Уолтер Дэнди - американский врач - внес революционизирующие изменения в диаг-ностику рассматриваемых заболеваний. Дело в том, что головной и спинной мозг как-бы омываются снаружи и изнутри спинномозговой жидкостью. Существенно, что все прост-ранства на поверхности и в глубине мозга, в которых эта жидкость находится, не изоли-рованы, а сообщаются между собой. Толчком к открытию, как это часто бывает, оказался случай: на рентгенограммах черепа одного из пострадавших в период Первой Мировой войны были видны мозговые желудочки (полости, расположенные в глубине головного мозга, в которых в нормальных условиях продуцируется и содержится упомянутая жид-кость). До этого врачи ничего подобного не наблюдали. Оказалось, у этого постра-давшего раневой канал достигал одного из желудочков и, из-за образовавшегося сообще-ния с внешней средой, жидкость из него вытекла, и он заполнился воздухом. Коэффи-циент поглощения рентгеновых лучей этой жидкостью лишь в незначительной степени отличается от такового окружающей мозговой ткани. Поэтому на обычных рентгенограм-мах различить их не представляется возможным. Другое дело воздух: он достаточно контрастен, чтобы различать его на фоне обычного рентгеновского изображения черепа. Дэнди последовательно разработал разновидности искусственного контрастирования воз-духом головного мозга - вентрикулографию и пневмоэнцефалографию, а потом и спинно-го мозга - пневмомиелографию. Это неизмеримо обогатило и уточнило диагностику опу-холей и ряда других заболеваний центральной нервной системы и явилось одним из важ-ных условий бурного развития нейрохирургии. Но вентрикулография искусственно вос-производила то, что случилось с упоминавшимся раненым: воздух вводился непосред-ственно в желудочковую систему мозга. Для этого требуется выполнить самую настоя-щую нейрохирургическую операцию - надрезать покровы черепа, наложить фрезевое от-верстие в его кости, а затем иглой проникнуть через всю толщу мозга в нужный желу-дочек и непосредственно в него ввести газ. При пневмоэнцефалографии воздух или дру-гой газ вводится в ликворные пространства головного мозга через поясничный прокол, непосредственно в пространство, окружающее спинной мозг (точнее, отходящие книзу от него корешки, образующие пучок, названный в анатомии по его внешнему сходству "кон-ским хвостом"), но, из-за отмеченного уже сообщения этого с подобными пространст-вами головного мозга, газ, в зависимости от положения пациента, может быть направлен в них. Эта процедура крайне мучительна, сопровождается резкими болями, иногда обмороч-ными состояниями и эпилептическими приступами, а на первых порах нередко приводила даже к смертельным исходам. Пневмомиелография (исследование спинного мозга путем искусственного контрастирования его газом, введенным в окутывающее его (субарахнои-дальное) пространство, также тягостно для больных и не во всех случаях достаточно информативна.
   Несмотря на вполне сознаваемые врачами указанные недостатки этих методик, они широко, даже излишне широко применялись, т.к. были совершенно незаменимы и часто необходимы на протяжении десятилетий. Но развитие новых технологий позволило раз-работать метод компьютерной томографии, разрешающая способность которой настолько выше, что для нее достаточна та незначительная разница в способности поглощать рент-геновы лучи спинномозговой жидкостью и мозговой тканью, и это позволяет различать на получаемых изображениях ликворные пространства без их искусственного контрастиро-вания и всего, с этим связанного. Это был настолько заметный прорыв в возможностях распознавания заболеваний центральной нервной системы и многих других систем и органов, что авторы этого метода были удостоены Нобелевской Премии. Вскоре были с этой же целью разработаны и другие, даже более чувствительные методы исследования, основанные на таких физических феноменах, как магнитный и позитронный резонанс. В итоге, исследования, не только заменившие ранее перечисленные, но и поставляющие врачам более точную информацию о характере и локализации патологических изменений, превратились в безобидные, не связанные с какими-либо чрезвычайно неприятными ощу-щениями, не говоря уже об осложнениях, процедуры.
