К сожалению, по ряду причин еще ограничены масштабы использования атомных реакторов, производящих горячую воду и пар. Они экономичны лишь при довольно большой мощности, не меньшей, чем 400-500 тысяч киловатт. А такую нагрузку не всегда удается им подобрать. Во многих районах страны потребители тепла слабо сконцентрированы, и к ним нужно тянуть очень длинные теплотрассы. При этом атомные установки становятся невыгодными, особенно когда дело касается снабжения потребителей паром, транспорт которого на большие расстояния и вовсе затруднителен.
   Конечно, сейчас очень много районов с такой концентрацией тепловых нагрузок, при которых ACT эффективны. Но тем не менее важна и задача обеспечения теплом рассредоточенных потребителей, например сельскохозяйственных. Задачу обеспечения промышленных предприятий паром от атомных реакторов хотелось бы видеть решенной уже сейчас. Какие пути ведут к этому?
   Связаны они с развитием высокотемпературной атомной энергетики. Многочисленные предприятия металлургической, химической промышленности нуждаются в тепле при температуре 500-1000 градусов. Производство восстановительных газов, используемых при получении железа из руды, преобразование природного газа в аммиак, производство удобрений и многие другие процессы могут быть проведены, только если ядерные реакторы начнут вырабатывать тепло при температуре около 1000 градусов. Проекты таких реакторов уже есть. Более того: один из зарубежных экспериментальных реакторов в течение ряда лет работал при температуре теплоносителя на выходе из активной зоны, равной 950 градусам. Вот краткая характеристика одного из таких опытно-промышленньпх реакторов, разрабатываемых сейчас в нашей стране.
   В качестве теплоносителя в нем используется гелий, инертность которого обеспечивает работу различных его конструкций при довольно высокой температуре. Пожалуй, самое оригинальное в этом реакторе - это тепловыделяющие элементы - шарики из графита, внутри которых размещено ядерное топливо в виде двуокиси урана. Такое использование графита и урана позволило достичь высоких температур гелия. В активную зону реактора, выполненного в виде цилиндра из графита, засыпаются, словно горох в банку, сферические тепловыделяющие элементы. Там они раскаляются до 1200- 1300 градусов и разогревают гелий до 1000 градусов.
   Затем перекачиваемый газодувками гелий направляется в теплообменники, где и отдает свое тепло технологическому процессу.
   Применительно к проектируемому в СССР реактору химиками разрабатывается процесс паровой конверсии природного газа для производства из него водорода, а затем аммиака. На существующих обычных заводах для проведения этого процесса энергию получают, сжигая тот же природный газ. Ядерный же реактор позволяет сэкономить почти половину этого ценного сырья.
   На химическом комбинате с ядерным реактором природный газ будет использоваться только как химическое сырье, но не как топливо.
   Кстати, именно совмещение процесса паровой конверсии с ядерным реактором может решить проблему обеспечения теплом и паром рассредоточенных потребителей энергии. Вот суть этого способа. Соединяя метан и водяной" пар, с затратой, конечно, тепла от ядерного реактора, получим смесь водорода и окиси углерода. В охлажденном виде эта смесь передается по газопроводу к потребителю. На месте, на специальном катализаторе при температуре 400-600 градусов, проводится обратная реакция - соединение окиси углерода и водорода. При этой реакции выделяется энергия и восстанавливаются исходные вещества, то есть метан и вода. Затем цикл повторяется. Так тепло от реактора в химически связанном виде может быть передано на любое необходимое расстояние без потерь ценных продуктов.
   Мы затронули лишь некоторые отрасли народного хозяйства, где в тех или иных масштабах может быть использована энергия атома. А как быть с транспортом?
   Ведь исчерпайся сейчас нефть, и мир останется без бензина. Как в таком случае воспользоваться энергией атома?
