ОЭф + ОНГф = ОЭмакс = const.
   В реально существующих системах, однако, оказывают влияние много дополнительных факторов, которые не дают возможность применять вышеуказанную формулу. Во пер-вых, часто неизвестно максимально возможная ОЭ системы. Она может приближаться к бесконечности (реальные систе-мы) или изменятся (в моделях обычно увеличивается) в ходе процессов, происходящих в системе. Имеется ряд общих положений, которые помогают приближённо моделировать систему, установить её основные критерии и ограничения. Исходные положения для расчёта ОЭ и ОНГ комплекса систем следующие.
   1. ОЭ комплекса независимых (по влиянию на цель) систем не может быть меньше, чем сумма условных энтропий всех отдельных систем и в изолированном комплексе не мо-жет уменьшаться.
   2. В случае существования зависимостей (информа-ционных связей) между отдельными системами, соответст-вующие изменения ОЭ и ОНГ учитываются при расчёте этих величин комплекса систем. В общем, чем больше инфор-мационных связей, тем меньше ОЭф и больше ОНГф .
   3. ОНГ комплекса всех независимых систем не может быть больше, чем сумма ОНГ всех отдельных систем и она в изолированном комплексе систем не может увеличиваться. Зависимые системы могут иметь дополнительную ОНГ.
   4. В случае открытых систем необходимо при состав-лении баланса учитывать с дополнительным поступлением и удалением (вводом и выводом) ОНГ и ОЭ. При этом, чем больше в системе раньше имеется ОНГ, тем более эффек-тивно она использует дополнительно поступающую инфор-мацию и превращает её в дополнительную ОНГ.
   5. Невозможно создать балансы информации так как они зависят полностью от ОНГ принимающей её системы и информация является характеристикой процесса, а не состо-яния системы. Балансы можно составлять на ОНГ или ОЭ, правильнее балансы-ограничения (неравенства).
   6. Балансы можно составлять только относительно опре-делённой цели или результата. Это значит, что все состав-ляющие балансов ОНГ и ОЭ будут определены только отно-сительно определённых целей, событий или результатов. Это не уменьшает ценность полученных данных, так как даёт возможность прогнозировать вероятность достижения конк-ретной цели или результата.
   Указанные положения можно распространять на комп-лексы систем любой сложности. Например, такие системы как человеческий мозг, состоят из десятков миллиардов нервых клеток. Экономические системы государства состоят из миллионов людей, фирм, организаций и предприятий. Конечно, чем больше систем в комплексе, тем более слож-ными и многочленными становятся сами балансы. Однако, необязательно рассматривать отдельно каждую микросистему. Их можно обычно разделить по функциональным или структурным признакам в отдельные совокупности систем и рассматривать последние в качестве самостоятельных систем. В этом и заключается преимущество балансового метода, что он даёт возможность выяснить существенные и несу-щественные элементы-системы в комплексе и сосредоточить большее внимание на существенные. Последние системы име-ют больше ОНГ или наоборот, больше ОЭ. Оба варианта являются существенными. Системы или элементы, которые сильно увеличивают ОЭ комплекса, резко уменьшают веро-ятность достижения цели или результата и их действие необ-ходимо ограничить. Зато те системы (элементы, факторы), которые значительно увеличивают ОНГ, увеличивают веро-ятность достижения цели и их влияние необходимо всячески усиливать.
   Составление балансов ОНГ только начинается. Однако, составление денежных балансов применяется в экономике и бухгалтерии уже сотни лет. В последние годы все больше рас-ширяется применение т.н. программ национального счёта. Основой этого является двойной учёт всех денежных пере-водов между любыми организациями. Именно такой двойной учёт (отправителем и получателем) обеспечивает надёжный контроль движением денег, а также даёт возможность вы-яснить внутреннюю структуру и эффективность движения денежных ресурсов. Движение финансовых средств весьма похоже движению потоков информации, так как деньги час-тично и выполняют функцию меры стоимости товаров или информации о ней. Поэтому опыт учёта финансовой системы очень полезен для анализа и управления комплексами систем передачи и обработки информации, для составления балансов ОЭ и ОНГ. При этом балансы ОНГ должны совпадать на разных уровнях учёта (на уровне людей, фирм, отраслей или государства).
