Актиничность ) светом, фототаймерами,термометрами, весами, наборами химической посуды и др. принадлежностями. Стены и потолки Ф. окрашивают, как правило, в белые или светло-жёлтые тона.
     В крупных Ф. (состоящих из нескольких помещений) используют оборудование, обеспечивающее поточность и стандартность процессов обработки фотоматериалов, а также высокую производительность. труда: проявочные машины,в которых осуществляется весь процесс обработки фотоматериалов – от проявления до сушки; установки для контактной и проекционной печати позитивов и диапозитивов, снабженные устройствами автоматической фокусировки объектива, определения времени экспонирования, поддержания стабильности светового потока и пр.; цветоанализаторы для определения режима печати цветных фотоснимков;. репродукционные установки – фотостаты,аппараты для микрофильмирования и др.; устройства для окончательной отделки готовой продукции (например, для глянцевания, нанесения защитных покрытий); установки для извлечения серебра из отработанных растворов и т.д. В таких Ф. растворы для обработки фотоматериалов приготовляют в сосудах, имеющих механизмы, которые обеспечивают полное растворение применяемых химических веществ,. фильтрацию растворов, а также подачу последних к рабочим местам по трубопроводам. Качество растворов и параметры режима процессов контролируются химическими и сенситометрическими методами.
     В Ф. при научных учреждениях, фотоателье, клубах и т.п. используют оборудование, рассчитанное на полуавтоматическое выполнение процессов обработки: герметичные бачки и кюветы большой ёмкости с устройствами, поддерживающими постоянную температуру растворов и обеспечивающими их перемешивание; копировальные станки и фотографические увеличители;установки для репродуцирования; экспонометрические приборы; электрические аппараты для глянцевания и сушки позитивов и др. В Ф. такого типа рабочие растворы приготовляют в небольших количествах и подают к рабочим местам вручную. В любительской фотографии Ф. оборудуют в жилых или подсобных помещениях.
     Передвижные Ф. устраивают на автомобилях, самолётах, космических летательных аппаратах и т.п. Их оснащают специальными малогабаритным оборудованием. В большинстве случаев в передвижных Ф. используют устройства, позволяющие вести процесс обработки фотоматериалов. автоматически и быстро. Особый вид передвижной Ф. – экспедиционная Ф., представляющая собой портативный ящик-чемодан и позволяющая производить перезарядку кассет и обработку фотоматериалов в полевых условиях.
     Обязательное требование для всех Ф. – соблюдение правил пожарной безопасности и правил работы с различными химическими веществами.
     Лит.:Иофис Е. А., Техника фотографии, М., 1973; Фомин А. В., Общий курс фотографии, М., 1975; Крауш Л. Я., Обработка фотографических материалов, М., 1975.
      Е. А. Иофис.

фото... и греч. lэsis – разрушение, разложение), распад молекул под действием поглощённого света. Продуктами распада могут быть либо молекулы с меньшим числом атомов, свободные радикалы или атомы (фотодиссоциация), либо положительные и отрицательные ионы (фотоионизация). См. также Фотохимия .

фоторезистах,отличающийся высокой разрешающей способностью.Цель Ф. – создать в слое фоторезиста «окна» заданной конфигурации для доступа травителя к расположенной под этим слоем полупроводниковой пластине с окисной плёнкой. Такие «окна» образуются при экспонировании фоторезиста в потоке ультрафиолетового излучения или в потоке электронов, в результате которого он теряет (негативный фоторезист) или приобретает (позитивный фоторезист) способность к растворению. Одним из многочисленных применений Ф. служит получение этим методом сотен тысяч мельчайших упорядоченно расположенных отверстий в масках цветных телевизоров. См. также Планарная технология.2) Фотомеханический способ изготовления литографской печатной формы (см. Литография ) ,при котором изображение с негатива копируется на светочувствительный слой, покрывающий поверхность литографского камня (или металла). После проявления копии её подвергают химической обработке, в результате которой поверхность разделяется на печатающие и пробельные элементы. В настоящее время (2-я половина 20 в.) Ф. применяется чрезвычайно редко. 3) Оттиск с литографской печатной формы, изготовленной по способу Ф.

