3.3.2. При контакте жидкости с твердой поверхностью говорят о с м а ч и в а н и и. В зависимости от числа фаз участвующих в смачивании,различают имерсионное смачивание(смачивание при полном погружении твердого тела в жидкость),в котором участвуют только две фазы,и контактное смачивание ,в котором наряду с жидкостью с твердым телом контактирует третья фаза - газ или другая жидкость. Характер смачивания определяется прежде всего физико-химическими воздействиями на поверхности раздела фаз,которые участвуют в смачивании.
   При контактном смачивании свободная поверхность жидкости около твердой поверхности (или около другой жидкости) искривлена и называется мениском Линия,по которой мениск пересекается с твердым телом (или жидкостью),называется периметром смачивания.Явление контактного смачивания характеризуется краевым углом между смоченой поверхностью твердого тела(жидкости) и мениском в точках их пересечения (периметром смачивания) В зависимости от свойств соприкасающихся поверхностей происходит смачивание (вогнутый мениск) или несмачивание (выпуклый мениск) поверхности жидкостью.
   Автоматический дозатор из одной детали.Такой деталью
   служит перфорированная фторопластовая пленка. В этой
   пленке всегда задерживается одинаковый по высоте стол
   бик жидкости. Фторопласт практически не смачивается
   поэтому скорость истечения через отверстие зависит
   только от давления. Кроме отбора проб жидкости из пото
   ка , такой дозатор может служить для измерения коэффи
   циента поверхностного натяжения (ИР-6.5,С.33)
   3.3.3. При растекании жидкости по ее собственному монослою адсорбированному на высокоэнергетической поверхности наблюдается э ф ф е к т а в т о ф о б н о с т и.
   Эффект заключается в том,что при контакте жидкости, имеющей низкое поверхностное натяжение , с высокоэнергетическими материалами, происходит вначале полное смачивание, а затем,через некоторый промежуток времени , условия полного смачивания перестают выполняться. В результате изменится направление движения периметра смачивания - жидкая пленка начинает собираться в каплю (или несколько капель) с конечным краевым углом.На ранее смоченных участках твердого тела остается прочно фиксированный монослой молекул жидкости. Эффект используется для нанесения монослойных покрытий на твердые материалы.
   3.3.4. К а п и л я р н о е д а в л е н и е - появляется из-за искривления поверхности жидкости в капиляре.Для выпуклой поверхности давление положительно, для вогнутой - отрицательно. Эффект определяет движение жидкостей в порах,влияет на кипение и конденсацию.
   К а п и л я р н о е и с п а р е н и е - увеличение испарения жидкости вследствие понижения давления насыщенного пара над выпуклой поверхностью жидкости в капиляре; используется для облегчения кипения путем изготовления шероховатых поверхностей.
   К а п и л я р н а я к о н д е н с а ц и я - увеличение конденсации жидкости вследствие понижения давления насыщенного пара над вогнутой поверхностью жидкости в капиляре. Пар может конденсироваться притемпературе выше точки кипения.
   Используется для осушки газов, в хроматографии.
   Течение жидкости в капилярах а также в полуоткрытых каналах,например, в микротрещинах и царапинах.
   А.С 279583. Распределитель жидкости,например, в колон
   нах с насадкой состоящей из перфорированной плиты с ук
   репленной на ней трубкой для подачи жидкости,отличаю
   щийся тем,что с целью равномерного распределения
   жидкости при малых расходах,трубки выполнены ввиде ка
   пиляров,нижние концы имеют косые срезы.
   А.С..225284 Солнечный концентратор для термоэлектроге
   нератора отличающийся тем,что с целью сохранения высо
   кого коэффициента отражения в течение всего времени ра
   боты,егоотражающая поверхность выполнена ввиде сотовой
   пористой или капилярной структуры,заполненной расходуе
   мым металлом или сплавом, поступающим благодаря капи
   лярным силам с тыльной стороны концентратора.
   3.3.5. Эффект капилярного подъема (опускания) -возникает из-за различия давлений над и под поверхностью жидкости в капилярном канале.Связь между характером смачивания и капилярным давлением оказывает большое влияние на возможность проникновения жидкостей в поры и на их вытеснениеиз пор,что в свою очередь играет важную роль в процессах пропитки,фильтрации,сушки и т.д.
