колесу приходится непрерывно катиться в гору: оно стремится вылезти из продавленного им ущелья вверх, но вместо этого образует новую возвышенность... Катится колесо, а впереди "движется" гора.
   Естественно, что непрерывно взбираться в гору труднее, чем катиться по идеально ровной поверхности.
   Однако этого мало. Если теперь вы попробуете нарисовать колесо, образующее колею, то убедитесь, что эта последняя напоминает не только гору, но и тормозную колодку, охватывающую часть обода. Сходство не только формальное: колея действительно притормаживает колесо и заставляет его "буксовать".
   Все ведущие, то есть движущие машину, колеса обязательно немного буксуют. Это означает, что длина пути, пройденного таким колесом за один оборот, всегда хотя бы немного меньше длины окружности его обода.
   Предельный случай буксования у водителей определяется коротким и выразительным: "Все: сели!"
   Чем тяжелее колесная машина, тем больше колея, а значит, больше буксование и меньше шансов сдвинуться с места. В этом случае можно сколько угодно увеличивать мощность двигателя: дело от этого "не сдвигается и на шаг".
   Вначале выход искали, увеличивая диаметр колеса:
   чем он больше, тем меньше колея. Знали об этом давно: огромные колеса среднеазиатской арбы - неплохое средство для движения по песчаной дороге. Но всему есть предел: не делать же десятиметровых колес!
   Вот тут-то и вспомнили, что колесо, снабженное зубцами, - шестерня, катящаяся по другой шестерне или по зубчатой прямой рейке, никогда не буксует. Превратить опорное колесо трактора в зубчатые несложно: на стальные ободья нужно наклепать ребра-почвозацепы.
   При вращении они вминаются в землю, превращая ее в подобие рейки. Конечно, земля не металл, идеальной зубчатой рейки из нее не получается. Поэтому полностью буксования не избежать.
   Хуже, однако, другое: использование почвозацепов приводит к разрушению почвы. Из какой бы прочной стали ни делались шестерни, они все равно изнашиваются. Износ - следствие давления зубьев друг на друга и их относительного проскальзывания - трения. То же и при качении колеса с почвозацепами. В местах, где они оставляют на земле свои следы, почва становится плотлее, а значит, хуже пропускает влагу и воздух.
   Чем больше давление, тем выше силы трения. Истирание почвы, превращение крупных ее комьев в пыль - это эрозия. Итак, жесткое колесо с почвозацепами, лишь отчасти решив задачу проходимости, вызвало к жизни проблему еще более сложную.
   Выход, казалось бы, нашли, когда была изобретена гусеница. Кстати говоря, это ходовое устройство лишь внешне напоминает живую гусеницу, которая перемещается за счет последовательных сокращений тела. Такому способу движения машины еще не научились.
   Зато механические гусеницы подражают живым в другом - в равномерном распределении своего веса по опорной поверхности. Благодаря этому тяжелая листовертка легко передвигается по зыбкому листу, а трактор - по мягкой почве.
   В начале 30-х годов казалось, что все трактора должны быть гусеничными. Широкие опорные поверхности в сочетании с относительно небольшими почвозацепами позволили резко увеличить проходимость по сравнению с колесным ходом или повысить вес, поставив более мощный двигатель.
   Однако вскоре убедились, что гусеничный трактор имеет и минусы. Первый из них - сложность конструкции ходовой части, а значит, и большая сложность изготовления. Кроме того, уже в 40-х юдах, когда доброму крестьянскому коню было предложено окончательно уйти на пенсию, стало очевидно, что заменить его можно лишь в том случае, если трактор станет не только основной тягловой, но и транспортной силой. А ведь гусеничный ход для перевозок мало приспособлен да и скорость дает низкую. К тому времени сельский пейзаж украсился новой деталью - асфальтовыми дорогами.
   Гусеничному трактору пришлось сползти на обочину, колесный же остался на шоссе, так как к тому времени получил мягкую обувь.