люминесценция,возбуждаемая светом. Простейший случай Ф. – резонансное излучение атомных паров, когда испускается электромагнитное излучение такой же частоты, какую имеет возбуждающее излучение. При Ф. молекул и др. сложных систем, согласно Стокса правилу,излучение Ф. имеет меньшую частоту, чем возбуждающий свет. Это правило часто нарушается и наряду со стоксовой наблюдается антистоксова часть спектра – излучение частоты, большей, чем частота возбуждающего света. В более сложных молекулах после поглощения света происходит перераспределение энергии между молекулами, вследствие чего спектр излучения не зависит (или слабо зависит) от возбуждающей частоты.
     В результате межмолекулярных взаимодействий, а в сложных молекулах и вследствие внутримолекулярных процессов может происходить переход электронной энергии возбуждения в энергию колебательного, вращательного и поступательного движения молекул, т. е. в тепловую энергию. Такие процессы называются тушением Ф., они приводят к тому, что квантовый выход (отношение числа испускаемых квантов к числу возбуждающих квантов) Ф. оказывается меньше единицы.
     Выход Ф., вообще говоря, сложным образом зависит от длины волны возбуждающего света. Для Ф. молекул в жидкой или твёрдой среде С. И. Вавилов установил (1924) закономерность, которую можно рассматривать как обобщение правила Стокса: квантовый выход Ф. постоянен в широкой области длин волн возбуждающего света (стоксово возбуждение) и резко падает при длинах волн, лежащих в области спектра излучения (антистоксово возбуждение).
     Более сложные закономерности наблюдаются при Ф. кристаллофосфор в тех случаях, когда при поглощении света происходит не только возбуждение, но и фотоионизация. В этом случае Ф. возникает в результате рекомбинации электронов с ионизованными центрами свечения, и выход Ф. и др. её свойства зависят от того, где поглощается возбуждающий свет – в центрах свечения или в кристаллической решётке основного вещества.
     Лит.:Левшин В. Л., Фотолюминесценция жидких и твердых веществ, М. – Л., 1951; Антонов-Романовский В. В., Кинетика фотолюминесценции кристаллофосфоров, М., 1966.

Кикоина – Носкова эффект.

фото... и ...метр ) ,прибор для измерения каких-либо из фотометрических величин,чаще других – одной или нескольких световых величин.При использовании Ф. осуществляют определённое пространственное ограничение потока излучения и регистрацию его приёмником излучения с заданной спектральной чувствительностью.Освещённость измеряют люксметрами,яркость – яркомерами, световой потоки световую энергию–с помощью фотометра интегрирующего.Приборы для измерения цвета объекта называют колориметрами.Если в качестве приёмника используется глаз, Ф. называются визуальными, или зрительными, если же применяется какой-либо физический приёмник, Ф. называются физическими. Оптический блок Ф., иногда называемый фотометрической головкой, содержит линзы, светорассеивающие пластинки, ослабители света,светофильтры, диафрагмы (см. Диафрагма в оптике) и приёмник излучения. Чаще всего в Ф. с физическими приёмниками поток излучения преобразуется в электрический сигнал, регистрируемый устройствами типа микроамперметра, вольтметра и т.д. В импульсных Ф. (см. Фотометрия импульсная ) применяют регистрирующие устройства типа электрометра,запоминающего осциллографа,пикового вольтметра. В визуальном Ф. равенство яркостей двух полей сравнения, освещаемых по отдельности сраниваемыми световыми потоками, устанавливается глазом, который располагается у окуляра фотометрической головки.
     Оптические схемы Ф. ( рис. ) для определения размерных фотометрических величин обеспечивают постоянство или изменение по определённому закону фактора геометрического.(О принципах абсолютной градуировки Ф. см. ст. Фотометрия.) Для Ф. с абсолютной градуировкой характерны большие систематические погрешности измерений (осуществить их с погрешностью менее 5% затруднительно). Квалифицированные специалисты в хорошо оборудованных лабораториях обычно выполняют измерения с погрешностями от 10% до 20%. Оплошности в самой постановке измерений могут вызвать увеличение погрешностей до 50% и более.
     Точность Ф. для измерений отношения потоков излучения ( пропускания коэффициента и отражения коэффициента ) более высока. Они строятся по одноканальной и двухканальной оптическим схемам. В одноканальном Ф. измеряется относительное уменьшение потока излучения при установке образца на пути пучка лучей. В двухканальном Ф. ослабление потока излучения образцом осуществляют, сравнивая потоки в измерительном и т. н. опорном каналах. Для уравнивания потоков излучения в каналах применяются регулируемые диафрагмы, клин фотометрический и др. подобные устройства. Коэффициенты пропускания и отражения светорассеивающих образцов измеряют также в интегрирующих Ф. О спектрофотометрах см. в ст. Спектральные приборы.
   