   3.3.6. Открытие .109: У л ь т р а з в у к о в о й
   к а п и л я р н ы й э ф ф е к т - увеличение скорости и высоты подъема жидкости в капилярах при непосредственном воздействии ультразвука в десятки раз. Этот эффект реализован в А.С.315224 "Способ ультразвуковой пропитки пористых материаловв" в А.он применен для резкого повышения эффективности тепловой трубы,для чего в зоне конденсации тепловой трубы прикрепили через акустический концентратор излучатель магнитострикционного типа, соединенный с генератором ультразвуковой частоты. Ультразвук, воздействуя на пористый фитиль,способствует быстрейшему возврату конденсата в зону испарения.При этом величина максимального удельного теплового потока вырастает на порядок .
   3.3.7. Т е р м о к а п и л я р н ы й э ф ф е к т - зависимость скорости растекания жидкости от неравномерности нагрева жидкого слоя.Эффект объясняется тем,что поверхностное натяжение жидкости уменьшается при повышении температуры. Поэтому приразличии температур в разных участках жидкого слоя возникает движущая сила растекания,которая пропорциональна градиену поверхностного натяжения жидкости.В результате возникает поток жидкости в смачивающей пленке.Влияние неравномерного нагрева различно для чистых жидкостей и растворов (например,поверхностноактивных). У чистых жидкостей перетекание происходит от холодной зоны к горячей. При испарении ПАВ, уменьшающих поверхностное натяжение,жидкость начинает перетекать от горячей зоны к холодной. В общем случае движение жидкости определяется тем,что как изменяется поверхностное натяжение в зоне нагрева от температуры и испарения какого либо компонента.
   3.3.8. Э л е к т р о к а п и л я р н ы й э ф ф е к т -зависимость поверхностного натяжения на границе раздла твердых и жидких электродов с растворами электролитов или расплавами ионных соединений от элетрического потенциала. Эта зависимость обусловлена образованием двойного электрического слоя на границе раздела фаз. Изменением потенциала можно осуществить инверсию смачивания - переход от несмачивания к смачиванию и наоборот.
   3.3.9. К а п и л я р н ы й п о л у п р о в о д н и к. Капиляры обладают способностью избирательной проницаемости. Шейки пор капиляров затрудняют движение только смачивающей жидкости и способствуют продвижению несмачивающей (биологические мембраны).
   3.4. Сорбция.
   Как уже отмечалось в предыдущем параграфе, любая поверхность, вещества обладает свободной энергией поверхности (СЭП).
   Все поверхностные явления сводятся к взаимодействию атомов и молекул,которые происходят в двумерном пространстве при непосредственном участии СЭП. Любую твердую поверхность можно представить себе как "универсальный магнит", притягивающий любые частицы, оказавшиеся поблизости. Отсюда вывод: поверхность любого твердого тела обязательно "загрязнена" молекулами воздуха и воды. Опыт показывает ,что чем выше степень дисперсности данного тела, тем больше количество частиц другого тела оно поможет поглотить своей поверхностью.Процесс самопроизвольного"сгущения" растворенного или парообразного вещества (газа) на поверхности твердого тела или жидкости носит название с о р б ц и и . Поглащоющее вещество называется с о р б е н т о м , а поглощаемое с о р б т и в о м .
   Процесс , обратный сорбции называется д е с о р б ц и е й. В зависимости от того насколько глубоко проникают частицы на адсорцию,когода вещество поглощается на поверхности тела, и абсорцию,когда вещество поглощается всем объемом тела. В зависимости от характера взаимодействия частиц сорбента и сорбтива, сорбция физическая (взаимодействие обусловлено силами когезии и адгезии т.е. силами Ван-дер-Ваальса) и химическая,или ее еще называют, хемосорбция;
   3.4.1. Особое положение занимает сорбционный процесс, называемый к а п и л л я р н о й к о н д е н с а ц и е й.
   Сущность этого процесса заключается не только в поглощении, но и в конденсации твердым пористым сорбентом, например, активизированным углем газов и паров.