   Таким образом, составление баланса ОНГ для комп-лексов систем принципиально не отличается от составления баланса ОНГ конкретной системы. В последнем случае сос-тавляется баланс влияния отдельных факторов. Однако, отдельные факторы можно рассматривать как подсистемы в общей системе оптимального проектирования. Балансы ОНГ можно составлять для элементов-подсистем в общей системе в случае, если ОНГ всех подсистем определены относительно одной конечной цели или результата.
   Возникает вопрос, если ОНГ и ОЭ отдельных систем и их совокупностей зависят от установленных целей или ко-нечных событий (результатов), то они имеют субъективную природу и их нельзя принимать в качестве объективных характеристик систем. Деньги имеют более конкретную, чем ОНГ основу для составления экономического баланса. Одна-ко и в случае бухгалтерских и финансовых прогнозов и рас-чётов не исключаются субъективные факторы и неопре-делённости при составлении балансов. Во первых, курс денег, спрос и цены на товары и услуги могут колебаться в широких пределах. Во вторых, оптимизация денежных балансов зависит от цели или ожидаемого результата деятельности организации или фирмы. Эффективность баланса по расхо-дам и доходам зависит от того, насколько обоснованно выб-ран бизнесплан, от его оптимальности и продуманности.
   Конечно, ОЭ и ОНГ - понятия более абстрактные, аттрактивные и мысленно можно выбирать разные варианты целей или конечных событий. Однако, каждая система или их комплекс имеет какие-то цели развития или целе-сообразные конечные состояния, о достижении которых можно сделать только вероятностные прогнозы. Целесооб-разность развития или события в системе можно установить только зная структуру и функции общей системы на более высокой иерархической ступени. Чем более сложными явля-ются системы, тем больше они имеют возможных альтер-нативных путей развития, целей и конечных результатов и событий. Множество вариантов выбора или развития требует при проектировании таких систем особенно тщательного анализа каждого варианта, прогноза возможных результатов. Для прогноза требуется составление балансов ОНГ многих вариантов возможных структур и функциональных целей систем. Анализ перспективных балансов ОНГ даёт воз-можность найти оптимальные варианты решений, уточнить цели и оптимизировать эффективность систем. Балансы ОЭ и ОНГ вносят в систему уравнений моделей ранее неучтённую зависимость между вероятностными характеристиками фак-торов и критериев.
   В качестве отдельной системы можно рассматривать также поисковое поле при проектировании, в научном поиске или при прогнозах достижения цели. Сравнивают мини-мальные значения ОЭ при выборе различных альтернативных вариантов и факторов. Уменьшение ОЭ показывает коли-чество вводимой в систему ОНГ.
   10. ИНФОКИНЕТИКА. СКОРОСТЬ, СВОЕВРЕМЕННОСТЬ И СТАРЕНИЕ ИНФОПЕРЕДАЧ
   В предыдущих главах освещались процессы передачи информации, изменения ОЭ и ОНГ, которые являются потенциально возможными. Однако, для любых процессов существенным является ещё один фактор - время [ 57 ]. От этого фактора решающим образом зависят скорость инфо-передачи, её своевременность, эффективность и новизна [ 2 ]. Действительно, не существует систем, в т.ч. инфосистем и их ОЭ и ОНГ, которые не находились бы в процессе движения, изменения и развития [ 1 ]. Oпределить необходимо скорость превращений, которая может варьироваться в широких преде-лах от ничтожно малого до огромного. В таком же процессе непрерывного движения, изменения и развития находятся окружающая среда и связанные системы. От того, в какой мере система сумеет приспособиться к влияющим на неё условиям и воздействиям окружающей среды, зависят её устойчивость и эффективность [ 59 ]. Поскольку системы находятся в неравновесном состоянии, то во многих моментах времени они имеют несколько равновозможных путей даль-нейшего развития. В этих точках они особенно чувствитель-ны к внешним влияниям, в частности к новой информации. Поэтому эффективность полученной информации сильно за-висит от её своевременности, когда система находится в своем развитии в точке или в состоянии выбора путей [ 92 ]. От оптимального выбора зависит судьба и эффективность су-ществования самой системы. При поступлении информации слишком рано система и её ОНГ ещё не готова принимать информацию в достаточной мере (система ещё не созрела). При опоздании информации (решения уже приняты) её полезный эффект очень мал или вообще отсутствует.
