Основу современных компьютеров образует аппаратура (HardWare) – совокупность электронных и электромеханических элементов и устройств, а принцип компьютерной обработки информации состоит в выполнении программы (Software) – формализованном описании алгоритма обработки в виде последовательности команд, управляющих процессом обработки.
   Команда – двоичный код, который определяет действие вычислительной системы по выполнению какой-либо операции.
   Операция – комплекс технологических действий, совершаемых над информацией по одной из команд программы.
   Основными операциями при обработке информации на ЭВМ являются арифметические и логические. Арифметические операции включают в себя все виды математических действий, обусловленных программой, над целыми числами, дробями и числами с плавающей запятой. Логические операции обеспечивают действия над логическими величинами с получением логического результата.
   В вычислительных системах последовательность действий, составляющих задачу обработки информации, называют процессом. Процесс определяется соответствующей программой, набором данных, которые в ходе реализации процесса могут считываться, записываться и использоваться, а также совокупностью сведений, определяющих состояние ресурсов ЭВМ, предоставленных процессу.
   Персональный компьютер характеризуется развитым («дружественным») человеко-машинным интерфейсом, малыми габаритами, массой, относительно невысокой стоимостью и многофункциональностью (универсальностью) применения.
   Одним из основных достоинств ПК, обеспечивших им потрясающий успех, явился принцип открытой архитектуры, заключающийся в том, что при проектировании ПК регламентируются и стандартизируются только принцип действия компьютера и его конфигурация (определенная совокупность аппаратных средств и соединений между ними). Построение ПК не единым неразъемным устройством, а на основе принципа открытой архитектуры (модульности построения), обеспечивает возможность их сборки из отдельных узлов и деталей, разработанных и изготовленных независимыми фирмами-изготовителями. Кроме того, такой компьютер легко расширяется и модернизируется за счет наличия внутренних расширительных разъемов, позволяющих пользователю добавлять разнообразные устройства, удовлетворяющие заданному стандарту, и тем самым устанавливать конфигурацию своей ЭВМ в соответствии со своими личными предпочтениями. Специалисты часто называют такие операции upgrade (расширить, обновить).
   Упрощенная блок-схема, отражающая основные функциональные компоненты ПЭВМ в их взаимосвязи, изображена на рисунке 3.4.
   Рисунок 3.4. Функциональные компоненты персонального компьютера
 
   Конструктивно современный персональный компьютер состоит из четырех основных компонентов, которые образуют его базовую конфигурацию:
   • системного блока, в котором размещаются устройства обработки и хранения информации;
   • дисплея – устройства отображения информации;
   • клавиатуры – основного устройства ввода информации в ПК;
   • мышь манипулятора – для упрощения взаимодействия пользователя с ПК.
   Корпус системного блока может иметь следующие варианты компоновки:
   А. Горизонтальная (DeskTop)
 
   Б. Вертикальная (Tower)
 
   В системном блоке размещаются основные элементы компьютера, необходимые для выполнения программ:
   • микропроцессор (МП), или центральный процессор (CPU, от англ. Central Processing Unit) – основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера;
   • память (внутренняя – системная, включающая ОЗУ и ПЗУ, и внешняя – дисковая):
   – ПЗУ, постоянное запоминающее устройство или постоянная память (от англ. ROM, Read Only Memory – память только для чтения), служит для хранения неизменяемой (постоянной) программной и справочной информации.
   – ОЗУ, оперативное запоминающее устройство, или оперативная память (от англ. RAM, Random Access Memory – память с произвольным доступом), предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени.
   – Дисковая память относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач, в ней, в частности, хранится все программное обеспечение компьютера. В качестве устройств внешней памяти, размещаемых в системном блоке, используются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дисках, накопители на оптических дисках (НОД) и др.
   • контроллеры (адаптеры) служат для подключения периферийных (внешних по отношению к процессору) устройств к шинам микропроцессора, обеспечивая совместимость их интерфейсов. Они осуществляют непосредственное управление периферийными устройствами по запросам микропроцессора. Контроллеры реализуются, как правило, на отдельных печатных платах, часто называемых адаптерами устройств (от лат. adapto – преобразовываю);
   • системная плата – основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.
