А.с. 483 120: Переключатель для электромеханической игрушки, содержащий корпус с контактами и установленный в нем с возможностью ограниченного поворота диск с токосьемками и прикрепленным к нему одним концом поводком, отличающийся тем, что с целью реверсированияэлектродвигателя при столкновении игрушки с препятствием,на свободном конце поводка укреплен груз.
   Силу инерции можно также использовать для создания дополнительного давления в различных технологических процессах.
   А.с. 509 539: Способ получения карбонила вольфрама путем обработки порошкообразного вольфрама окисью углерода при осуществлении ее циркуляции и выводе конечного продукта из зоны реакции с последующей его конденсацией, отличающийся тем, что с целью упрощения процесса и обеспечения его непрерывности, процесс ведут в измельчительном аппарате с инерционной нагрузкой 15-40 при давлении окиси углерода 0,9-10 ата и температуре 20-30 C.
   1.1.2. Центробежная сила инерции возникает, когда тело под действием центростремительной силы - причины изменяет направление своего движения, при этом сохраняется энергия тела. Эта сила действует всегда только в одном направлении - от центра вращения.
   А.с. 518 322: Способ шлифования криволинейных поверхностей движущейся абразивной лентой, при котором ленту поджимает к обрабатываемой детали контактным копиром, эквидестантным на толщину ленты обрабатываемой поверхности, отличающийся тем, что с целью обеспечения возможности обработки выпуклых поверхностей, ленту прижимают к рабочей поверхности контактного копира центробежными силами.
   Фактически, это есть сила взаимодействия между телами вращающимся и удерживающим его на окружности. В свою очередь, вращающееся тело также воздействует на удерживающее. По третьему закону Ньютона эти силы равны по величине ипротивоположны по направлению в каждый момент времени. Взаимодействие двух тел осуществляется через какие-либо связи - нитку, стержень, электрическое и гравитационное поля и т.д. В случае разрыва связей, соединяющих взаимодействующие тела, оторвавшееся тело будет двигаться прямолинейно (по инерции).
   Патент ФРГ 1 229 253: Способ изготовления листочков или чешуек из стекла, отличающийся тем, что стекло, размягченное при нагревании, наносят на стенку в форме круга, имеющего по окружности закраину. Стенки для образованияпленки из стекла приводят во вращение. Пленка размягченного стекла выбрасывается через закраину под действием центробежных сил. Затем пленка затвердевает на некотором расстоянии от вращающейся стенки и разбивается на листочки.
   1.1.3. Чем больше масса вращающегося тела и чем дальше она отнесенаот центра вращения, тем большим моментом инерции обладает тело.
   А.с. 538 800: Способ регулирования энергии ударов в кузнечно-прессовых машинах ударного действия, заключающийся в изменении момента инерции маховых масс, отличающийся тем, что с целью повышения качества обрабатываемых изделий и долговечности машин, момент инерции изменяют путем подачи или отвода жидкости во внутренние полости маховых масс.
   А.с. 523 213: Способ уравновешивания сил инерции подвижных элементов машин, заключающийся в том, что уравношиваемый элемент машины, соединяют с аккумулирующим телом и приводит их во вращение, отличающийся тем, что с целью повышения эффективности уравновешивания, в качестве аккумулирующего тела используют маховик с изменяемым радиусом центра масс, например, центробежный регулятор.
   Силы, возникающие в процессе вращательного движения, можно использовать для ускорения некоторых технологических процессов.
   А.с. 283 885: Способ деарации порошкообразных веществ путем уплотнения, отличающийся тем, что с целью интенсификации, деарацию производят под воздействием центробежных сил.
   А.с. 415 036: Способ приготовления сорбена для акстракционной хромофотографии путем смещения жидкой фазы и твердого носителя, отличающийся тем, что с целью повышения равномерности распределения жидкой фазы на твердом носителе и интенсификации процесса, удаления избытка жидкой фазы, смещение производят в центробежном поле.