   Рассматривая временной фактор при инфопередачах, его влияние можно разделить на 4 области.
   1. Изменяется среда, окружающая систему. Среда может представлять более общую систему, включающей данную систему или другие системы, оказывающие влияние на её. Вместе с изменением среды изменяются и критерии оптимальности, относительно которых рассчитывают ОНГ. Для живых организмов этим является цель, для неживых - целесообразность, устойчивость структуры под влиянием новых внешних условий. Например, в обстановке войны из-меняется быстро вся окружающая человека среда. Многое из полученного человеком в мирное время информации ста-новится бесполезным. Появляются новые критерии и цели, чтобы спасти жизнь свою и своей семьи. Возникают новые проблемы и потребности и, соответственно, потребности получения особого рода информации.
   2. Изменяется сама система, принимающая инфор-мацию. Это значит, что изменяется эффективность функциони-рования системы (например, банкротство фирмы) или изменяется чувствительность системы к восприятию инфор-мации (в точке бифуркации) или изменяется цель и ОНГ сис-темы (ценность информации). Например, восприимчивость человека к получению информации далеко не одинакова в тече-ние жизни. Известны улучшенная память и восприимчивость к новизне и обучению в молодые годы. Известна также града-ция по времени в генетическом коде, в программах развития. Например, если ребёнок в периоде, назначенном в гене-тической программе, не учится говорить или ходить, то в более поздние периоды этому учиться очень трудно, если не невозможно.
   3. Изменяются каналы передачи информации между системами. Термин "инфоканалы" подразумевают в более ши-роком смысле, т.е. как любые механизмы по обмену ин-формации между системами, пути и методы её передачи. Инфопоток в созданных человеком инфосистемах обычно направляется по электрическим или электронным каналам, пропускная способность и другие параметры которых твёрдо отрегулированы. Напротив, между многими существующими в универсуме системами также происходит инфообмен, но там параметры инфоканалов непостоянные, вероятностные и могут изменится с большей или меньшей скоростью. Кроме того, окружающая среда инфоканала тоже может изменяться и тоже иметь свою ОЭ. Инфо может передаваться посред-ством химических веществ, микроколичеств химических мо-лекул в воздухе, при помощи гравитационных или нейт-ринных волн и др. импульсов. При этом некоторые живые организмы достигли удивительно высокой чувствительности. Некоторые рыбы чувствуют 10-10 доли вещества в воде или регистрируют изменения плотности электрического поля менее 10-10 А. Много информаций в человеческом организме передаётся в форме химических реакций и структур: на-пример генетическая информация, гормональные вещества. Но распространение информации там не идёт по чёткому каналу. Кроме того, выделение химических инфоагентов мо-жет сильно изменятся в зависимости от разных факторов, в т.ч. от эмоционального состояния человека.
   Примером быстро изменяющегося инфоканала является инфопоток в Эстонию в разные периоды. В советское время поступала больше информации с востока, из России и других республик СССР. С запада поступало информации значи-тельно меньше. После создания Эстонской республики в 1991 году структура инфоканалов резко изменилась. Информация с запада стала предпочтительнее. Информация из России резко уменьшилась (книги, газеты, материалы конференции, научные связи и др.). В связи с переоценкой ценностей и целей изменилась и ОНГ полученной информации, поступа-ющей с запада. Те, которые быстро переориентировались на запад (английский язык и др.), получили преимущества также из-за легкодоступности получаемой информации и увеличения количества её.