   Очевидно, поможет лишь удобный вторичный энергоноситель. Ведь и сейчас энергия органического топлива в большей мере используется не непосредственно, а через вторичный энергоноситель: горячую воду, пар, электричество. Когда нефть, а затем и газ постепенно начнут исчезать с энергетического рынка, по мнению многих специалистов, наиболее удобным вторичным энергоносителем окажется водород. Он весьма универсален и может использоваться как топливо в авиации, в наземном транспорте, на судах. Водород может служить восстановителем в металлургии и химическим сырьем во многих отраслях промышленности. Возможно, что будет признано эффективным использование этого легкого газа и в качестве топлива в электроэнергетике. Водород почти так же легко транспортировать по газопроводам, как и природный газ. По сравнению с ним он менее взрывоопасен и наиболее удобен с точки зрения экологии.
   В общем, всем хорош водород, нужно только найти и разработать высокоэффективный способ его получения.
   Конечно, сырьем останется вода, а источником энергии - ядерная энергия и уголь.
   Сейчас для получения водорода пользуются электролизом. Однако этот способ далеко не самый эффективный. Судите сами: коэффициент полезного действия современного электролизера, в котором с помощью электроэнергии разлагается вода, 60-65 процентов. При производстве электроэнергии с эффективностью 40 процентов, общий коэффициент преобразования первичной энергии в водород не превысит 25 процентов. Конечно, это слишком дорогая цена за продукт, каким бы ни был он прекрасным энергоносителем. Нужны другие пути его получения. И они есть. Во-первых, усовершенствуется сам электролиз. Если этот процесс проводить при температуре примерно 1000 градусов в ячейках с твердым электролитом, то появляется возможность получать водород путем прямого использования тепла от высокотемпературного ядерного реактора. В этом случае полная общая эффективность электролизного метода преобразования ядерной энергии в водород может возрасти до 65-70 процентов, что уже приемлемо.
   Во-вторых, в последние годы усиленно разрабатываются термохимические способы, при которых вода разлагается под действием тепла без использования электричества. При температуре ядерного источника энергии для разложения воды, равной, скажем, 1000 градусам, можно ожидать достаточно высокого коэффициента преобразования ядерной энергии в энергию водорода, равного 50-60 процентам.
   На этом закончим нашу краткую экскурсию в будущее атомной энергетики. Атомная энергия, используемая сегодня лишь для получения электроэнергии, в будущем станет основным поставщиком тепла, пара, искусственного топлива для двигателей. Залог этого - практически не ограниченные ресурсы ядерного топлива и почти полная ее безвредность для окружающей природы и людей.
   Через несколько десятилетий атомная энергия будет такой же обыденной, какой в наши дни является энергия гидроэлектростанций или теплоэлектростанций. Возможно, тогда люди с удивлением будут узнавать, что когда-то использовались неядерные источники энергии.
   Имея в виду именно такую ситуацию, Отто Фриш, физик-теоретик из Кембриджа, написал шуточную статью о далеком будущем. Выдержками из нее я хотел бы закончить эту главу.
   "Недавно найденный сразу в нескольких местах уголь (черные, окаменевшие остатки древних растений)
   открывает интересные возможности для создания неядерной энергетики.
   Возможность использования угля в энергетике связана с тем фактором, что он окисляется, причем создается высокая температура с выделением удельной энергии, близкой к 0,0000001 мегаватт-суток на грамм.
   Это, конечно, очень мало, но запасы угля, по-видимому, велики.
   Главным преимуществом угля следует считать его маленькую по сравнению с делящимися материалами критическую массу. Атомные электростанции, как известно, становятся неэкономичными при мощности ниже 50 мегаватт, а угольные электростанции могут оказаться вполне эффективными в маленьких населенных пунктах с ограниченными энергетическими потребностями.
   Главная трудность заключается в создании самоподдерживающейся и контролируемой реакции окисления топливных элементов. Кинетика этой реакции значительно сложнее, чем кинетика ядерного деления, и изучена еще слабо. Правда, дифференциальное уравнение, приближенно описывающее этот процесс, уже получено, но решение его возможно лишь в простейших частных случаях. Поэтому корпус угольного реактора предлагается изготовить в виде цилиндра с перфорированными стенками. Через эти отверстия будут удаляться продукты горения. Необходимость закрывать цилиндр на концах торцовыми плитами создает трудную, хотя и разрешимую математическую задачу.