   а также для деформации:
   А.с. 517 501: Способ отбортовки труб из термопластичного материала, включающий опреации нагревания ее конца до размягчения и последующей его деформации, отличающийся тем, что с целью упрощения изготовления изделия и повышения его качества, деформацию размяченного конца трубы осуществляют ее вращением.
   Подвергая нагретую жидкость действию центробежного поля можно значительно увеличить производительность парогенераторов т.к., если нагретую жидкость под давлением подавать по касательной к вращающемуся цилиндру, то жидкость закрутится. При этом жидкост будет закручиваться с большего на меньший радиус, а это в силу закона сохранения момента количества движения, вазовет рост линейной скорости. Согласно закону Бернулли увеличение скорости приведет к падению давления в движущейся жидкости. Поэтому жидкость, недогретая до кипения, попав в зону пониженного давления, закипит и сухой пар будет скапливаться в центре цилиндра.
   На каждый элемент обьема вращающейся вязкой жидкости действуют две силы: центробежная, пропорциональная ее плотности и сила тяжести, также пропорциональная той же плотности. Поэтому на форму параболического мениска плотность не влияет, т.е. любые жидкости будут иметь одинаковые формы.
   А.с. 232 450: Способ изготовления изделий с параболлической поверхностью, основанный на использовании вращения резервуара с жидкостью, отличающийся тем, что с целью снижения стоимости и повышения точности параболической поверхности, в качестве формовочного элемента используют жидкость с большим удельным весом, на которую наносят жидкость с меньшим удельным весом, затвердевающую при вращении резервуара.
   1.1.4. Отметим еще одну особенность вращающихся систем. Вращающееся тело обладает гироскопическим эффектом - способностью сохранять в пространстве неизменное направление оси вращения. При силовом воздействии с уелью изменить направление оси вращения возникает процессия гироскопических систем. Гироскопы широко применяются в технике: они являются одним из основных элементов современных систем управления судами, самолетами, планетоходами, космическими кораблями.
   А.с. 474 444: Локомотив с электропередачей, содержащий аккумулятор энергии ввиде вращающегося маховика, связанный с преобразователем энергии, представляющий собой обратимую электрическую машину, отличающийся тем, что с целью устранения сил гироскопического эффекта маховика на устойчивость локомотива, маховик с преобразователем энергии смонтированы в оболочке и помещены в гироскопический механизм с двумя степенями свободы.
   Измеряя процессию гироскопа, можно определить величину внешних сил, воздейставующих на гироскоп.
   А.с. 487 336: Устройство для определения силы трения, содержащее корпус, карданный подвес, ротор с приводом, установленные в карданном подвесе, держатели образца и контрообразца, нагружающий механизм, взаимодействующий с держателем контробразца, датчик угловой скорости процессии, связанный с рамками карданного повеса, отличающийся тем, что с целью определения силы трения при высоких, порядка сотен м/с скоростях вращения, держатель образца установлен на роторе, нагружающий механизм с держателем контробразца установлены на внутренней рамке карданного подвеса, а датчик угловой скорости процессии связан с внешней рамкой процессии.
   Посколько при вращательном движении само тело остается на одном месте, а только участки тела совершают круговые движения, то во вращающемся теле можно аккумулировать кинетическую энергию, которую затем можно преобразовывать в кинетическую энергию поступательного движения. На этом принципе работают инерционные аккумуляторы, используемые, например, в гиробусах.
   А.с. 518 302: Машины для инерционной сварки, трением, содержащая привод вращения и шпиндель с массой для накопления энергии, отличающийся тем, что с целью уменьшения энергоемкости процесса, масса для накопления энергии выполнена ввиде инерционного пульсатора.
   А.с. 518 381: Привод кузнечно-прессовой машины, содержащий электродвигатель и насос, соединенный трубопроводом через распределительную систему с аккумулятором и рабочим цилиндром машины, отличающийся тем, что с целью повышения КПД он снабжен дополнительным аккумулятором энергии - маховиком, установленным в кинематической цепи, связывающей электродвигатель с насосом.