   Из всех перечисленных выше сорбционных явлений наибольшее значение для практики имеет адсорбция. Чем менее энергетичны молекулы, тем легче они адсорбируются на твердой поверхности. С уменьшением температуры адсорбата (газа) адсорбация увеличивается, а с увеличением температуры уменьшается.
   При адсорбации молекулы газа, сталкиваясь с поверхностью прекращают движение. Значит: они теряют энергию, а "лишняя" энергия должна выделяться. Вот почему при физической адсорбации выделяется тепло. Причем: последний процесс, если он идет в закрытом обьеме, сопровождается понижением давления газа. При десорбации же давление газа - сорбтива увеличивается, при этом идет поглощение энергии. Это свойство используют в некоторых теплосиловых установках.
   А.с. Н 224743: Двухфазное рабочее тело для компрессора
   теплосиловых установок, состоящее из газа и мелких час
   тиц твердого тела, отличающееся тем, что с целью допол
   нительного сжатия газа в холодильнике и компрессоре и
   дополнительного расширения в нагревателе в качестве
   твердой фазы использованы сорбенты с общей или избира
   тельной поглотительной способностью.
   Очень интересные явления и эффекты происходят при адсорбции на поверхности полупроводников.
   3.4.2. Ф о т о а д с о р б ц и о н н ы й э ф ф е к т
   Это зависимость адсорбционной способности адсорбента - полупроводника от освещения. При этом эта способность может увеличиваться положительный и уменьшаться (отрицательный фотоадсорбционный эффект). Эффект можно использовать, например, для регулирования давления в замкнутом обьеме.
   3.4.3. Влияние э л е к т р и ч е с к о г о п о л я на а д с о р б а ц и ю. Это зависимость адсорбционной способности от величины приложенного электрического поля. Влияет на фотоадсорбционный эффект. Поле прилагают перпендикулярно поверхности полупроводника - адсорбента.
   3.4.4. А д с о р б л ю м и н е с ц е н ц и я
   Это люминесценция, возбуждаемая не светом, а самим актом адсорбции. Свечение длится до тех пор, пока идет процесс адсорбции, и погасает, коль скоро адсорбция прекращается. Яркость свечения пропорциональна скорости адсорбции. Цвет свечения при адсорблюминисценции, как правило, тот же, что и при фотолюминесценции, т.е. определяется природой активатора, введенного в полупроводник, и вовсе не зависит от природы адсорбируемого газа. Адсорболюминесцеция является одним из видов х е м о л ю м и н е с ц е н ц и и (15.4).
   3.4.5. Р а д и к а л о - р е к о м б и н а ц и о н н ая
   л ю м и н е с ц е н ц и я (Р-РЛ).
   На поверхности полупроводника могут рекомбинировать приходящие из газовой фазы радикалы, напрмер, атомы водорода. При этом происходит свечение полупроводника, которое длится до тех пор, пока на поверхности идет реакция рекомбинации. При Р-РЛ, как и при адсорболюминесцеции, испускаются те же частоты, что и при фотолюминесценции. Они образуют полосу, которую называют обычно основной полосой. Следовательно, цвет обминесценции меняется при смене активатора, не зависит от природы активатора, но меняется при смене газа, участвующего в реакции.(например, при замене водорода кислородом). Обе полосы в известной мере накладываются друг на друга.
   Мы видим на примерах адсорболюминесценции и радикалорекомбинационной люминесценции, как электронные процессы в полупроводнике оказываются связанными с химическими процессами, протекающими на его поверхности.
   В результате адсорбции поверхность полупроводника заряжается. При адсорбции акцепторов она заряжается отрицательно, а доноров - положительно.
   3.4.6. А д с о р б ц и о н н а я э м и с с и я.
   Работа выхода электрона может изменяться под действием адсорбции. Это зависит от того, заряжается ли поверхность при адсорбции положительно или отрицательно, т.е. от природы адсорбируемого газа. В первом случае работа выхода снижается, во втором - возрастает. По тому, как она изменяется, часто можно судить о составе газовой фазы. Давление газовой фазы также влияет на работу выхода.
   3.4.7. В л и я н и е а д с о р б ц и и н а
   э л е к т р о п р о в о н о с т ь п о л у п р о
   в о д н и к а.