Системная (материнская) плата
   Системная плата обеспечивает три направления передачи информации: между микропроцессором и внутренней (основной) памятью, между микропроцессором и портами ввода-вывода внешних устройств, между внутренней (основной) памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти). Устройства, непосредственно осуществляющие процесс обработки информации (вычисления), в том числе микропроцессор, оперативная память и шина, размещаются на ней, кроме того, на ней же располагается и контроллер клавиатуры и мыши. Схемы, управляющие другими внешними устройствами компьютера, как правило, находятся на отдельных платах, вставляемых в унифицированные разъемы (слоты) на материнской плате. Через эти разъемы контроллеры устройств подключаются непосредственно к системной магистрали передачи данных в компьютере – шине. Иногда эти контроллеры могут располагаться на системной плате.
   В системном блоке располагается также блок питания, преобразующий переменное напряжение электросети в постоянное напряжение различной полярности и величины, необходимое для питания системной платы и других устройств компьютера, размещенных в системном блоке. Блок питания Содержит вентилятор, создающий циркулирующие потоки воздуха для охлаждения системного блока, сетевого энергопитания ПК. Кроме сетевого, в компьютере имеется также автономный источник питания – аккумулятор. К аккумулятору подключается таймер – внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер продолжает работать и при отключении компьютера от электросети.
   Основными ведущими производителями системных плат являются компании Asustek, Intel, Giga-Byte, Abit и др.
Интерфейсы
   Компьютер состоит из множества отдельных устройств. Для взаимодействия между компонентами их необходимо связать физическими линиями (проводниками), которые обычно называют шинами. Сочетание шины и правил передачи сигналов по ней образует интерфейс. Это совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие.
   По функциональному назначению интерфейсы компьютера принято разделять на внешние (ввода-вывода) и внутренние. Очевидно, что внешние интерфейсы предназначены для подключения периферийных устройств (принтеров, сканеров и тому подобного), а также пользовательских компонентов управления (клавиатура, мышь). С внутренними интерфейсами ситуация выглядит несколько сложнее. Часть из них можно назвать системными интерфейсами, поскольку они фигурируют исключительно внутри платформы (системная шина, шина чипсета, шина памяти), а часть – локальными. К широко распространенным локальным интерфейсам относятся ISA, PCI, AGP, IDE (ATA), COM, LPT, USB, IEEE 1394 (Fire Wire), SCSI, Serial ATA, PS/2, Game-port, MIDI, Ethernet, IrDA, Bluetooth и другие.
   Поддерживаемые системой интерфейсы во многом определяют производительность компьютера в целом и возможность его развития. Как и везде, важным фактором является сбалансированный состав интерфейсов в компьютере: оптимальное соотношение передовых современных и морально устаревших стандартов, а также их соответствие решаемым задачам. Основное внимание уделим локальным и внешним интерфейсам.
Микропроцессоры
   Первый микропроцессор был выпущен в 1971 г. фирмой Intel (США) – 4-разрядный Intel 4004. В настоящее время выпускается несколько сотен различных микропроцессоров, но среди микропроцессоров, используемых в ПЭВМ, наиболее популярными являются микропроцессоры семейства х86. Среди фирм-производителей можно выделить такие, как Intel (процессоры – Pentium, Pentium MMX, Pentium Pro, Pentium II, Pentium III, Pentium IV, Xeon, Celeron) и AMD Corp. (процессоры – Duron, Athlon, Sempron) и Apple Macintosh.
   Конструктивно современный микропроцессор представляет собой сверхбольшую интегральную схему, реализованную на одном полупроводниковом кристалле – тонкой пластинке кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров. На ней размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми выводами с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.
   С внешними устройствами, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников – шинами (шина данных, адресная шина и командная шина).
   Основными параметрами процессоров являются: рабочее напряжение, разрядность, рабочая тактовая частота, коэффициент внутреннего умножения тактовой частоты и размер кэш-памяти.
   Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенное понижение рабочего напряжения. Ранние модели процессоров х86 имели рабочее напряжение 5 В. С переходом к процессорам Intel Pentium оно было понижено до 3,3 В, а в настоящее время оно составляет менее 3 В. Понижение рабочего напряжения позволяет уменьшить расстояния между структурными элементами в кристалле процессора до десятитысячных долей миллиметра, не опасаясь электрического пробоя. Пропорционально квадрату напряжения уменьшается и тепловыделение в процессоре, а это позволяет увеличивать его производительность без угрозы перегрева. Однако, несмотря на это, всегда сверху микропроцессора устанавливают вентилятор (куллер) для его охлаждения во время работы.
   Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт). Первые процессоры х86 были 16-разрядными. Начиная с процессора 80386 они имеют 32-разрядную архитектуру. Современные процессоры семейства Intel Pentium остаются 32-разрядными, хотя и работают с 64-разрядной шиной данных (разрядность процессора определяется разрядностью внутренних регистров).
   Рабочая тактовая частота и коэффициент ее внутреннего умножения. В процессоре исполнение каждой команды занимает определенное количество тактов. Тактовые импульсы задает одна из микросхем, входящая в микропроцессорный комплект (чипсет), расположенный на материнской плате. Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность. Первые процессоры х86 могли работать с частотой не выше 4,77 МГц, а сегодня рабочие частоты процессоров уже превосходят три миллиарда тактов в секунду (3 ГГц).
   Тактовые сигналы процессор получает от материнской платы, которая по чисто физическим причинам не может работать со столь высокими частотами, как процессор. Сегодня ее предел составляет сотни МГц. Для получения более высоких частот в процессоре происходит внутреннее умножение частоты на коэффициент 3; 3,5; 4; 4,5; 5 и более. Например, частота МП 2,4 ГГц – это частота системной шины в 400 МГц, умноженная на коэффициент 6.
   Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, например, с оперативной памятью. Для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают буферную область – так называемую кэш-память. Это как бы «сверхоперативная память». Когда процессору нужны данные, он сначала обращается в кэш-память, и только если там нужных данных нет, происходит его обращение в оперативную память. Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш-память. Высокопроизводительные процессоры всегда имеют повышенный объем кэш-памяти.
   Процессор расположен на материнской плате и подключается к процессорному разъему (Socket). В связи с этим обстоятельством процессор можно подключить только к той системной плате, на которой есть строго соответствующий Socket. Можно встретить процессоры подключаемые к следующим процессорным разъемам: Socket 478, Socket 775, Socket А, Socket 754, Socket 939/940 и др.
Комплект системной логики (чипсет)
   Потенциальные возможности и эффективность компьютера во многом определяются установленным на материнской плате набором микросхем системной логики, называемым чипсетом (ChipSet). Он обеспечивает работу процессора, системной шины (соединяет процессор и контроллер оперативной памяти), интерфейсов взаимодействия с оперативной памятью и другими компонентами компьютера. Его основная задача – поддержка множества несовместимых на прямую интерфейсов.
   Современные аппаратные интерфейсы и системная шина работают асинхронно, т. е. могут одновременно передавать и получать сигналы. Они не согласованы ни по характеру сигналов, ни по тактовой частоте, ни по пропускной способности. Для увязки данных и приведения их к удобной для обмена форме требуются операции преобразования и кэширования.
   Многие современные чипсеты включают две «базовые» микросхемы, которые принято называть соответственно «North Bridge» (северный мост) и «South Bridge» (южный мост). Северный мост обычно обеспечивает управление шиной AGP, шиной системной памяти, шиной PCI. Южный мост управляет интерфейсами IDE, USB, ACPI, IEEE1294, имеет мост ISA-PCI, контроллеры клавиатуры, мыши, FDD. Оба моста соединены шиной PCI или другим интерфейсом. Известны чипсеты, в которых встроены видео– и звуковые контроллеры. Необходимо отметить, что чипсет не является отдельным устройством, подключаемым к системной плате. Комплект системной логики всегда интегрирован с нее, а следовательно, разработкой и производством чипсетов будут заниматься фирмы, непосредственно производящие системные платы.