   Силы инерции проявляются при изменении скорости движущегося тела или при появлении центростремительной силы; в этих случаях всегда появляется реальная сила, которую можно использовать в различных процессах и при этом совершенно "бесплатно".
   1.2. Гравитация.
   Кроме того, масса является мерой инертности тела, любая масса является источником гравитационного поля. Через гравитационные поля осуществляется взаимодействие масс. Гравитационные силы самые слабые из всех сил, известных науке; тем не менее, при наличии больших масс (например, Земля) эти силы во многом предопределяют поведение физических систем. Количественно гравитационные взаимодействия описываются законом всемирного тяготения. Сила тяготения пропорциональна массе. Такая пропорциональность приводит к тому, что ускорение, приобретаемое в данной точке гравитационного поля различными телами, для всех тел одинаково (конечно, если на эти тела не действуют никакие другие силы - сопротивление воздуха и т.д.). Если рассматривать движение тел под действием силы тяжести Земли, то это движение будет равноускоренным - ускорение будет постоянно по величине и по направлению. Все отклонения от постоянства ускорения имеют те или иные конкретные причины - вращение Земли, ее несферичность, несимметричное распределение масс внутри Земли, сопротивление воздуха или иной среды, наличие электрических или магнитных полей и т.д. Постоянство ускорения - это возможность измерять массы посредством измерения веса, это часы, датчики времени,- это бесплатные силы гравитации - точно калиброванные.
   Патент США 3 552 283: Устройство отмечающее положение плоскости Земли при помощи устройства, отмечающего поожение плоскости Земли, образуется изображение на экспонируемой фотографической пленке, позволяющее определить на проявленном негативе или на позитивном отпечатке положение плоскости Земли независимо от положения камеры во время киносьемки. Устройство содержит прозрачное тело с грузиком, смещаюшимся под действием силы тяжести в самый нижний угол этого тела. Прозрачное тело может располагаться внутри корпуса камеры или внутри кассеты для роликовой пленки, причем единственным требованием к прозрачному телу является то, чтобы оно находилось на пути световых лучей, идущих от фотографируемого обьекта на пленку, установленную в камере. На краю кадра проявленного негатива или позитивной пленки образуется метка ввиде стрелки, направленной в сторону плоскости Земли. Метка ввиде стрелки может использоваться для правильной ориентации пленки или диапозитива.
   А.с. 189 597: Устройство для установления заданных промежутков времени, отличающееся тем, что с целью повышения точности измерения при записи сейсмограмм, оно выполнено ввиде стержня, с расположенным на нем грузом, замыкающим во время свободного падения контакты, соединенные с электродетонаторами.
   1.3. Трение.
   Трение представляет собой силу, возникающую при относительном перемещении двух соприкасающихся тел в плоскости их касания. Ввиду зависимости сил трения от многих, порой очень трудно учитываемых факторов, предпочитают пользоваться феноменологической теорией трения, описывающей в основном факты, а не их обьяснения.
   Различают трения качения и трения скольжения. Феноменологическая теория трения базируется, в основном на представлении о том, что касание твердых тел имеет место лишь в отдельных пятнах, на которых действуют силы диффузии, химической связи, адгезии и т.п.; при скольжении каждое пятно касания (так называемая фрикционная связь) существует ограниченное время. Сумма всех сил, действующих на пятна касания, усредненая по времени и по поверхности носит название силы трения. Продолжительность существования фрикционной связи определяет такие важные величины, как износостойкость, температуру пограничного слоя, работу по преодолению сил трения. Характерно,что при трении наблюдаются значительные деформации пограничного слоя, сопровождающиеся структурными превращениями, избирательной диффузией: учет всех этих процессов затруднен из-за сильной зависимости от температуры. Температура на пятнах касания возрастает очень быстро и может достигать несколько сот градусов.