   Изготовление тепловыделяющих элементов, по-видимому, обойдется дешевле, чем в случае ядерных реакторов, так как нет необходимости заключать горючее в оболочку, которая при этом даже нежелательна, поскольку затрудняет доступ кислорода.
   Были рассчитаны различные типы решеток, и уже самая простая из них шютноупакованные сферы, - по-видимому, вполне удовлетворительна. Расчеты оптимального размера этих сфер и соответствующих допусков находятся сейчас в стадии завершения. Уголь легко обрабатывается, и изготовление таких сфер, очевидно, не представит серьезных трудностей.
   Чистый кислород идеально подходит для окисления, но он дорог, и самым дешевым заменителем является воздух. Однако воздух на 78 процентов состоит из азота. Если даже часть азота прореагирует с углеродом, образуя ядовитый газ циан, то он будет источником серьезной опасности для здоровья обслуживающего персонала.
   Выделение ядовитых газов из угольного реактора представляет серьезную угрозу. В их состав, помимо исключительно токсичных окиси углерода и двуокиси серы, входят некоторые канцерогенные соединения. Их выбрасывание непосредственно в атмосферу недопустимо, поскольку приведет к заражению воздуха в радиусе нескольких миль. Эти газы необходимо собирать в контейнеры и подвергать химической детоксификации.
   При обращении как с газообразными, так и с твердыми продуктами реакции необходимо использовать стандартные методы дистанционного управления. После обеззараживания эти продукты лучше всего топить в море.
   Существует возможность, хотя и весьма маловероятная, что подача окислителя выйдет из-под контроля.
   Это приведет к расплавлению всего реактора и выделению огромного количества ядовитых газов. Последнее обстоятельство является главным аргументом против угля в пользу ядерных реакторов, которые за последние несколько тысяч лет доказали свою безопасность. Пройдут, возможно, десятилетия, прежде чем будут разработаны достаточно надежные методы управления угольными реакторами".
   В этом шутливом рассказе хорошо показано, какую опасность может таить в себе привычная энергетика на органическом топливе. Велика ли она, эта опасность?
   Об этом и пойдет дальше разговор.
   В ПОИСКАХ ЧИСТОЙ ЭНЕРГИИ
   Слышу я
   Природы голос,
   Порывающийся крикнуть,
   Как и с кем она боролась,
   Чтоб из хаоса возникнуть?
   Может, и не во имя
   Обязательно нас с вами,
   Но чтоб стали мы живыми
   Мыслящими существами.
   И твердит природы голос:
   "В вашей власти, в вашей власти",
   Чтобы все не раскололось
   На бессмысленные части.
   Л. Мартынов
   Быстрое развитие энергетики ставит много глобальных проблем. Одну из них - не грозит ли человечеству энергетический голод - мы уже обсудили. Он невозможен уже потому, что на Земле достаточны запасы энергии. Атомная и термоядерная энергетика способна обеспечить ею человечество на многие тысячи лет.
   Есть и другая проблема, которой мы коснулись в начале книги: можно ли допускать дальнейший рост энергетики? Получается парадокс! Сначала мы беспокоились о том, хватит ли топливных ресурсов для развития энергетики, а теперь волнуемся вроде бы о противоположном - можно ли вообще ее развивать. Но положение дел действительно таково, что нужно думать и о том и о другом. Взгляды различных специалистов на сам возрос "Энергия природа - человек" очень различны, а часто диаметрально противоположны.
   "Римский клуб"
   Возникшая в 1968 году упоминавшаяся нами в начале книги новая футурологическая частная, между прочим, международная организация, так называемый "Римский клуб", в своих докладах предупреждает; если не остановить рост производства или не упорядочить его, если не внести жесточайшую экономию энергии и всех других ресурсов и резко не сократить их массовое потребление, то, возможно, в самом начале третьего тысячелетия наступит гибель мировой цивилизации.