   Ограничимся одним приведенным, но весьма типичным примером в том отношении, что иллюстрирует зависимость роста возможностей врачей в распознавании болезней от успехов в развитии других отраслей знаний и основанных на них новых технологий. И это вовсе не исключение: подобное этому происходило во всех разделах клинической медици-ны. Перечислить все даже наиболее значимые частные достижения не входит в задачи этой работы ограничимся приведенной констатацией весьма впечатляющих успехов в лечении многих болезней и повреждений, еще недавно предопределявших гибель или тя-желую инвалидность людей. Это в большой мере было обусловлено совершенствованием диагностики и, разумеется, разработкой новых, более эффективных методов лечения. Это закономерно: достижения в каждой отдельной из этих отраслей медицины стимулируют и являются важным условием прогресса второй. Однако, как ни важны достижения, осно-ванные на открытиях в точных науках и технологии, наиболее масштабными и многообе-щающими для будущего медицины и здравоохранения стали достижения последних деся-тилетий в знаниях о самом человеке и о строении и функциях его организма, в свою оче-редь, также многим обязанные успехам в других отраслях знаний. Это относится, в пер-вую очередь, к генетике. Со времен Вирхова и на протяжении многих десятилетий "глу-бина" проникновения в сущность патологических процессов ограничивалась клеткой. По характеру изменений клеток стало возможным судить о характере патологического про-цесса, ставить окончательный патоморфологический - диагноз. Это сыграло огромную и безусловно положительную роль в развитии медицинских знаний. Но эти "итоговые" данные мало помогали в понимании конкретных причин и механизмов частных патологи-ческих процессов, но также и таких биологических свойств живых организмов, как нас-ледственность и иммунитет. Ни то, ни другое - быть может, под другими названиями - не могло оставаться абсолютно неизвестным людям с древнейших времен. Не могли же они не знать, что у животных рождаются детеныши того же вида. Не могли не знать, что во время эпидемий одни люди умирают, другие выживают, а третьи и вовсе не заболевают.
   Не намного дальше этого в понимании таких явлений лет 50-60 назад ушла и меди-цинская наука. Правда, знали уже, что некое "наследственное вещество" хранится в хро-мосомах клеток; что иммунитет можно создавать искусственно и целенаправленно. За последующий короткий период, исчисляемый всего лишь несколькими десятилетиями, глубина проникновения в сущность этих явлений после открытия роли ДНК и ее стро-ения ("двойной спирали") - достигла уровня, когда появилась возможность не только изу-чать механизмы упомянутых процессов, но и активно вмешиваться в них, даже управлять ими в определенной мере. Стало возможным исследовать генный механизм не только врожденных пороков развития, но и многих заболеваний приобретенного характера. В настоящее время ставится уже задача более масштабного управления с помощью методов генной инженерии иммунной функцией организма, в практическом плане осуществляется (пока, правда, на животных) создание искусственного иммунитета, эффективного ко мно-гим заболеваниям одновременно.
   Сообщения об отдельных частных успехах на этом пути часто появляются на стра-ницах массовых изданий в виде лаконичных сообщений типа "Обнаружен ген, ответст-венный за развитие рака такого-то органа". У читателей подобных сообщений, ставших рутинными, может сложиться "облегченное" впечатление о такого рода открытиях, будто дело это обыденное и не особо сложное: то ли дело обнаружение новой звезды астро-номами или элементарной частицы в ядерной физике! - может некто подумать. Чтобы читатель мог получить отвечающее реальности представление не только о полученных ре-зультатах и о возможных перспективах их внедрения в практику здравоохранения, но и о том, каким сложным и трудным путем, каким огромным и разнонаправленным поиском многих коллективов ученых и их сотрудников в разных странах эти результаты были по-лучены, рассмотрим два примера. А это - в свете нашей задачи создания именно такого, отвечающего реальности представления о медицинской науке и о путях ее развития - полагаем нужным и важным. Без этого невозможен ответ на вопрос, вынесенный в название этой главы.