   Обычно трение качения, при котором основная работа затрачивается на передеформирование материала при формировании валика перед катящимся телом, много меньше трения скольжения. Но как только скорость качения достигает скорости распространения деформаций, трение качения резко возрастает; поэтому при больших скоростях качения лучше использовать трение скольжения.
   Трение покоя больше трения движения, и этот факт снижает чувствительность точных приборов. Заменить трение покоя трением движения - это значить уменьшить силу трения и как-то стабилизировать ее. Задачу можно решить, заставив трущиеся элементы совершать колебания.
   В патенте США 3 239 283: задача решается выполнением втулки подшипника из пьезоэлектрического материала и покрытием ее электропроводящей фольгой. Пропуская переменный ток, под действием которого пьезоэлектрик вибрирует, ликвидируют трение покоя.
   1.3.1. Явление аномального низкого трения. Установлено, что при достаточно сильном облучении одной из трущихся поверхностей ускоренными частицами (например, атомами гелия) коэффициент трения падает в десятки и даже сотни раз, достигая сотых и тысячных долей единицы (открытие-121). Для возникновения эффекта сверхнизкого трения необходимо, чтобы процесс трения осуществлялся в вакууме. Переход в состояние сверхнизкого трения может осуществляться далеко не всеми телами. Этой способностью обладают вещества со слоистой кристаллической структурой. Исследования показали, что очень тонкий поверхностный слой вещества при совместном действии трения и облучения испытывает сильную ориентацию, благодаря чему его структурные элементы располагаются параллельно плоскости контакта, за счет чего сильно уменьшается способность вещества образовывать сильные адгезионные связи. Роль облучения сводится к очень интенсивной очистке поверхности контакта от премисей и от молекул воды, препяствующих ориентации. К тому же водная пленка сама является источником довольно сильных адгезионных связей. Явление аномально низкого трения можно использовать к примеру в подшипниках:
   А.с. 290 131: Подшипник скольжения, содержащий корпус, в котором смонтирован вал посредством сегментов с металлической рабочей поверхностью, расположенных равномерно по окружности, отличающееся тем, что с целью уменьшения коэффициента трения при работе в вакууме, он снабжен источником быстрых и нейтральных молекул газа, например, инертного, встроенного в корпус между сегментами и направляющим поток молекул на рабочую поверхность вала, покрытую полимером, например, полиэтиленом.
   1.3.2. Эффект безызиосности.
   Всегда и везде ранее принималось, что трение и износ два неразрывно связанных явления. Однако в результате открытия (нр -41) Крагельского И.В. и Гаркунова Д.Н. удалось разьединить это, хотя и традиционное, но невыгодное содружество. В их подшипнике трение осталось - износ исчез; за это исчезновение ответственен процесс атомарного переноса. Самый опасный вид износа - схватывание. В соответствии с принципом "обратить вред в пользу" - схватывание входит как составная часть в атомарный перенос; далее оно компенсируется противоположным процессом. Рассмотрим пару сталь - бронза с глицериновой смазкой. Глицерин, протравливая поверхность бронзы способствует покрытию ее рыхлым слоем чистой меди, атомы которой легко переносятся на стальную поверхность. Далее устанавливается динамическое равновесие - атомы меди летают туда и обратно, и износа практически нет, ибо медный порошок прочно удерживает глицерин, который в свою очередь, защищает медь от кислорода. В авиации уже испытаны бронзовые амартизационные буксы в стальной стойке шасси самолета.
   1.3.3. Эффект Джонсона-Рабека.
   Если нагревать пару соприкасающихся трущихся поверхностей полупроводник и металл, то сила трения между этими поверхностями будет увеличиваться. Этот эффект используется в тормозах и муфтах крутящего момента.
   Патент США 3 343 635: Тормоз представляющий собой вал, покрытый полупроводниковым материалом, охваченный металлической лентой. Тормозной момент зависит от температуры полупроводникового слоя и регулируется путем пропускания электрического тока через вал и охватывающую его ленту.