   Наиболее распространены следующие чипсеты: Nvidian Force 2 (3, 4), VIA K8T800 PRO, VIA K8T890, Intel865PE, AMD-8000 и др.
Запоминающие устройства ПК
   В компьютерах хранения информации выделяют следующие основные типы памяти: внутренняя память, кэш-память и внешняя память. Кроме того, в ЭВМ могут присутствовать различные специализированные виды памяти, характерные для тех или иных устройств вычислительной системы, например, видеопамять.
   Внутренняя память предназначена для оперативного хранения и обмена данными, непосредственно участвующими в процессе обработки. Конструктивно она исполняется в виде интегральных схем (ИС) и подразделяется на два вида:
   • постоянное запоминающее устройство (ПЗУ);
   • оперативное запоминающее устройство (ОЗУ).
   Кэш-память служит для хранения копий информации, используемой в текущих операциях обмена. Это очень быстрое ЗУ небольшого объема, являющееся буфером между устройствами с различным быстродействием. Обычно используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью. Кэш-памятью управляет специальное устройство – контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды, вероятнее всего, понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как «попадания», так и «промахи». В случае попадания, т. е. если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает ее непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.
   Внешняя память используется для долговременного хранения больших объемов информации. В современных компьютерных системах в качестве устройств внешней памяти наиболее часто применяются:
   • накопители на жестких магнитных дисках (НЖМД)
   • накопители на гибких магнитных дисках (НГМД)
   • накопители на оптических дисках
   • магнитооптические носители информации
   • ленточные накопители (стримеры).
Оперативное запоминающее устройство (ОЗУ)
   Оперативное запоминающее устройство, или оперативная память, – это массив кристаллических ячеек, способных хранить данные. Ее основная особенность заключена в том, что хранение информации в ней осуществляется только до тех пор, пока компьютер включен. При выключении компьютера, вся хранимая информация сразу же удаляется без возможности восстановления. По способу хранения информации оперативная память делится на статическую (SRAM – Static RAM) и динамическую (DRAM – Dynamic RAM).
   Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (кэш-памяти), предназначенной для оптимизации работы процессора.
   Оперативная память в компьютере размещается на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Если к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам.
Постоянное запоминающее устройство (ПЗУ)
   В момент включения компьютера в его оперативной памяти нет ничего – ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения.
   Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес. Это происходит аппаратно, без участия программ (всегда одинаково). Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам.
   Этот исходный адрес не может указывать на оперативную память, в которой пока ничего нет. Он указывает на другой тип памяти – постоянное запоминающее устройство (ПЗУ). Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен. Программы, находящиеся в ПЗУ, называют «зашитыми» – их записывают туда на этапе изготовления микросхемы.
   Комплект программ, находящихся в ПЗУ, образует базовую систему ввода-вывода (BIOS – Basic Input Output System). Основное назначение программ этого пакета состоит в том, чтобы проверить состав и работоспособность компьютера и обеспечить взаимодействие с клавиатурой, монитором, жестким диском и дисководом гибких дисков. Программы, входящие в BIOS, позволяют нам наблюдать на экране диагностические сообщения, сопровождающие запуск компьютера, а также вмешиваться в ход запуска с помощью клавиатуры.
   Работа таких стандартных устройств, как клавиатура, может обслуживаться программами, входящими в BIOS, но такими средствами нельзя обеспечить работу со всеми возможными устройствами. Так, например, изготовители BIOS абсолютно ничего не знают о параметрах наших жестких и гибких дисков, им не известны ни состав, ни свойства произвольной вычислительной системы. Для того чтобы начать работу с другим оборудованием, программы, входящие в состав BIOS, должны знать, где можно найти нужные параметры. По очевидным причинам их нельзя хранить ни в оперативной памяти, ни в постоянном запоминающем устройстве.
