об/мин,подача 0,1-0,5 мм/об(для твёрдых материалов) и 0,7-2,2 мм/об(для мягких материалов).

  В. С. Рыбалко.

  Лит.:Бершадский А. Л., Расчет режимов резания древесины, М., 1967. См. также лит. при ст. Обработка металлов резанием .

Сверлилы

Сверли'лы(Lymexylidae), семейство жуков. Длина тела 6-18 мм;окраска самок жёлтая, самцов чёрная, ноги жёлтые. Около 30 видов. Распространены всесветно. Жуки вылетают весной. Яйца откладывают в трещины старых стволов и брёвен. Личинки живут в древесине, просверливая ходы диаметром 1-2 мм(отсюда название). С. нападают на многие лиственные и хвойные деревья. Пораженная ими древесина непригодна для выработки из неё изделий. Большинство видов С. наносит вред древесине на лесосеках, складах, иногда в постройках. С. корабельный (Lymexylon navale) встречается на корабельных верфях. Меры борьбы: удаление из леса мёртвых деревьев, применение различных инсектицидов.

Сверлильная головка

Сверли'льная голо'вка,узел или приспособление металлорежущего станка (главным образом сверлильного) для закрепления режущих инструментов: свёрл, зенкеров, развёрток, метчиков.С. г. изготовляются несамодействующие и самодействующие (с индивидуальным приводом), с одним или несколькими шпинделями. С. г., устанавливаемые на многошпиндельных и агрегатных сверлильных станках,могут иметь шпиндели, располагаемые жестко (применяются в массовом производстве), и шпиндели, которые можно фиксировать в том или ином заданном положении (применяются в серийном производстве).

Сверлильный станок

Сверли'льный стано'к,станок для обработки отверстий со снятием стружки. На С. с. производят сверление, рассверливание, зенкерование, развёртывание, растачивание, нарезание резьбы.Различают следующие типы С. с. по металлу: вертикально-сверлильные, горизонтально-сверлильные, центровальные, многошпиндельные, агрегатные, специализированные и др.

  Вертикально-сверлильный станок ( рис. 1 ) - наиболее распространённый тип С. с. в металлообработке; используется для получения отверстий в деталях относительно небольшого размера в условиях индивидуального и мелкосерийного производства, в ремонтных цехах и т. п. Инструмент ( сверло, зенковка, развёрткаи др.) закрепляют в вертикальном шпинделе, деталь - на столе станка. Совмещение осей обрабатываемого отверстия и инструмента производят перемещением детали. Для ориентации заготовки и автоматизации обработки применяют также программное управление. Для обработки отверстий диаметром до 12 мм(например, в приборостроении) используют настольные станки (обычно одношпиндельные). Тяжёлые и крупногабаритные детали, а также детали с отверстиями, расположенными по дуге окружности, обрабатывают на радиально-сверлильном станке. На этом С. с. совмещение осей обрабатываемого отверстия и инструмента осуществляют перемещением шпинделя относительно неподвижной детали. Горизонтально-сверлильный станок обычно используют при обработке глубоких отверстий (например, в осях, валах, стволах стрелковых и артиллерийских систем и т. п.). Центровальные станки служат для получения в торцах заготовок центровых отверстий. Иногда центровальные станки оснащаются отрезными суппортами с резками для отрезки заготовки перед центрованием (центровально-отрезной станок). Для одновременной обработки (главным образом сверления) нескольких отверстий применяют многошпиндельные С. с. ( рис. 2 ) со сверлильными головками.Процесс обработки автоматизирован на агрегатных С. с., которые собирают из стандартных самодействующих силовых головок с фланцевыми электродвигателями и редукторами, обеспечивающими вращение шпинделя и подачу головки. Существуют агрегатные С. с. одно-, двух- и трёхсторонние, с вертикальными, горизонтальными и наклонными сверлильными и резьбонарезными шпинделями, число которых иногда достигает нескольких десятков в одном станке. Специализированные С. с., на которых выполняют ограниченный круг операций, снабжены различными автоматизированными устройствами. Для комбинированной обработки деталей применяют станки: сверлильно-расточные (одно- и двухсторонние), сверлильно-нарезные (обычно многошпиндельные, с реверсированием резьбонарезных шпинделей), сверлильно-фрезерные и сверлильно-долбёжные (главным образом для деревообработки), сверлильные автоматы.