   Патент Англии 1 118 627: Устройство для передачи вращения между двумя валами, состоящая из двух соприкасающихся дисков, один из которых выполнен из полупроводникового материала, а второй - металлический. Регулирование передаваемого момента происходит при нагреве соприкасающихся упомянутых материалов путем пропускания электрического тока между ними.
   Интересное использование трения:
   А.с. 350 577: Способ получения отливок, заключающийся в пропускании расплавленного металла через каналы, выполненные в теле оправки, отличающееся тем, что с целью совмещения процесса плавки и заливки металла, оправку поднимают к металлической заготовке и вращают, расплавляя заготовку теплом, выделяющимся в процессе трения.
   Л И Т Е Р А Т У Р А
   К 1.2. Я.Н.Ройтенберг, Гироскопы, М., "Наука", 1975
   В.А.Павлов, Гироскопический эффект, его проявление и
   использование, Л., "Судостроение", 1972
   Н.В.Гулия, Возрожденная энергия, "Наука и жизнь", 1975,
   нр-7. К 1.3. А.А.Силин, Трение и его роль в развитии техники,
   М., "Наука", 1976.
   И.В.Крагельский, Трение и износ, М., "машиностроение",1968
   Д.Н.Гаркунов, Избирательный перенос в узлах трения,
   М., "Транспорт", 1969.
   2. Д Е Ф О Р М А Ц И Я .
   ----------------------
   2.1. Общая характеристика.
   В самом общем случае под деформацией понимается такое изменение положение точек тела, при котром меняется взаимные расстояния между ними. Причинами деформаций, сопровождающихся изменениями формы и размеров сплошного тела, могут служить механические силы, электрические, магнитные, гравитационные поля, изменения температуры, фазовые переходы и т.д.
   В теории деформации твердых тел рассматриваются многие типы деформаций-сдвига, кручения и т.д. Формальное описание их можно отыскать в любом курсе сопромата.
   Если деформация исчезает после снятия нагрузки, то она называется упругой, в противном случае имеет место пластическая деформация. Для упругих деформаций справедлив закон Гука, согласно которому деформация пропорциональна механическому напряжению.Если рассматривать деформации на атомарном уровне то упругая деформация характеризуется,прежде всего практически одинаковым изменением растояния между всеми атомами кристала; при пластических деформациях возникают дислокации-линейные дефекты кристалической решотки.
   Величина деформации любого вида определяется свойствами деформируемого тела и величиной внешнего воздействия; следовательно,имея данные о деформации, можно судить либо о свойствах тела,либо о воздействиях; в некоторых случаяхи о том и о другом, а в некоторых- о степени изменения свойств деформируемого тела при том или ином внешнем воздействии.
   А.с. 232571: Способ измерения спорных реакций машин и
   станков в эксплуатационных условиях,отличающийся тем,
   что,с целью определения реакций в спорах с резиновым
   упругим элементом, измеряют величину деформации свобод
   ной поверхности резинового упругого элемента, по кото
   рой судят о величине опорной реакции.
   2.1.1. С в я з ь э л е к т р о п р о в о д н о с т и
   с д е ф о р м а ц и е й.
   В 1975 году зарегистрировано открытие: обнаружена зависимость пластической деформации металла от его проводимости. При переходе в сверхпроводящее состояние повышается пластичность металла. Обратный переход понижает пластичность.
   Напомним, что макроскопическая пластическая деформация осуществляется перемещением большого количества дислокаций, способность же кристалла оказывать сопротивление пластической деформации определяется их подвижностью.
   Эффект наблюдался на многих сверхпроводниках при различных способах механических испытаний. В экспериментах было обнаружено значительное повышение пластичности металла /разупрочнение/ при переходе его в сверхпроводящее состояние. Величина эффекта в некоторых случаях достигла нескольких десятков процентов.Детальное изучение явления разупрочнения привело к выводу,что "виновником" его следует считать изменение при сверхпроводящем переходе тормозящего воздействия электронов проводимости на дислокации. Силы "трения" отдельной дислокации об электроны в несверхпроводящем металле резко уменьшаются при сверхпроводящем переходе.Таким образом, обнаружена прямая связь механической характеристики металлаего пластичности с чисто электронной характеристикой-проводимостью.