   Первый патент на пневматическое колесо был выдан в США в 1905 году. Для его изобретателя Г. Марона, жителя небольшого города Милуоки в штате Висконсин, это колесо, безусловно, оказалось "колесом счастья". Перспективность пневмошин оценили сразу и уже через несколько лет после выдачи патента их ставили на всех серийно выпускавшихся автомобилях. Первые трактора на пневматических колесах были выпущены фирмами "Ханомаг" и "Ланц"
   в 1931 году.
   Сейчас не только трактор, но и практически все сельскохозяйственные машины движутся не на жестких, а на пневматических колесах. А это колесо уже как бы и не совсем колесо, хотя, конечно, еще не гусеница...
   Эластичный, заполненный воздухом обод колеса под действием веса машины сплющивается в нижней части.
   Колесо теряет идеально круглую форму, но зато увеличивает пятно контакта с почвой. Это улучшает проходимость и снижает разрушающее воздействие на почву, тем более что пневматическое колесо лишено жестких почвозацепов. Их место занимают эластичные выступы на покрышках.
   Конечно, колесо, обуто оно в резину или нет, остается колесом, которому "на роду написано" буксовать.
   Поэтому по мере развития резинотехнической промышленности появились пневмоколеса ненормально большого диаметра и ширины. После того как на одну ось их начали сажать не по два, а по четыре, а то и больше (чтобы повысить проходимость и сцепление с почвой), трактора из-за колес не видно стало. Слишком широкий трактор не удобен не только на улицах, он не может работать в междурядьях пропашных культур, кукурузы, хлопка, картофеля...
   Кроме того, основную проблему пневмоколеса полностью все же не решили: давление их на почву по поверхности контакта распределяется неравномерно. Разделив вес трактора на суммарную площадь соприкосновения пневмоколес с почвой, мы получаем только среднее давление. Если оно, к примеру, равно 3 килограммам на квадратный сантиметр, то это означает, что некоторые участки почвы под колесом испытывают в тричетыре раза большие давления. Особенно отличаются замеры "в статике" от замеров "в динамике": при быстром движении нагрузки намного превышают статические.
   Старая чешская пословица утверждает, ч го "следы хозяина поле удобряют". Это верно только в переносном смысле слова. Давление ноги человека на землю, достигающее 0,5-0,6 килограмма на квадратный сантиметр, а тем более лошади (в 2 раза большее), сказывается на ее плодородии отрицательно. Это было замечено задолго до эпохи тракторизации.
   В 1903 году русский журнал "Автомобиль" опубликовал статью В. Лебедева "Автомобиль или лошадь?".
   Молодость журнала (он издавался всего второй год)
   определила его оптимистический тон. Статья отвечала очень решительно: "Автомобиль!" Лошадь же предавалась анафеме: "Нет худшего, чем лошадь, врага и раз-, рушителя мостовой. Ее четыре подковы раздробляют почву, крошат асфальт и открывают пути разрушающему действию дождя. Не преувеличивая, можно сказать, что государство сбережет миллионы на постройках и ремонте дорог и мостов, если лошадь отойдет в область истории и ее место заступит механический экипаж на резиновых шинах".
   Давление на почву ног человека и лошади и нынче и 100 лет назад было одним и тем же - куда большим, чем у трактора и "шлейфа" машин к нему. И тем не менее оптимистический прогноз не оправдался: механиче-.
   ский сельскохозяйственный привод увеличил интенсивность и частоту воздействия на землю. Сейчас, когда следы от тракторов, комбайнов, самоходных машин и автомобилей перекрывают практически 100 процентов посевной площади, проблема уплотнения стала особенно серьезной.
   Исследования американских специалистов показали, что уплотнение почв в основных зерносеющих районах США снижает урожай хлебов на 8 - 13 процентов.
   Во многих странах, в том числе и СССР, были поставлены специальные опыты. Они показали, что уплотнение пылевато-иловатого суглинка трактором, колеса которого давят на землю с силой 2 килограмма на квадратный сантиметр, что повышает объемный вес почвы всего на 0,3 грамма в кубическом сантиметре, снижает урожайность картофеля более чем на 50 процентов.