   Отметим предварительно, что об актуальности и значимости поисков эффективных средств борьбы со СПИДом - с "чумой ХХ века" - говорить считаем ненужным из-за оче-видности этого. После установления "виновника" этого заболевания и путей его распрост-ранения, исследования были устремлены по пути, предложенному Паулем Эрлихом более ста лет тому назад для борьбы с "чумой Х1Х века" - сифилисом. Это было тогда, по сути, новым направлением в медицинской науке, что было по достоинству оценено мировой научной общественностью: за эти свои работы П.Эрлих был в 1908 году удостоен Нобе-левской Премии. Это были поиски того, что автор данного направления в медицине об-разно назвал "волшебной пулей", т.е. лекарственного средства, которое поражало бы воз-будителя болезни, но не повреждало бы организм заболевшего человека. Начались и продолжаются также попытки использовать в борьбе со СПИДом давно проверенное и весьма эффективное средство профилактики и лечения инфекционных заболеваний - спе-цифическую вакцинацию - и на этом пути также намечаются успехи. Менее известным для "не-посвященных" оставалось то, что в тиши лабораторий исследователей зарожда-лось другое, ранее невозможное направление противостояния этой угрозе, которое, следуя примеру Эрлиха, можно назвать поиском "щитов" или "брони", не дающей возможности возбудителю в достаточной мере проникнуть в тело человека и развить в нем свою губи-тельную деятельность.
   В журнале "Scientific America" за сентябрь 1997г. была опубликована статья двух из-вестных американских специалистов в области медицинской генетики - Стефена О'Брайена и Майкла Дина - под названием "В поисках генов, сопротивляющихся AIDS" и подзаголовком "Генетическая особенность, защищающая от AIDS, уже открыта, но вско-ре ожидаются другие находки, которые откроют абсолютно новые пути развития методов предупреждения и лечения". У кого-то, возможно, такое, ко многому обязывающее, ут-верждение может породить скептическое отношение: дескать, сколько их уже было и сколько сейчас появляется трескучих, многообещающих заявлений, в итоге оказывающих-ся если не абсолютно пустым звуком, то, в лучшем случае - явным преувеличением значимости достигнутого, обычным в рекламной практике. В данном случае статья напи-сана солидными исследователями, в строго академическом стиле, без какой-либо аффекта-ции и без малейших признаков самовосхваления или преувеличения чего-либо. Эта статья настолько насыщена содержанием, настолько "обезвожена" авторами, что кратко изло-жить все ее содержание в виде, доступном пониманию массового читателя, часто незнако-мого с современной генетикой и ее терминологией, вряд-ли возможно. Поэтому ограни-чимся лишь пересказом фрагментов статьи, которые и для автора данной книги - тоже не специалиста в области генетики и молекулярной биологии представляются наиболее по-казательными и важными в свете поставленных здесь задач, для отражения хотя-бы общей картины того, как и в каком направлении развивается современная медицинская наука.
   В основу поисков были положены следующие факты и вытекающие из них идеи:
   1. Не все лица из групп риска (гемосексуалисты, наркоманы, больные гемофилией, которым вливали кровь до того, как ее стали подвергать проверке на HIV) оказались инфицированными.
   2. У тех же из них, которые были инфицированы, последствия были не одинаковыми: у одних быстро развивался иммунодефицит со всеми присущими ему тяжелыми последст-виями, у других же на длительный период сохранялось относительно удовлетворительное состояние.
   3. Развитие инфекционного патологического процесса обусловлено не только имевшим место контактом с инфекционным началом, но взаимодействием организма с ним.
   Иными словами, предотвратить заболевание и лечить заболевшего можно не только воздействуя на возбудителя, но и делая организм человека устойчивым, защищенным от него. Один путь достижения этой цели - уже упомянутая вакцинация - известна уже мно-го лет. Но упомянутые факты, касающиеся СПИДа, подсказали новые перспективы дос-тижения такого результата. Поиски объяснения различной естественной восприимчи-вости к HIV (ВИЧ) авторы статьи и другие исследователи начали еще в 1984 году - всего лишь через один год после открытия того, что именно этот вирус является причиной СПИДа, и через три года после того, как это заболевание вообще было впервые иденти-фицировано. Из экспериментов на животных возникло обоснованное предположение о том, что устойчивость к этому возбудителю обусловлена наличием особого варианта гена, участвующего в иммунной функции организма, т.к. по результатам ранее проведенных исследований было известно, что гены влияют на вероятность развития инфекционных заболеванй, особенно вызываемых так называемыми ретровирусами, к которым относится и HIV. Важно то, что большинство генов служат матрицами белковых молекул, выпол-няющих основные функции в клетках. Если ген полиморфен, т.е. существует более, чем в одной форме, его варианты (alleles) вырабатывают неодинаковые белки, различающиеся по своим функциональным свойствам. Было доказано, что у мышей, например, более, чем 30 вариантов генов делают их носителей устойчивыми к ретровирусам.