   4. Изменяется отправитель информации - объект, откуда получена информация. Изменяться могут не только структура системы, но и её функции, направления дея-тельности, вероятностные характеритики, информирован-ность, ОЭ, ОНГ и другие параметры. Кто не учитывает возможные изменения объекта, скорость и вероятность превращений, то может принимать неверные, и невыгодные решения в своей деятельности. Особенно актуальными явля-ются проблемы изменения и старения информации при рас-пространении печатных изданий. Процессы их написания, издания, печатания, реферирования и хранения связаны с затратой времени. Если во время творения информация имела какую-то актуальность, то после опубликования частью из-даниями уже мало кто интересуется и книги и журналы заполняют зря полки библиотек.
   Быстрая изменчивость и непредсказуемость поведения самой информации заставляет обратить внимание не только на самую информацию, но и на процессы её изменения по времени. Уже животные имеют механизмы для определения не только наличия внешних объектов, но и их движения и даже для прогнозов этого движения в будущем. Однако выс-шие животные способны определить движение объектов только в четырёхмерном пространстве (3 координата прост-ранства и время), в ограниченных пределах и изменение оптических и вкусовых свойств.
   Люди и общество занимаются исследованием изменения более сложных систем, поведение которых описывается век-торами в многомерном пространстве. Число факторов может превышать десятки тысяч и их влияния на целевые критерии могут быть противоположными по направлению. Во многих случаях возникают критические пределы фактора времени. Определение влияния этих тысяч факторов на систему тре-бует времени. Однако, система и факторы часто изменяются так быстро, что для определения их совместного действия не хватает времени, вернее результаты опаздывают.
   В условиях быстроизменяющегося мира чрезвычайно повышается значимость обобщающих критериев для опре-деления этих изменений и развития. Наиболее общими кри-териями превращений являются изменения ОЭ и ОНГ по времени. Математически это выражается в виде частных
   производных dОЭ и dОНГ
   dt dt
   где t - продолжительность превращения. В случае неравномерно и непрерывно поступающей информации существенным явля- ется интегральное выражение критериев t2 t2
   dОЭ . dt и dОНГ . dt
   t1 d t t1 d t
   Интегральные показатели важны в том случае, если сами функции ОЭ = f(t) и ОНГ = f(t) сильно изменяются по времени. Предполагаемые зависимости ОЭ от времени, про-цесс развития, вернее их упрощенные математические модели, описаны в литературе [ 28 ].
   Скорость развития часто подчиняется экспоненци-альному закону: система, которая имеет больше ОНГ, развивается быстрее (если больше ОЭ, то медленнее). Математическая модель такого автокаталитического процесса самоинструктирования следующая (по нашему критерию ОНГ)
   d (ОНГ) = К (ОНГ) = l . f1(ОНГ) - r . f2(ОНГ) d t
   где: l - интенсивность роста числа новых элементов в системе;
   r - интенсивность использования старых элементов.
   Любой процесс развития является комплексом течения многих реакций разного направления с различной скоростью: роста числа новых элементов в системе и исчезновения или использования старых элементов.
   Большая скорость изменения систем и вообще обстановки в окружающем мире заставляет все живые ор-ганизмы и особенно человека, оценить скорость и направ-ление этих изменений. Для этого необходимы были меха-низмы быстрого получения и обобщения информации. При-рода разработала такие механизмы и они действуют в каждом организме, хотя они пока недостаточно исследованы. Чем более развиты живые организмы, тем совершеннее в них механизмы получения информации не только об объектах, но и об их изменениях и направлениях во времени, а также прогнозы об их изменении в будущем. Первоначально эти механизмы работали на интуитивном уровне. На уровне человека и общества в настоящее время такие механизмы оценки скорости изменений систем существуют даже в под-сознании. Каждый человек, имея связи с другим человеком, старается выяснить прежде всего не его случайные свойства, а перспективы его развития в будущем, эффективность его действий и увеличение ОНГ. Изменения ОНГ являются наи-более важным свойством, необходимым для каждой разви-вающей системы в борьбе за существование. Можно сфор-мулировать общий тезис:
   Чем более развит организм, тем более он стремится получить информацию об изменениях ОНГ в инте-ресующих его объектах, прогнозировать скорость и на-правление изменений в будущем.