  Д. Л. Юдин.

 В деревообработке получили распространение одно- и многошпиндельные вертикальные, одно- и двухсторонние главным образом многошпиндельные горизонтальные С. с. и станки с поворотным шпинделем, который может располагаться вертикально и горизонтально. На деревообрабатывающих станках,кроме сверления отверстий, получают пазы, гнёзда, удаляют сучки и т. п.

  В. С. Рыбалко.

  Лит.:см. при статьях Металлорежущий станок , Деревообрабатывающий станок .

Рис. 2. Многошпиндельный сверлильный станок.

Рис. 1. Вертикально-сверлильный станок.

Сверло

Сверло', режущий инструмент для получения отверстия сверлением или увеличения его диаметра при рассверливании.В металлообработке различают С. по конструкции и назначению: винтовые (спиральные) универсальные; для получения глубоких отверстий (одно- и двухстороннего резания); центровочные (для обработки центровых отверстий). Наиболее распространённое винтовое С. представляет собой стержень ( рис. 1 ) с рабочей частью, имеющей режущие элементы - главные режущие кромки, вспомогательные режущие кромки (кромки-ленточки) и поперечную кромку, и хвостовиком, которым С. крепится в шпинделе станка, патроне или сверлильной головке.Рабочая часть выполняется с равномерной обратной конусностью - 0,03-0,12 ммна 100 ммдлины С. Изготовляют также С. специальных конструкций - без поперечной кромки, с особой заточкой, со стружкоразделительными канавками. Стандартные винтовые С. имеют диаметр от 0,25 до 80 мм.В зависимости от свойств обрабатываемого материала, режима резания и материала режущей части С. применяют пять различных форм заточки режущей части ( рис. 2 ). Основные нормируемые геометрические параметры винтовых С. ( рис. 3 ): угол наклона винтовых канавок w, угол при вершине 2j, угол наклона поперечной кромки a, задний угол и, передний угол g. Для всего диапазона диаметров С. принимают w = 18-30°, 2j= 80-140°, y = 47-55°, a = 8-14°, tgg = tgw/sinjЧ d r/D,где d r-диаметр режущей части С. в точке, для которой определяется угол. Режущая часть С. изготовляется из быстрорежущих сталей и твёрдых сплавов или композитных материалов; хвостовики делают из сталей 45, 40Х (при режущей части из быстрорежущей стали) и сталей ХС, 40Х, 45Х (при режущей части из твёрдых сплавов или композитных материалов).

  Д. Л. Юдин.

 В деревообработке наряду со С. с конической заточкой применяют спиральные С. с направляющим центром и подрезателями, С. для кольцевого сверления, С. полые с выталкивателем и др. ( рис. 4а, 4б, 4в ). Наиболее распространены спиральные С. Для спиральных С. w = 22-30°, 2j при сверлении перпендикулярно волокнам древесины составляет 120°, при сверлении вдоль волокон - 60-80°, a = 20-30°. Для уменьшения усилий резания спиральных С. с направляющим центром и подрезателями высота подрезателей hпринимается не более максимальной подачи. Обычно h =0,8-2 мм,а высота направляющего центра - 3,5-8,5 мм.

 С. изготовляют из инструментальной стали Х6ВФ или из быстрорежущей стали Р6М5. Для сверления древесностружечных и древесноволокнистых плит, фанерованных щитов и др. древесных материалов используют С., оснащенные пластинками и коронками из твёрдых сплавов.

  В. С. Рыбалко.

  Лит.:Грубе А. Э., Дереворежущие инструменты, 3 изд., М., 1971. См. также лит. при ст. Металлорежущий инструмент .

Рис. 4в. Сверло для кольцевого сверления для обработки древесины и древесных материалов.

Рис. 3. Углы винтового сверла по металлу.