   Последствия происходящей деградации планеты, заявляет председатель "Римского клуба" А. Печчеи, могут привести к окончательному исчезновению человека как вида. Времени для того, чтобы как-то исправить положение, продолжает он, практически нет. "Учитывая нынешние темпы развития, есть основания полагать, что не пройдет и десяти лет, как возможность некоторых мер, сегодня еще кажущихся реальными, исчезнет окончательно... Я хочу сказать, что мы не можем терять ни минуты".
   Нужно заметить, что среди членов "Римского клуба"
   и его докладчиков (сейчас докладов уже семь) немало известных и серьезных ученых. В материалах клуба, особенно в докладе "Энергия: обратный счет", было множество фактических данных по энергетике. Сделанные ими мрачные выводы основывались не на простых рассуждениях, а на результатах многочисленных расчетов, проведенных на вычислительных машинах. Для этого были созданы "глобальные математические модели развития общества", в которых были учтены экономика, промышленность, энергетика, ресурсы, демография, экология.
   Сама попытка научного прогнозирования, как и накопленный материал, представляет значительную ценность. Однако выводы, сделанные докладчиками "Римского клуба", подвергаются серьезной и заслуживающей внимания критике многих ученых - энергетиков, экономистов, социологов, политологов. В нашу задачу не входит подробный анализ методов, предпосылок и всех выводов, предлагаемых "Римским клубом", так как эго увело бы нас в сторону. Обратимся к сути лишь энергетической проблемы.
   Потенциальная опасность развития энергетики для природы и человека, или, если сказать мягче, отрицательные последствия ее развития, известна. Это недопустимое загрязнение атмосферы различными вредными газообразными веществами, аэрозолями, перегрев водоемов и рек, нарушение растительного покрова и ландшафта всей планеты. Более далекие, но и более глобальные изменения, обусловленные энергетикой, - это изменение климата в отдельных районах мира, общий перегрев земли, таяние ледников, подъем уровня воды в океанах. Последствия, существующие и проявляющиеся в разной мере уже в наше время, как видите, достаточно многочисленные и грозные. Но все же они только потенциальные, а не неизбежные, с ними можно бороться, их можно избежать, предотвратить. Как это сделать?
   Мы уже говорили, что отказаться от масштабного применения энергии, уйти от эры развитой промышленности и сельского хозяйства к патриархальной жизни, пытаясь сохранить "естественное равновесие" природы, несомненно, худшее из всего, что можно придумать, ибо это приведет к физической гибели большей части человечества. Да и переход на неиндустриальные методы хозяйствования без масштабного применения энергии может закончиться еще большим оскудением природы.
   Еще триста лет назад, когда людей на Земле было в 10 раз меньше, можно было выращивать растения, не заботясь об удобрении почвы. Сегодня это немыслимо.
   Отказ от удобрений погубит не только пахотные земли, но и пастбища. А ирригация? Все перестанет плодоносить, если отказаться от нее.
   Один из крупнейших современных натуралистов, В. Ульрих, директор зоопарка в Дрездене, рассказывает о тяжелых переживаниях индийского крестьянина.
   В качестве топлива он использует сухой коровий навоз.
   Этим нарушается естественный круговорот вещества:
   травоядные животные потребляют растения, но люди не возвращают почве изъятые из нее вещества - их сжигают. При таком примитивном ведении хозяйства превращение громадных территорий в пустыню лишь вопрос времени. "Чертов круг", по выражению В. Ульриха, замкнулся. Где же выход? Он - в развитии энергетики и промышленности, производящей минеральные удобрения.
   Несколько лет назад в экологической науке появился новый термин "дезертификация" - превращение земель в пустыни. Ежегодно она охватывает по разным причинам 50 тысяч квадратных километров. По утверждению большинства специалистов, главную ответственность за такое нарушение нормальных природных условий несет человек, ибо пустыни возникают из-за плохо контролируемой ирригации, а также нерационального использования пастбищ, слишком интенсивной обработки почвы и вырубки леса. Вот где скрывается зародыш дезертификации. Но есть много средств, способных ее предотвратить, и все они требуют применения энергии.
   Серьезные проблемы возникают и с водообеспечением людей, земель, промышленности на юге европейской и азиатской частей нашей страны. Для их решения необходимо строительство могучих гидротехнических сооружений. И опять речь идет об энергии. Вот и чудится, что современный человек, подобно пассажирам мифологического судна, очутился между Сциллой и Харибдой.