   Механизм этого в сознании человека ещё не полностью выяснен. Известно, что человек при оценке любой системы старается выяснить не только её вещественные и энерге-тическиее свойства, но и вероятности изменения и развития системы и, более того, использования этих изменений для выполнения своих целей. Для человека важно оценить пра-вильно эффективность действия других систем и людей и эффективность их использования для проведения в жизнь своих задач. Если вероятность достижения своих целей при функционировании наблюдаемой системы равна нулю, то ОЭ её приближается к бесконечности. Если вероятность этого приближается к единице, то ОЭ системы относительно цели человека приближается к нулю. Следовательно, в сознании человека существуют косвенные механизмы получения об-общенной информации о системах, об ОЭ, ОНГ и об их изменениях по времени. Очевидно, что эти показатели так жизненно важны для человека, что в процессе эволюции воз-никли интуитивные методы для их оценки. Важность опре-деления ОЭ и ОНГ для человека заключается в том, что из этих показателей можно обратно получить вероятности достижения цели, из них получить оценки полезности (П) действия и решений по формуле:
   П = f (Ц . Р)
   где: P - вероятность и неопределённость достижения цели, Ц - cтоимость цели.
   Оценка полезности необходима при принятии решений и при выборе между альтернативными вариантами в условиях риска.
   Однако, интуиция не является достаточным и надёжным средством для оценки ОЭ и ОНГ в сложных системах современного мира, особенно в системах человеческого об-щества и культуры. Слишком много имеются влияющих на систему факторов, из которых необходимо отсеивать не-существенные и оценивать много вероятностных зависи-мостей. Вся информация должна быть обработана в короткое время, так как для измерения скорости требуется повторное определение ОЭ и ОНГ и направления их изменения. В этих условиях необходимым становятся математические методы определения ОЭ и ОНГ с использованием новых алгоритмов, программ и компьютеров. Наибольший эффект дают методы совместной работы специалиста и компьютера, причём ис-пользуются априорная информация науки и вычислительный потенциал компьютера.
   Повсеместным, но дифференцированным процессом является старение накопленной информации. Фактически во время старения информации происходит уменьшение ОНГ и увеличение ОЭ моделей систем-объектов информации от-носительно целей общества. Например, если книга была написана о применении компьютеров, то стареет не интерес к компьютерам или их перспективам. Стареет информация (ОЭ, ОНГ) о компьютерах в данной книге. Там приведены устаревшие марки, программы и технические данные. Умень-шается интерес к такой информации со стороны общества. Таким образом старение информации можно измерить путём определения ОЭ и ОНГ относительно критерии цели об-щества. В общем: информация стареет или потеряет ценность, если её получение не представляет интерес для получателя информации, т.е. не повышается ОНГ получателя-потре-бителя. Одновременно со старением уменьшаются также эффективность, качество и содержательность информации.
   11. ОПТИМИЗАЦИЯ ПРОЦЕССОВ УПРАВЛЕНИЯ СИСТЕМАМИ
   Управляемые системы, тем более системы, которые имеют в своем составе специальный управляющий орган, должны обладать повышенным содержанием ОНГ. Они в своем развитии находятся на более высокой ступени по сравнению с другими, в т.ч. и с упорядоченными и орга-низованными. Каждый акт управления, т.е. принятие реше-ния, связан с выбором [ 53, 60 - 62 ]. Для осуществления оптимального выбора требуется достаточное количество информации [ 63 - 68 ]. Этими вопросами давно занимается кибернетика и основное положение по управлению сфор-мулировал Эшби в виде ограничения - закона необходимого разнообразия [ 23 ]. По этому закону для обеспечения эффективного управления управляющая система должна иметь не меньше количества разнообразия (по нашей тер-минологии - ОЭ), чем управляемая система [ 24 ]. Закон Эшби прав относительно требуемой ОЭ, но для эффективного управления требуется ещё ОНГ. Кроме того, некоторые термины требуют уточнения. Большинство систем в мире не являются управляемыми и управляющими в кибернетическом смысле. Неясно, в какой мере термин "разнообразие" совпадает с терминами "неопределённость" и "энтропия". Эти термины близки, но не синонимы. Последние два зависят от введенной в систему информации (или ОНГ), разнообразие от ОНГ зависит меньше.