Рис. 4б. Сверло цилиндрическое полое с выталкивателем (для высверливания пробок) для обработки древесины и древесных материалов.

Рис. 1. Винтовое сверло по металлу.

Рис. 2. Формы заточки сверла по металлу: а - одинарная или нормальная; б - одинарная с подточкой поперечной кромки; в - одинарная с подточкой поперечной кромки и ленточки; г - двойная с подточкой поперечной кромки; д - двойная с подточкой поперечной кромки и ленточки.

Рис. 4а. Сверло спиральное с направляющим центром и подрезателем для обработки древесины и древесных материалов.

Сверлящие губки

Сверля'щие гу'бки,клионы (Clionidae), семейство из отряда четырёхлучевых губоколо С. г. способны проделывать извилистые ходы в твёрдом известковом субстрате. Встречаются обычно на мелководье в тёплых и умеренных морях. Около 20 видов. В СССР обнаружены в Японском, Чёрном, Белом и Баренцевом морях. Полагают, что механизм сверления С. г. состоит в одновременном воздействии на субстрат двуокисью углерода, выделяемой отдельными поверхностными клетками губки, и механических усилий, развиваемых этими клетками. С. г. - опасные вредители устричных банок: поселяясь на раковинах устриц и проделывая в них ходы, они вызывают т. н. пряничную болезнь устриц, приводящую к их гибели. Одно из средств борьбы - кратковременное погружение пораженных устриц в пресную воду.

Раковина устрицы, пораженная сверлящей губкой. Часть верхнего слоя раковины удалена, видны хорды, проделанные губкой.

Раковина устрицы, пораженная сверлящей губкой. На поверхности раковины видны отверстия, просверлённые губкой.

Сверлящие животные

Сверля'щие живо'тные,морские беспозвоночные животные, способные протачивать ходы или углубления в древесине, скалах, коралловых рифах и даже в железных сваях (морской ёж Strongylocentrotus purpuratus). Морские древоточцы:главным образом двустворчатые моллюски семейства терединид - корабельный червь и ксилофаги из семейства фоладид, рачки лимнория, сферома из отряда равноногих и хелюра из бокоплавов, погонофоры Sclerolinum. Камнеточцы: двустворчатые моллюски морской финик - литофага, морское сверло - фолада и др., сверлящая губка - клиона, некоторые многощетинковые черви из семейства спионид, усоногий рачок литотрия, некоторые морские ежи. Брюхоногие моллюски насса и натика просверливают отверстия в раковинах моллюсков, которыми питаются. Многие С. ж. причиняют большой вред, разрушая подводные части деревянных судов, сваи и другие подводные сооружения.

Сверрир Сигурдарсон

Све'ррирСигурдарсон (Sverrir Sigurdarsson), Сверре Сигурдсон (Sverre Sigurdsson) (около 1150-9.3.1202, Берген), норвежский король в 1184-1202. Священник с Фарерских островов, С., выдавая себя за незаконного сына норвежского короля Сигурда Мунна, возглавил в 1177 движение биркебейнеров.Разбив военные силы своих противников (короля Магнуса Эрлингсона, которого поддерживали крупные землевладельцы и епископат), захватил престол. Папство заняло враждебную С. позицию, он был отлучен от церкви (1198). Опираясь на новый слой служилых людей, С. укрепил королевскую власть. Подавлял крестьянские восстания.

Сверташки

Сверта'шки(Anilius), род пресмыкающихся семейства вальковатых змей. 1 вид - коралловая С. (A. scytale); встречается в тропической Америке. Окраска - на кораллово-красном фоне многочисленные чёрные поперечные полосы. Длина тела до 80 см.Ведёт роющий образ жизни. Питается слепозмейками, дождевыми червями и личинками различных членистоногих. Живородяща.

Коралловая сверташка.