   Сможет ли атомная энергетика стать тем Одиссеем, который выведет человека в "чистые воды"? Пока атомная энергия - наилучший помощник человека, обещающий решение труднейших проблем, стоящих перед ним.
   Рубикон энергетики
   Каковы же пределы развития энергетики? Есть ли у нее свой Рубикон, который нельзя переходить?
   Среди ее отрицательных последствий первым названо засорение воздушного бассейна. В атмосферу Земли ежегодно выбрасываются сотни миллионов тонн различных веществ. Вот сколько их: твердых веществ - 130 миллионов тонн; двуокиси серы - 180-200; окиси углерода - 350-400; окислов азота - 60-65; углеводородов - 80-90 миллионов тонн. Выходит, что вся наша атмосфера представляет собой аэрозоль, так как содержит массу взвешенных частиц.
   Источники аэрозольных частиц, проникающих в атмосферу, разнообразны. Это и сажа от сжигания угля и мусора, и некоторые отходы черной металлургии.
   В целом ежегодно воздух насыщается многими миллионами тонн различных веществ. Массу аэрозольных частиц поставляют химические предприятия в процессе превращения газов в твердые тела. Так, при образовании сульфатов из двуокиси серы в воздух за тот же срок уходят 150 миллионов тонн частиц. Всего из-за деятельности человека в год в атмосферу вносится 350- 400 миллионов тонн пыли. По сравнению с ее естественными источниками это еще не так много. Из-за различных природных процессов: землетрясений, деятельности вулканов, пыления почвы, попадания в атмосферу морской соли, пожаров и химических реакций - в атмосфере образуется в Ю раз больше пыли. Казалось бы, оснований для беспокойства пока еще нет. На самом деле оно имеет причины. Основные источники образования пыли расположены вблизи тех мест, где люди живут, отдыхают и работают. Там и повышена ее концентрация.
   Исследователи установили, что в кубическом сантиметре парижского воздуха более 100 тысяч пылинок, а над Тихим океаном - всего 500. В две тысячи раз меньше! Это крайний случай. Тем не менее считается, что запыленность в сельской местности в среднем всего лишь в 10 раз меньше, чем в городе.
   Энергетика является мощным источником ежегодного поступления в атмосферу 140-160 миллионов тонн очень вредного газа - двуокиси серы. Это следствие сжигания угля и нефти. Поступление двуокиси серы из природных источников эквивалентно 600 миллионам тонн. Значит, человеческая деятельность ответственна за четвертую часть серы, проникающей в биосферу.
   Содержание в атмосфере окислов азота на 90 процентов определяется природными источниками. Но наибольшие возмущения в состав атмосферы вносит окись углерода, образующаяся в энергетических установках.
   Основная часть этого вредного газа выделяется двигателями внутреннего сгорания. А это составляет около трех четвертых всего количества окиси углерода.
   Вес атмосферы земного шара, состоящей в основном из азота и кислорода, равен 5 триллионам тонн (5*10^12 тонн). Поэтому поступление в нее всего каких-то сотен миллионов тонн в год различных газов, казалось бы, не может существенно изменить ее состав. И в самом деле, в результате различных физико-химических реакций, происходящих в атмосфере и при ее взаимодействии с поверхностью Земли и океанов, в ней поддерживается некоторая постоянная и небольшая концентрация вредных газов. Скажем, на миллиард частей воздуха приходится всего 1-4 части двуокиси азота или серы.
   Но это только кажется, что данная величина маленькая.
   В действительности она недалека от предельно допустимой для человека 30 частей серы на миллиард частей воздуха. Концентрация двуокиси серы в городах в среднем составляет уже около 15-20 частей, то есть в 20 раз больше средней по земному шару, что говорит о приближении к пределу допустимого. А во многих городах она, увы, еще выше. Так, в 1964 году в Чикаго она была уже равна 150 частям на миллиард, то есть в 5 раз превышала предельно допустимую.