   Закон Эшби является частным случаем более общего закона инфодинамики по управляемости систем, сформу-лированного следующим образом.
   Любая система может быть управляемой только в той мере, насколько сумма первоначальной и введенной управляющей системой ОНГ компенсирует её ОЭм и в полной мере система становится управляемой только в том случае, если общая ОНГ равняется ОЭм системы, т.е. ОНГн + ОНГу = ОЭм.
   Степень управляемости системы можно оценить по показателю:
   У = ОНГн + ОНГу
   ОЭм
   где: ОНГн - первоначальная ОНГ в системе, ОНГу - введенная управляющей системой ОНГ, ОЭм - максимальная ОЭ управляемой системы.
   Поскольку в реальных сложных системах ОЭ велика и приближается к бесконечности, то полное управление реаль-ными системами представляет невыполнимую задачу. Кибер-нетика в настоящее время может количественно справиться с относительно простыми, созданными человеком системами или упрощенными моделями реальных систем. Современные ЭВМ способны обработать информацию 1010 - 1015 бит/с. Однако ОЭ и ОНГ сложных систем намного выше, особенно если учитывать их изменчивость во времени. Формально оценено, что молекула содержит ОНГ около 1011 бит, органы человека около 1023 бит. Для сложных систем ОЭ может приобрести колоссальную величину. Например, в качестве системы раcсматривают работу диспетчерской службы боль-шого международного аэропорта, куда в сутки поступает 1000 запросов приземления [ 1 ]. Выход системы - да или нет. 1000
   Количество ОЭ составляет log2 22 = 21000 ~ 10300 бит. Эта величина намного выше всех запасов ОНГ во всей вселенной, что составляет около 10122 бит. Последняя цифра получена следующим образом: Возраст вселенной ~ 1017 c, масса её ~ 1058 г. В структуре массы 1 г. можно обработать информацию максимально ~ 2 . 1047 бит / г . с., отсюда приближенно:
   ОНГвсел = 2 . 1047 . 1017 . 1058 = 10122 бит.
   Следовательно формально не хватает от ОНГ всей вселенной, чтобы сделать аэропорт управляемым. В дейст-вительности этой задачей справляется диспетчерский состав из 20 человек. Дело в том, что огромная ОЭ ~ 10300 бит была кажущейся. Диспетчерская система аэропорта является само-организующейся иерархического типа, т.е. содержит внут-реннюю ОНГ. Она способна разделить систему во временные ряды окружающей среды и строить алгоритмы минимальной длины для её моделирования. Говоря простым языком, в систему аэропорта ввели дополнительную координату - время, и распределили посадки-запросы по отрезкам времени - например по минутам. В результате на каждую минуту попала в среднем 0,5 - 2 запроса, которыми легко было управлять.
   Из примера с аэропортом можно сделать ряд выводов:
   1. Реально существующие системы, обладающие формально большой сложностью (разнообразием, большим ОЭ, неопределённостью), содержат часто и большое ко-личество ОНГ (внутреннюю структуру), которая резко уменьшает требуемую для их управления ОНГ. Особенно много т.н. скрытую ОНГ содержат искусственно созданные человеком системы. В случае аэропорта к этим относятся ранее известные расписания полёта и технические ха-рактеристики самолётов, техническая оснащенность аэропорта и др.
   2. Все системы имеют иерархическую структуру и это следует использовать при проектировании управляющих структур. Управляющие или поисковые воздействия на более высоком уровне имеют более высокую эффективность и влияют на большое количество систем. Можно элиминировать большие области поиского поля и тем самым упростить процессы выбора и управления.