Свёртка функций

Свёртка фу'нкций f 1( x) и f 2( x) ,функция

 

  С.ф. f 1( x) и f 2( x) обозначают f 1 * f 2.Если f 1и f 2являются плотностями вероятности независимых случайных величин Хи Y,то f 1*f 2есть плотность вероятности случайной величины Х+Y.Если F k( x) - Фурье преобразованиефункции f k( х) ,то есть

 

  то F 1( x) F 2( x) является преобразованием Фурье функции f 1*f 2. Это свойство С. ф. находит важные приложения в теории вероятностей (см. Характеристическая функция ) .Аналогичным свойством обладает С. ф. и относительно Лапласа преобразования,что находит широкие приложения в операционном исчислении. Операция свёртывания функций перестановочна и сочетательна, то если f 1*f 2=f 2*f 1и f 1*( f 2*f 3) =( f 1*f 2) *f 3.Поэтому её можно рассматривать как вид умножения функций, что даёт возможность применить к изучению С. ф. теорию нормированных колец.

Свёртывание крови

Свёртывание кро'ви,превращение жидкой крови в эластичный сгусток; защитная реакция организма человека и животных, предотвращающая потерю крови. С. к. протекает как последовательность биохимических реакций, совершающихся при участии факторов свёртывания крови (ФСК) - ряда белков плазмы и ионов Ca 2+. ФСК обозначают римскими цифрами: I - фибриноген,II - протромбин,III - тромбопластин,IV - кальций, V и VI - соответственно плазменный и сывороточный акцелераторы-глобулины, VII - конвертин, VIII - антигемофильный глобулин А, IX - антигемофильный глобулин В (т. н. Кристмас-фактор), Х - Стюарт - Проувер-фактор (аутопротромбин С, тромботропин), XI - плазменный предшественник тромбопластина, XII - фактор Хагемана, XIII - фибрин-стабилизирующий фактор (фибринолигаза). Ряд компонентов системы С. к. содержится в форменных элементах крови. Так, в тромбоцитах находятся фактор 3 кровяных пластинок (предшественник тромбопластина), аналоги факторов V и XIII, фибриногена и др. Ведущие реакции С. к., протекающие с участием ферментов: образование активного тромбопластина, превращение протромбина в тромбин;превращение фибриногена в фибрин;стабилизация фибрина. Основы ферментативной теории С. к. были предложены профессором Юрьевского (ныне Тартуского) университета А. Шмидтом (работы 1872-95). В дальнейшем было установлено, что первая стадия С. к. осуществляется как «внутренней» системой С. к. (тромбопластин образуется из свёртывающих факторов плазмы крови и фактора 3 из разрушающихся тромбоцитов), так и «внешней» (тромбопластин образуется при участии тканевой среды, выделяющейся в результате повреждения тканей) системой С. к. На основе экспериментальных и клинических данных был предложен ряд современных схем С. к., в том числе каскадная схема английского учёного Р. Макферлана (1965-66). Согласно этой схеме, внутренний процесс С. к. начинается с активации фактора XII и превращения его в фактор XIIa. Активация осуществляется при соприкосновении этого белка со смачиваемой поверхностью, при взаимодействии с хиломикронами (липопротеидными частицами крови) или при появлении в кровотоке избытка адреналина, а также при некоторых других условиях. Фактор XIIa вызывает ряд последовательных реакций, в которые вовлекаются присутствующие в плазме крови факторы от XI до V включительно. В итоге образуется кровяной тромбопластин, или протромбиназа.