   Первая задача исследователей заключалась в том, чтобы найти источники генов лю-дей, по-разному реагировавших на имевшие место контакты с HIV. Для этого были отоб-раны группы людей высокого риска HIV-инфицирования, в особенности гомосексуа-листы-мужчины, лица, вводящие наркотики внутривенно, больные гемофилией, получав-шие инфузии непроверенных продуктов крови. Образцы крови и тканей таких людей могли служить материалом для исследования генетического аппарата в разных по реакции на этот вирус группах. Но задача усложнялась тем, что в человеческих хромосомах содержится до 100 тысяч генов, и только малая часть из них была детально изучена ко времени начала этих исследований. Очевидно, что изучить все остальные многие десятки тысяч генов под интересующим углом зрения представлялось задачей, абсолютно невы-полнимой. Но было известно, что для проникновения в клетки, вирусы должны "узнать" и "привязаться" к определенным белкам на их поверхности, становящейся плацдармом для последующегого внедрения внутрь этих клеток. Далее ретровирусы вводят свои гены в хромосомы хозяина, из-за чего функции его клеток меняются таким образом, что они на-чинают воспроизводить вирусные частицы. Учет этого механизма позволил сузить "поле" исследования до, приблизительно, 50 генов, белки которых потенциально могут влиять на HIV. Кроме того, внимание было привлечено к 250 другим вариабельным участкам ДНК. Исследователи стали сравнивать, как часто каждый известный вариант гена или поли-морфный сегмент ДНК представлен в группах, по-разному реагировавших на контакт с HIV. Кроме того, сравнивали т.наз. генотипы. Дело в том, что каждый индивидуум насле-дует пары копий всех генов обоих родителей, за исключением тех, которые определяют пол - они различны. Пара генов определенного расположения в хромосоме может быть одинаковой (идентичной) гомозиготной. Если же пара состоит из различных вариантов этого же гена, это называется гетерозиготным вариантом генотипа.
   Вначале собое внимание было обращено на процент лиц гомо- и гетерозиготных по некоторым вариантам генов в каждой группе. Отчетливые различия в частоте тех и дру-гих позволили произвести предварительный отбор генов, значимых для функции иммуни-тета. Эта работа потребовала годы упорных поисков. Было много надежд, но и разо-чарований немало после тщательных проверок. Только через более, чем 10 лет после начала этой работы (конец 1995 - начало 1996г.) появились реальные "ключи" к разгадке. Была установлена роль определенного белка (CD-4) на поверхности Т-лимфоцитов и мак-рофагов в развитии взаимодействия вируса с этими клетками. Эти молекулы CD-4 в присутствии вируса HIV претерпевают изменения, в результате которых теряется ряд их важных свойств. Но появились основания для предположения о существовании еще од-ного белка, к которому HIV могут "привязываться". Другим важным событием для решения этой проблемы явилось открытие того, что существует другой класс Т-лим-фоцитов, производящих иной белок (СD-8), действие которого блокирует возможность проникновения HIV в иммунные клетки. Постепенно было найдено три фактора, подав-ляющих способность проникновения вируса в макрофаги, и все они оказались известными укороченными цепями аминокислот, в обычном варианте ответственные за привлечение иммунных клеток к пораженным тканям. Усилиями многих групп исследователей из раз-ных стран был решен вопрос о других рецепторах HIV (CCR-5, CXCR-4), "привя-зывающих" его и становящихся плацдармом для дальнейшего проникновения в клетки. В конечном итоге был раскрыт механизм привлечения и закрепления вируса. Дальнейшие искания выявили наличие укороченного варианта CCR-5, содержащего на 32 нуклеотида меньше нормального. Оказалось, что в группе не инфицированных были лица, гомозигот-ные по укороченному мутанту CCR-5. В отличие от этого, ни один из 1343 инфициро-ванных пациентов не был гомозиготен по этому признаку. Проверки подтвердили, что именно это отличие предопределяет защиту от заражения HIV. К этому выводу пришли почти одновременно несколько групп исследователей, работавших независимо друг от друга. Но дальнейшие исследования показали, что этот механизм защиты действует толь-ко у 20 процентов не инфицированных. В остальных 80 процентах сопротивляемость ин-фекции определялась другими - генетическими или не-генетическими факторами. Выяс-нилось также, что лица, гетерозиготные по этому признаку, обладают частичной защитой: у них не наблюдается бурного развития заболевания.