   Электропроводность поверхности полупроводника монотонно изменяется по мере хода адсорбции, но не достигает некоторого постоянного значения. Часто за процессом можно следить по изменению электропроводности. Адсорбция вызывает увеличение или уменьшение электропроводности полупроводника в зависимости от того, какой газ (акцепторный или донорный) адсорбируется и на каком полупроводнике (электронном или дырочном).
   Напрмер, кристаллы двуокиси олова изменяют свою прово
   димость в присутствии водорода, окиси углерода, метана,
   бутана, пропана, паров бензина, ацетона, спирта. Нагре
   вание кристалла изменяет величину этого эффекта. Это
   колличественное различие может быть зафиксировано чувс
   твительным прибором. Можно представить себе аппарат, в
   котором изменение электрических свойств кристалла при
   появлении в воздухе искомого вещества дает импульс сиг
   нальному устройству отградуированному определенным об
   разом в зависимости от назначения.
   3.5. Диффузия.
   Если состав газовой смеси или жидкости не однороден, то тепловое движение молекул рано или поздно приводит к выравниванию концентрации каждой компоненты во всем обьеме. Такой процесс называется диффузия. при протекании процесса диффузии всегда имеются так называемые диффузионные потоки вещества, величина и скорость которых определяется свойствами среды и градиентов, концентрации. Скорость диффузии в газах увеличивается с понижением давления и ростом температуры. Увеличение температуры вызывает ускорение диффузионных потоков в жидкостях и твердых телах. Кроме градиента концентрации, возникновению диффузионных потоков приводит наличие температурных градиентов в веществе (термодиффузия). Перепад температур в однородной по составу смеси вызывает появление разности концентрации между областями с различной температурой, при этом в газах более легкая компонента газовой смеси скапливается в области с более низкой температурой. Таким образом, явление термодиффузии можно использовать для разделения газовых смесей; этот метод весьма ценен для разделения изотопов.
   3.5.1. При диффузионном перемещении двух газов, находящихся при одинаковой температуре, наблюдается явление, обратное термодиффузии: в смеси возникает разность температур - эффект Д ю ф о р а . При диффузионном смешивании газов, составлящих воздух возникающая разность температур составляет несколько градусов.
   Явление диффузии молекул в струю пара лежит в основе работы диффузионных вакуумных насосах (пароструйные насосы); термодиффузия паров метилового спирта обеспечивает возможность надежной работы так называемых диффузионных камер приборов для наблюдения ионизирующих частиц.
   Диффузия в твердых сплавах со временем приводит к однородности сплава. Для ускорения диффузии применяется длительный нагрев сплава (отжиг); уничтожение внутренних напряжений при отжиге металла также есть следствие процессов диффузии и их ускорения при повышении температуры.
   Создание больших концентраций газа на границе с металлом при создании условий, обеспечивающих некоторое "разрыхление" поверхностного слоя металла, приводит к диффузии газа внутрь металла; диффузия азота в металлы лежит в основе процесса азотирования. Диффузионное насыщение поверхностных слоев металла различными элементами позволяет получать самые различные свойства поверхностей, необходимые в практике. Фактически процессы цементации, алитирования, фосфатирования есть процессы диффузии углерода, аллюминия, фосфора внутрь структуры металла. Скорость диффузии при этом легко регулируется с помощью различных режимов термообработки.
   А.с Н 461774: Способ производства изделий из низкоуле
   родистых сталей путем отжига заготовки и холодного вы
   давливания отличающийся тем, что с целью улучшения ус
   ловий выдавливания, перед отжигом заготовку подвергают
   термодиффузионной обработке, преимущественно цемента
   ции.
   3.6. О с м о с.
   Осмосом обычно называют диффузию какого-либо вещества через полупроницаемую перегородку. Основное требование к полупроницаемым перегородкам - обеспечение невозможности противодиффузий. Так, если два раствора разной концентрации разделить перегородкой, задерживающей молекулы растворенного вещества, но пропускающего молекулы растворителя, то растворитель будет переходить в концентрированный раствор, рабавляя его и создавая там избыток давления, называемый обычно осмотическим давлением. Питание ратений водой, явление диализа, явление гиперфильтрации, наконец, обычное набухание - все это типично осмотические эффекты.Величина осмотического давления клеток многих растений состовляет 5-10 ат, а осмотическое давление крови человека доходит почти до 8 атм.