  При проникновении в кровь тканевого предшественника (внешний путь С. к.) активный тромбопластин образуется при участии плазменных факторов V, VII и Х и ионов Ca 2+. Кровяная или тканевая протромбиназа осуществляет превращение протромбина (фактор II) в фермент тромбин (фактор IIa). Последний, отторгая от фибриногена пептидные фрагменты, превращает его в фибрин-мономер. Нестабилизированный (растворимый в мочевине и некоторых кислотах) фибрин подвергается ферментативной стабилизации фактором Xllla в присутствии ионов Ca 2+. В результате возникает нерастворимый фибрин-полимер, представляющий собой основу кровяного сгустка, или тромба.Cxeмa Макферлана обоснована экспериментально, однако в ней не учтено значение присутствующих в крови естественных антикоагулянтов,а также физиологической регуляции жидкого состояния крови и её свёртывания. У организмов разных видов время С. к. сильно варьирует. Кровь человека, извлечённая из сосудистого русла, в норме свёртывается за 5-12 мин(для регистрации времени С. к. и нарушений С. к. применяется прибор тромбоэластограф). При многих заболеваниях процесс С. к. замедляется, что часто бывает обусловлено недостатком (приобретённым или наследственным) в организме одного или нескольких ФСК. Так, при неусвоении витамина К возникающие кровотечения обусловлены нарушением биосинтеза II, VII, IX и Х ФСК. Тот же эффект может возникнуть при введении в организм избыточных доз антикоагулянтов непрямого действия - антагонистов витамина К, например дикумарина и его производных. Пример врождённого заболевания - недостаток фактора VIII ( гемофилия А), наследование которого связано с передачей женской половой хромосомы.Подобное же заболевание может быть обусловлено накоплением образующихся в организме антагонистов фактора VIII или нарушением структуры этого белка. Различные варианты наследственной недостаточности или дефекты в молекулярной структуре известны почти для всех плазменных ФСК. Нарушения регуляции жидкого состояния крови и её свёртывания приходят также к тромбообразованию, т. е. возникновению и стабилизации сгустков крови в сосудистом русле. Возникновение тромба нельзя объяснить только повышением или усилением процесса С. к. Причиной подобных патологических состояний может быть также локальное или общее понижение в организме больного функции противосвёртывающей системы, обеспечивающей регуляцию жидкого состояния крови (см. Тромбоз ) .Сочетание явлений рассеянного тромбоза и геморрагии может быть обусловлено нарушением регуляторных взаимоотношений свёртывающей и противосвёртывающей систем.

  Лит.:Кудряшов Б. А., Проблема регуляции жидкого состояния крови и взаимоотношения свёртывающей, фибринолитической и противосвёртывающей системы, «Успехи физиологических наук», 1970, т. 1, №4; его же, Биологические проблемы регуляции жидкого состояния крови и её свёртывания, М., 1975; Schmidt A., Weitere Beitrдge zur Blutlehre, Wiesbaden, 1895; Macfarlane R. G., The basis of the cascade hypothesis of blood clotting, «Thrombosis et diathesis haemorrhagica», 1966, v. 15, № 3/4; Laki К., Our ancient heritage in blood clotting and some of its consequences, «Annals of the New York Academy of Sciences», 1972, v. 202; Owren P. A., Stormorken H., The mechanism of blood coagulation, «Reviews of Physiology», 1973, v. 68.

  Б. А. Кудряшов.

Схема к ст. Свёртывание крови.

Сверхвысокие частоты

Сверхвысо'кие часто'ты(СВЧ), область радиочастот от 300 Мгцдо 300 Ггц,охватывающая дециметровые волны, сантиметровые волныи миллиметровые волны (см. Радиоволны ) .Диапазон СВЧ используется главным образом в радиолокации и радиосвязи,а также в радиоспектроскопии.При освоении диапазона СВЧ понадобилось создание генераторов и усилителей электрических колебаний, основанных на новых принципах: магнетронов, клистронов, ламп бегущей волныи др. Для канализации волн СВЧ были созданы радиоволноводы,специальные типы антенн (см. Сверхвысоких частот техника ) .

Сверхвысокий вакуум

Сверхвысо'кий ва'куум,разрежение выше 10 -8 мм рт. ст.(1 мм рт. ст.(100 н/м 2) .С. в. создают в камерах для имитации космического пространства, в различных экспериментальных установках, а также в некоторых электровакуумных приборах. С. в. необходим для исследования физических свойств очень чистой поверхности твёрдого тела и поддержания её в течение достаточно длительного времени. В этой связи С. в. определяют как состояние разреженного газа, при котором чистая поверхность тела покрывается мономолекулярным слоем адсорбированного газа за время Ј 100 сек.