   Думается, из приведенных сведений читатель уже может получить представление о чрезвычайной сложности проделанной роботы, и это позволит изложить последущие раз-делы этой главы более кратко. Возможно, наш пересказ кому-то покажется слишком затя-нутым и подробным. Не исключено, что кого-то, наоборот, не удовлетворит отсутствие некоторых подробностей. Наконец, специалисты найдут, вероятно, немало "шерохо-ватостей" и даже неточности в нем. Мы заранее соглашаемся со справедливостью воз-можных замечаний. Но, повторим, изложение содержания серьезнейшей научной статьи преследовало ограниченную цель - по возможности отразить новые направления развития медицинской науки. Наиболее важным представлялось показать сложность и глубину про-никновения ученых в механизм "тщательнейшим образом запрятанных" функций орга-низма человека, каким является иммунная реакция его. Уже не клетка стала конечным объектом изучения. Постепенно было более полно раскрыто ее строение: сначала цито-плазма, ядро и органеллы, затем строение ядра, в частности - это важно в данном кон-тексте - были обнаружены хромосомы и установлена их роль в передаче наследственной информации. Затем было установлено строение ДНК. В настоящее время объектом изу-чения и даже воздействия в желаемых целях стали уже не только мельчайшие участки этой огромной молекулы, отдельные гены, но и их разновидности (варианты) и даже осо-бенности белков, которые тот или иной ген и разные его варианты производят. Таким об-разом, ученые достигли другого "базового уровня", на котором определяется многое (но, разумеется, далеко не все) в жизнедеятельности организма, в частности, такая жизненно-важная функция, как иммунитет. Действительно, если известно, какая разновидность гена предопределяет восприимчивость к той или иной инфекции, а какая подавляет ее, соот-ветствующие изменения генома человека могут решить многие проблемы. Задачу эту, разумеется, не следует упрощать, она чрезвычайно сложна. Но приведенные данные о сос-тоянии и возможностях современной генетики и генной инженерии принципиально неосу-ществимой считать ее тоже не дают оснований.
   Далее, если один белок на поверхности клетки "привлекает" и прикрепляет к себе ин-фекционное начало, а другой (или другая разновидность того же белка) препятствует это-му, создаются другие, хоть и труднодостижимые и чрезвычайно сложные, но реальные пути и возможности для воздействия в желаемом направлении на иммунные способности организма. Таким образом обозначились возможности препятствовать развитию СПИДа не воздействием "волшебной пулей" на возбудителя, а созданием преграды сотрудничест-ву вируса с "белком-привратником", допускающим или не допускающим его в клетку. Наиболее реалистичным выглядело нахождене способа "перекрыть" места соединения вируса с белком на поверхности клеток. Если, например, "заткнуть" эти места другими молекулами, возможность прикрепления первого ко второму будет исключена. Перс-пективным также выглядит вакцинация людей фрагментами белка CCR-5, которые могут вызвать образование иммунной системой организма собственных антител, связывающих этот белок. Возможным представляется также использование генной инженерии, чтобы снабдить макрофаги новыми генами, чьи производные блокировали бы производство CCR-5. Изучаются и другие возможности - не только предупреждения, но и лечения да-леко зашедших заболеваний. Установлено также, что отдельные индивидуумы, гомози-готные по мутантному гену, были, тем не менее, инфицированы HIV. Это вынуждает считаться с возможностью существования особо вырулентной линии этого возбудителя. Что-ж, ничего необычного в этом нет, то же наблюдается и у возбудителей других забо-леваний. Как и во многих других случаях, по мере решения одной проблемы в медицине, возникают другие. Но исторический опыт безусловно доказывает, что постепенно и они разрешаются и, видимо, вновь выявленные проблемы, связанные со СПИДом, тоже будут разрешены в будущем. На указанных направлениях поисков, указывают авторы статьи, уже достигнуты практически значимые результаты. Так, идентифицирован вариант одного из генов - CCR2B, заметно замедляющий развитие болезни. Авторы отмечают ускоряю-щийся темп открытий в изучаемой ими области и выражают надежду на то, что "обоб-щенные таланты исследователей разных направлений предоставят способ повернуть вспять прогрессирование эпидемии СПИДа".