   Главный вывод-электроны металлов тормозят дислокации в с е г д а.Сверхпроводящий переход помог выявить роль электронов и позволил оценить электронную силу торможения. Но переход в сврхпроводящее состояние- не единственная возможность влиять на электроны. Этому служит магнитное поле, давление и т.д. Ясно, что такие воздействия должны изменять и пластичность металла, особенно, когда электроны- главная причина торможения дислокаций.
   Магнитное поле в сочетании с низкой температурой способны изменять буквально все свойства вещества: теплоемкость, теплопроводность,упругость,прочность и даже цвет. Появляются новые электрические свойства. Превращения происходят практически мгновенно- за 10 в11-ой и 10 в12-ой сек. Исходя из экспериментов ожидают использования новых эффектов в обычных условиях.
   2.1.2. Э л е к т р о п л а с т и ч е с к и й
   э ф ф е к т в м е т а л л а х
   Установлен электропластический эффект в металлах и доказана возможность его применения для практических целей. Открытие этого эффекта привело к более глубокому пониманию механизма пластической деформации, расширило представление о взаимодействии свободных электронов в металле с носителями пластической деформации-дислокациями.
   Появилась возможность управлять механическими свойствами металлов, в частности, процессом обработки металлов давлением. Например, деформировать вольфрам при температурах не превышающих 200 гр.С и получить из него прокат с высоким качеством поверхности. В экспериментах с импульсным током было найдено, что электрический ток увеличивает пластичность и уменьшает хрупкость металла. Если создать хорошие условия теплоотвода от деформируемых образцов и пропускать по ним ток высокой плотности 10 в4-ой 10 в6-ой а/см./2 то величина эффекта будет будет порядка десятков процентов. Электрический ток вызывает также увеличение скорости релаксации напряжений в металле и оказывается удобным технологическим фактором для снятия внутренних напряжений в металле. Электропластический эффект также линейно зависит от плотности тока (вплоть до 10 в5-ой а/см./2 ) и имеет большую величину при импульсном токе, а при переменном вообще не наблюдается.
   Видна связь явления разупрочнения металла при сверхпроводящем переходе с электропластическим эффектом. В этом и другом случае происходит разупрочнение металла. Однако, если в первом случае в основе явления лежит уменьшение сопротивления движению и взаимодействию дислокаций при устранении из металла газа свободных электронов,во втором случае причиной облегчения деформации является участие самого электронного газа в пластической деформации металла. Электронный газ из пассивной и тормозящей среды превращается в среду, имеющую направленный дреф и поэтому ускоряющую движение и взаимодействие дислокацийе (или снижающую обычное электронное торможение дислокаций) Этот эффект уже находит свое применение на практике:
   А. .. : "Способ снижения прочности металлов, например,при пластической деформации при котором через заготовку пропускают электрический ток отличающийся тем, что с целью снижения прочности металла при сохранении его низкой температуры, к заготовке прикладывают импульсы тока плотностью преимущественно 10 а/см./2, с частотой подачи 20-25Гц.
   2.1.3. Ф о т о п л а с т и ч е с к и й э ф ф е к т .
   Естественно ожидать изменение пластических свойств и при других воздействиях на электронную структуру образца. Например, воздействие светового излучения на кристалы полупроводника вызывает в них перераспределение электрических зарядов. Не будет ли свет влиять на пластические свойства полупроводников? Советские ученые Осиньян и Савченко на этот вопрос отвечают утвердительно. Их открытие зарегистрировано под номером 93 в такой формулировке:
   "Установлено ранее неизвестное явление,заключающееся в изменении сопротивления пластической деформации кристаллов полупроводников под действием света, причем максимальное изменение происходит при длинных волн, соответствующих краю собственного поглащения кристаллов".