   Специально для этого на материнской плате есть микросхема «энергонезависимой памяти», по технологии изготовления называемая CMOS (complementary metaloxide semiconductor). От оперативной памяти она отличается тем, что ее содержимое не стирается во время выключения компьютера, а от ПЗУ тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав Системы. Эта микросхема постоянно подпитывается от небольшой батарейки, расположенной на материнской плате. Заряда этой батарейки хватает на то, Чтобы микросхема не теряла данные, даже если компьютер не будут включать несколько лет.
   В микросхеме CMOS хранятся данные о гибких и жестких дисках, о процессоре, о некоторых других устройствах материнской платы. Тот факт, что компьютер четко отслеживает время и календарь (даже и в выключенном состоянии), тоже связан с тем, что показания системных часов постоянно хранятся (и изменяются) в CMOS.
   Таким образом, программы, записанные в BIOS, считывают данные о составе оборудования компьютера из микросхемы CMOS, после чего они могут выполнить обращение к жесткому диску, а в случае необходимости и к гибкому, и передать управление тем программам, которые там записаны.
Внешние устройства хранения информации
   В качестве внешних запоминающих устройств при работе на ПК в основном используются накопители на гибких магнитных дисках (НГМД) или дискеты, накопитель на жестком магнитном диске (НЖМД) или винчестер и накопители на лазерных компакт-дисках или CD-диски. Кроме того, в последнее время все большую популярность стали приобретать различные сменные карты памяти. Основными характеристиками всех внешних устройств хранения информации являются:
   1. Информационная емкость – максимально возможный объем хранимой информации. Выражается в мегабайтах (для дискет и CD-дисков) и гигабайтах (для винчестеров).
   2. Время доступа к информации – временной интервал между моментом, когда процессор запрашивает с диска данные, и моментом их выдачи. Измеряется в миллисекундах (мс). Наибольшее время доступа к информации у накопителей на гибких магнитных дисках (дискетах), а наименьшее – у винчестеров.
   3. Скорость чтения и записи информации – определяется количеством байт, прочитанных/записанных в секунду. Выражается в Мбайт/с.
Накопители на гибких магнитных дисках или дискеты
   Дискеты служат для долговременного хранения программ и данных небольшого объема и удобны для перенесения информации с одного компьютера на другой. Дискеты различаются размером и объемом информации, который можно на них разместить. Различают 3,5 – дюймовые и 5,25 – дюймовые дискеты (сейчас не используются). Их информационный объем составляет 1,44 Мб и 1,2 Мб соответственно. Для считывания информации с дискеты необходимо специальное устройство – дисковод.
Накопитель на жестких магнитных дисках
   Накопитель на жестких магнитных дисках (от англ. HDD – Hard Disk Drive), или винчестер – это запоминающее устройство большой емкости, в котором носителями информации являются круглые жесткие пластины (иногда называемые также дисками), обе поверхности которых покрыты слоем магнитного материала. Винчестер используется для постоянного (длительного) хранения информации – программ и данных.
   В принципе жесткие диски подобны дискетам. В них информация также записывается на магнитный слой диска. Однако этот диск, в отличие от дискет, сделан из жесткого материала, чаще всего алюминия (отсюда и название Hard Disk). В корпусе объединены такие элементы винчестера, как управляющий двигатель, носитель информации (диски), головки записи/считывания, позиционирующее устройство (позиционер) и микросхемы, обеспечивающие обработку данных, коррекцию возможных ошибок, управление механической частью, а также микросхемы кэш-памяти.
   Если дискета физически состоит из одного диска, то винчестер состоит из нескольких одинаковых дисков, расположенных друг под другом.
   НЖМД помещен в почти полностью герметизированный корпус. В отличие от НГМД, внутреннее устройство которого хорошо видно, НЖМД изолирован от внешней среды, что предотвращает попадание пыли и других частиц, которые могут повредить магнитный носитель или чувствительные головки чтения/записи, располагаемые над поверхностью быстро вращающегося диска на расстоянии нескольких десятимиллионных долей дюйма.