      Лит.см. при статьях Фотометрия, Фотометрия импульсная.
      А. С. Дойников.
   Принципиальные оптические схемы фотометров для измерения: а — освещенности и экспозиции, а также (с привлечением закона квадратов расстояний) силы света и освечивания; б — силы света и освечивания (т. н. телецентрическим методом); в — яркости и интеграла импульса яркости (с применением фокусирующей оптической системы); г — яркости (с применением габаритной диафрагмы). И — источник света; П — приемник излучения с исправляющими его спектральную чувствительность светофильтрами и ослабителями; О — объектив с фокусным расстоянием f; D — диафрагма, устанавливаемая в фокальной плоскости (б) или в плоскости изображения источника (в); D a— апертурная диафрагма; D r— габаритная диафрагма; a и b — угловые размеры фотометрируемых пучков лучей.

световой поток по одному измерению. Основной частью Ф. и. является фотометрический шар (шар Ульбрихта), который представляет собой полый шар (или полое тело иной формы) с внутренней поверхностью, окрашенной неселективной белой матовой краской. Диаметр шара должен значительно превышать размеры фотометрируемых источников света, вследствие чего для измерения световых потоков, например люминесцентных светильников, строят Ф. и. диаметром до 5 м. Освещённостьлюбой точки шара, защищенной небольшим экраном от прямых лучей горящего в шаре источника, пропорциональна световому потоку этого источника (в общем случае – потоку излучения ) .Освещённость экранированного участка измеряется тем или иным способом, например с помощью встроенного в шар фотоэлемента. Ф. и. широко применяется при световых и цветовых измерениях, в частности для измерения световых потоков ламп и светильников, отражения коэффициентов и пропускания коэффициентов.
   
      Лит.:Тиходеев П. М., Световые измерения в светотехнике. (Фотометрия), 2 изд., М. – Л., 1962.

фотометр интегрирующий.

световой величины.Применяется при фотометрических и спектральных измерениях в ультрафиолетовой (УФ), видимой и ближней инфракрасной (ИК) областях спектра (см. Фотометрия, Спектрометрия) .
     Для воспроизведения световых единиц и при световых измерениях используют светоизмерительные (СИ) фотометрические лампы накаливания–Ф. л. силы света (СИС) и Ф. л. светового потока (СИП). СИС выпускают с номинальными значениями силы света от 5 кддо 1500 кд,СИП – со значениями светового потока от 10 лмдо 3500 лм.Конструктивно СИ лампы бывают пустотные, с телом накала в виде прямой нити, работающие при цветовой температуре Т цв= 2360 К, и более мощные, газонаполненные (газополные), с телом накала в виде спирали, Т цв= 2800–2854 К.
     В зависимости от точности воспроизведения световых единиц СИ лампы подразделяются на рабочие, с квадратичным отклонением результата измерения относительно его среднего значения не свыше 3%, и образцовые 1-го, 2-го и 3-го разрядов с отклонением соответственно 0,4%, 0,6% и 1%. Некоторые СИ лампы накаливания используются в качестве вторичных