   Энергию осмотического давления предложили использовать авторы английского п а т е н т а Н 1343891 : "Способ генерации механической энергии и устройство реализующее этот способ. Конструкция по патенту Н1343891 представляет собой открытую сверху трубу, погруженную в замкнутую полость, куда налита вода. Трубка сделана из прочного металла, в ней насверлено множество мелких отверстий, закрытых полунепроницаемой оболочкой, например, из ацетатцеллюлозы. Труба заполнена концентрированным рассолом и в нее начинает просачиваться вода, т.е. происходит осмос. Создается повышеное давление, поднимающее плунжер, связанный с массивным подпруженным поршнем. Поршень сжимает в цилиндре воздух. Можно создать давление до трех тысяч атмосфер. Сжатый воздух можно использовать для вращения воздушной турбины. Изобретатели утверждают, что их "осмотический двигатель", состоящий из нескольких плунжеров и поршней, будет генерировать мощность достаточную для движения автомобиля.
   Теория осмотических явлений описывается в курсах термодинамики и статистической физики. Огромна роль осмотических явлений в работе кровеносных систем человека и животных.
   3.6.1. Осмос можно усилить (или ослабить) применяя электрические поля. Направленное движение раствора относительно поверхности твердого тела под действием электрического поля носит название электросмоса, являющегося одной из разновидностей электрокинетических явлений (см.12.1).
   Липкая масса из смеси влажных грунтов с песком и остат
   ками угля на дне вагонеток почти не поддается очистке
   даже специальными машинами. Специалисты Новомосковского
   института предложили использовать для очистки электро
   осмос под воздействием на вагонетку с породой внешнего
   электрического поля между ее стенками и грузом (при
   движении воды относительно твердой горной массы) созда
   ется тончайшая водяная пленка. Такой "прокладке" доста
   точно, чтобы налипшая порода легко отделилась от корпу
   са вагонетки.
   А.с. н 240825: Способ сушки изоляции кабелейц в шахтах
   электросетях с изолированной нейтралью, отличающейся
   тем, что с целью упрощения процесса токоведущие жилы
   кабелей подсоединяют к положительному полюсу источника
   постоянного тока, отрицательный полюс которого соединя
   ют с землей для осуществления сушки за счет использова
   ния явления электросмоса.
   3.6.2. Явление обратного осмоса применено (США) для получения питьевой воды из сильно загрязненной или соленой (гипельфильтрации). Непосредственно явление обратного осмоса происходит на границе вода - синтетическое волокно: внутрь волокна проходит только вода, оставляя за бортом соли и грязь. Сама установка состоит из многих миллионов волокон, собранных в жгут и помещенных в стальной цилиндр в который подается "грязная" вода под давлением. Предусмотрен отдельный отбор чистой воды и насыщенного раствора.
   Над проектом электростанции, использующей силы осмотического давления, работают сейчас ученые.Принцип действия такой электростанции прост. Трубу с полупроницаемой мембраной опускют в море. На глубине около 230 метров столб воды создает такой перепад давления на мембране, что она начинает работать как опреснитель. Соленая вода тяжелее пресной примерно на два с половиной процента. Чтобы пресная вода поднялась до уровня моря и стала переливаться через край трубы, трубу необходимо опустить на глубину 8750. Переливающаяся вода может вращать турбину.
   3.7. Т е п л о м а с с о о б м е н.
   Известны три основных механизма теплообмена - конвекция, излучение и теплопроводность, в которой участвуют движущиеся или неподвижные молекулы вещества совершающие тепловые колебания. Передача тепла может сопровождаться перемещением массы или
   Очень широко используется при сушке,которая применяется в различных областях техники и технологии. наиболее эффективно процесс сушки идет в колонных аппаратах со встречными потоками: сверху свободно падает вещество, подвергаемое сушке ,а снизу встречным потоком поступает нагретый газ.