 При очень низких давлениях подавляющая часть газа находится в адсорбированном состоянии на поверхности вакуумной аппаратуры, а также в растворённом состоянии внутри её материала и лишь незначительная часть - в откачиваемом объёме. Достижимая степень вакуума определяется равновесием между скоростью откачки газа и скоростью его поступления в откачиваемый объём за счёт десорбции газа со стенок и натекания извне через микроскопические отверстия. Для получения С. в. натекание извне сводят к минимуму, а аппаратуру вместе с корпусом вакуумной камеры обезгаживают, прогревая в вакууме при температуре 300-500 °С. Поэтому обычно корпус вакуумной камеры изготавливают из плотных, сваривающихся, коррозиестойких материалов, имеющих низкое давление пара и легко обезгаживающихся при прогреве (нержавеющая сталь, стекло, кварц, вакуумная керамика; см. Вакуумные материалы ) .

 Откачивающая система сверхвысоковакуумной установки состоит из основного насоса, включаемого после окончания прогрева и достижения высокого вакуума, и вспомогательного насоса, работающего при прогреве установки. Поскольку масса откачиваемого газа в условиях С. в. невелика, то в качестве основных применяют сорбционные, ионно-сорбционные и магниторазрядные вакуумные насосы,быстрота откачки которых достигает 10 6 л/сек(крупные установки), а предельный вакуум 10 -13 мм рт. cm.Иногда в качестве основных применяют пароструйные (парортутные и паромасляные) и турбомолекулярные насосы.

  Измерение С. в. осуществляется электронными ионизационными и магнитными электроразрядными вакуумметрами (см. Вакуумметрия ) .Нижний предел давлений у первых определяется фотоэлектронным током с ионного коллектора под действием рентгеновского излучения с анода (возникающего при его электронной бомбардировке). Существуют ионизационные вакуумметры специальной конструкции, в которых фоновый ток снижен. Наибольшее распространение получил манометр Байярда - Альперта; коллектор ионов в нём представляет собой тонкий осевой стержень, на который попадает лишь малая часть рентгеновского излучения анода. Нижний предел измерений ~10 -10 мм рт. ст.Модулируя ионный ток в манометре Байярда - Альперта с помощью специального электрода, удаётся измерять давления до 10 -11 мм рт. ст.Подавление фонового тока электричемким полем дополнительного электрода (супрессора) позволяет измерять ещё более низкие давления (особенно в сочетании с методом модуляции). Созданы конструкции, в которых коллектор экранирован от попадания на него рентгеновского излучения с анода. В манометре Редхеда ионы из области ионизации вытягиваются через отверстие в экране и при помощи полусферического рефлектора фокусируются на тонкий проволочный коллектор. В манометре Хельмера ионный поток, выходящий из отверстия в экране, отклоняется с помощью 90°-ного углового электростатического дефлектора и направляется к коллектору. В манометре Грошковского тонкий проволочный коллектор расположен напротив отверстия в торце анодной сетки и защищен от рентгеновского излучения стеклянной трубкой. Описанные приборы позволяют измерять давление до 10 -12 мм рт. ст.,а в отдельных случаях до 10 -13мм рт. ст.

 Значительное уменьшение нижнего предела измеряемых давлений может быть достигнуто за счёт увеличения длины пробега электронов. В орбитронном манометре удлинение достигается с помощью электрического поля, а в ионизационном магнетронном манометре (манометр Лафферти) - с помощью магнитного поля. Этими приборами можно измерять давления до 10 -12-10 -13 мм рт. cm.Магнитные электроразрядные вакуумметры, применяемые для измерения С. в., имеют ряд особенностей: чтобы обеспечить зажигание и поддержание разряда при очень низких давлениях, увеличивают размеры разрядного промежутка, повышают анодное напряжение (5-6 кв) и напряжённость магнитного поля (>1000 э) .Для исключения фонового тока, связанного с туннельной эмиссией с участков катода, расположенных вблизи анода, эти участки окружают заземлёнными экранами.

  Для измерения парциональных давлений газов в условиях С. в. применяются масс-спектрометры,например омегатроном удаётся измерять давления до 10 -10 мм рт. ст.,а статическим, квадрупольным и др. масс-спектрометрами - до 10 -12-10 -13 мм рт. cm.

  Лит.см. при статьях Вакуумная техника, Вакуумметрия.

  Г. А. Ничипорович, В. С. Босов.

Сверхвысоких частот техника