   Загрязнение атмосферы ведет к ухудшению здоровья, потере трудоспособности, гибели людей. Не всегда заметно, что причина заболеваний кроется в составе атмосферы. Но статистика и чрезвычайные ситуации рельефно отражают действительное положение дел. Вот одна из таких ситуаций. 5 декабря 1952 года перед взором жителей Лондона произошло нечто невероятное: солнце совершенно исчезло с небосвода. Необычайно плотный смог - смесь дыма, тумана и вредоносных газов - держался над английской столицей 3-4 дня. По официальным данным, за это время умерло более 4 тысяч человек. Английские специалисты определили, что воздух над столицей содержал несколько сот тонн дыма и двуокиси серы.
   Автомобильный транспорт повышает концентрацию окиси углерода и азота до 10-20 частей на миллион частей воздуха. При определенных условиях под действием солнца в воздухе происходит длинная цепочка реакций и образуется фотохимический смог. Им в настоящее время "заражены" почти все крупные города многих зарубежных стран - Нью-Йорк, Чикаго, Бостон, Детройт, Милан. В Токио июльский смог 1970 года привел к отравлению 8 тысяч человек. Более 400 человек пострадало 24 мая 1974 года от отравления ядовитым смогом в Токио и прилегающих к нему районах. Там при наступлении жарких и безветренных дней уже несколько раз концентрация вредных для здоровья газов поднималась выше допустимых пределов. По токийскому радио и телевидению можно услышать такие сообщения:
   "Внимание! Говорит токийский центр по контролю за загрязнением воздуха. Предупреждаем жителей квартала Кото, Эдогава и Котсусина. В воздухе повысилось количество вредных веществ. Внимание! Срочно прекратить школьные занятия на открытом воздухе, детей вернуть в классы. Как можно меньше находиться на улице. Пользуйтесь автомобилями только при крайней необходимости..." Только в 1972 году такие тревожные сообщения объявлялись 176 раз - смог угрожал жителям удушьем.
   Население Советского Союза избавлено от смога; и все же есть еще города, в которых превышены предельно допустимые концентрации по некоторым газам.
   Нужно сказать, что ситуация с двуокисью седы усложняется тем, что еще нет эффективных способов очистки лродуктов сгорания угля и нефти.
   Увеличение содержания в воздухе серы вызывает не только заболевания и смертность, но и приводит к ряду других нежелательных последствий, таких, как повышенная коррозия металлических конструкций, приносящая миллиардные убытки, кислотность дождевой воды, замедляющая рост лесов и развитие культурных растений. Есть и менее печальные последствия. Ученые из Бирмингемского университета (Англия) заявили, например, что процент натуральных блондинок (наверное, и блондинов) с каждым годом снижается. Причина - увеличение в воздухе серы, которая вызывает потемнение волос.
   Пожалуй, на этом примере стоит остановиться и сказать, что один Рубикон энергетика уже перешагнула или стоит на его берегу. Нельзя ей дать перейти его.
   Среди отрицательных явлений, связанных с развитием энергетики, обращает на себя внимание повышение температуры окружающей среды. В первую очередь тепловые сбросы сказываются на температуре водоемов.
   Нужно сказать, что воздействие энергетики (в общем случае всей промышленности) на природу изучено пока недостаточно. Незнание же, как известно, порождает полярные точки зрения на многие проблемы, по которым хотелось бы иметь более определенные суждения, Так, по поводу подогрева воды в водоемах одни специалисты говорят, что он вреден, и называют этот процесс тепловым загрязнением, вызывающим нарушение биологического равновесия. Но вот в конце сентября 1977 года в центре ядерных исследований Карлсруэ (ФРГ) собралось одно из самых представительных совещаний: свыше 100 специалистов из различных стран.
   В конце концов они пришли к довольно неожиданному выводу, что нагревание вод не должно иметь вредных последствий, наоборот, одновременное, мол, повышение температуры и содержания кислорода в воде создает благоприятные условия для развития микроорганизмов, разлагающих вредные вещества.
   Совещание в ядерном центре не было случайным. Дело в том, что атомные электростанции имеют более низкий КПД, чем электростанции на органическом топливе.