   В донной же части аппарата подсушенное вещество интенсивно досушивется в ,так называемом "кипящем слое". "Кипящий слой" представляет собой "псевдожидкость" - взвесь твердых частиц, пляшущих в потоках газа, поступающего снизу.
   Причем псевдожидкость обладает удивительными теплотехническими свойствамитвердые частицы в ней бурно перемешиваются и великолепно переносят тепло, во много раз лучше , чем такой известный проводник ,как медь.
   Псевдожидкость, смачивающая какую-нибудь деталь со скромной скоростью 1м/сек, осуществляет теплообмен столь эффективно,ка чистый газ движущийся со сверхзвуковой скоростью.
   Псевдожижжение с равным успехом можно использовать как для передачи тепла, так и для "передачи" холода.
   Применение псевдожидкости в печах для высокотемпературного нагрева металла позволит резко уменьшить расход топлива. Существует традиционная система нагрева - через газообразные продукты сгорания к металлу. А газ скорее можно назвать изолятором, чем проводником тепла: коэффициент, характеризующий его способность передавать тепло,равен 200, в то время, как у жидких металлов или расплавов солей этот коэффициент равен 20 000. Намного эффективнее теплообмен осуществляется в кипящей псевдожидкости: сжигаемый газ первоначально отдает тепло песку , а тот, перемешиваясь потоками газа, отдает тепло металлу. Хотя сам песок получает тепло все от того же теплоизолятора газа, однако суммарная поверхность песчинок огромна, и в значительной мере благодаря этому они отбирают у пламени во много раз больше тепла, чем сумела бы отнять нагреваемая заготовка.
   3.7.1 Среди новых теплообменных систем важное место занимают т е п л о в ы е т р у б ы. Один из простых вариантов тепловой трубы- это закрытый металлический цилиндр; его внутренние стенки выложены слоем пористо-капилярного материала, пропитанного легковоспламеняющейся жидкостью. Именно с движением этой жидкости связана теплопроводность трубы : на горячем конце жидкость испаряется и отбирает тепло; пары сами перемещаются к холодному концу - это нормальная конвекция; здесь пары конденсируются и отдают тепло; образовавшиеся жидкость по пористому материалу возвращается обратно,к горячему концу трубы. Это замкнутый цикл, бесконечный круговорот тела и массы никаких движущихся частей, в каком-то смысле машина вечная. Тепловые трубы - непревзойденные проводники тепла, их даже назвали сверхпроводниками. Действительно, через тепловую трубу диаметром в сантиметр можно прогнать тепловую мощность порядка 10 киловатт при разности температур на концах трубы (это аналог разности электрических потенциалов напряжения на участке цепи ) всего в 5 гр. С ; чтобы пропустить эту мощность через медный стержень такого же диаметра на его концах нужен был бы перепад температуры почти 150 000 гр. С .
   Тепловые трубы сейчас получили широкое применение. Их можно встретить в космической технике, в ядерных реакторах, криогенных хирургических инструментах, в системах охлаждения двигателей. В трубах может выполняться механическая работа за счет энергии движущегося теплоносителя. На их основе, например, создаются МТД-генераторы - теплоносителем в тепловой трубе может быть жидкий металл, и, если поместить трубу в магнитное поле, то в металле (на концах проводника ) наведется электродвижущая сила. Тепловые трубы могут работать в очень широком диапазоне температур. Все зависит от давления внутритрубы и от применяемого теплоносителя.
   3.8 Молекулярные цеолитовые сита.
   Цеолты являются кристалическими водными алюмосиликатами, они относятся к группе каркасных алюмосиликатов. Каркасы цеолитов содержат каналы и сообщающиеся между собой полости, в которых находятся катионы и молекулы воды. Катионы довольно подвижны и обычно могут в той или иной степени обмениваться на другие катионы.
   А.с. N 561233 Полирующий состав для обработки,например, полупроводниковых материалов, содержащий кристалический порошок, окислитель, например, перекись водорода и воду, отличающийся тем, что с целью повышения эффективности процесса полирования, он дополнительно содержит вещество,для катионного обмена, например азотнокислую медь или углекислый аммонит , а в качестве кристаллического порошка взяты алюмосиликаты, например,цеолиты.