Самый большой прорыв к доказательству так называемой гипотезы простых чисел произошел в 1966 году, когда китайскому математику Чену Джинграну удалось показать, что существует бесконечное множество пар простых и почти простыхчисел. У настоящих простых чисел нет делителей (отличных от самого числа и единицы), а почти простые числа уступают простым самую малость: у них существуют только два простых делителя. Например, число 17 простое, а число 21 (=3·7) — почти простое. Что же касается таких чисел, как 120 (=2·3·4·5), то они не простые и не почти простые, так как их можно представить в виде произведения нескольких простых множителей. Чен доказал, что существует бесконечно много случаев, когда простое число имеет в качестве близнеца либо другое простое число, либо почти простое число. Тот, кому удастся продвинуться еще на один шаг и снять оговорку «почти», совершит величайший прорыв в теории простых чисел со времен Евклида.
   Еще одна загадка простых чисел восходит к 1742 году, когда Христиан Гольдбах, учитель малолетнего царя Петра I, написал письмо великому математику Леонарду Эйлеру (который был родом из Швейцарии, но почти всю жизнь проработал в Петербурге). Рассмотрев десятки четных чисел, Гольдбах заметил, что все они представимы в виде суммы двух простых чисел:
   4 = 2 + 2,
   6 = 3 + 3,
   8 = 3 + 5,
   10 = 5 + 5,
   50 = 19 + 31,
   100 = 47 + 53,
   21000 = 17 + 20983,
   . . . . . .
 
   Гольдбах спрашивал у Эйлера, может ли тот доказать, что каждое четное число представимо в виде суммы двух простых чисел. Несмотря на многолетние усилия, Эйлеру, которого считали «живым воплощением анализа», так и не удалось решить проблему Гольдбаха. Ныне, в век компьютеров, гипотезу Гольдбаха подвергли проверке. Оказалось, что она верна для любого четного числа до 100 000 000, но доказать, что она верна для любого из бесконечно многих четных чисел, пока никому не удалось. Математики сумели доказать, что любое четное число представимо в виде суммы не более, чем 800 000 простых чисел [23], но этот результат весьма далек от доказательства первоначальной гипотезы Гольдбаха. Но даже столь слабые результаты позволили пролить свет на природу простых чисел, и в 1941 году российскому математику Ивану Матвеевичу Виноградову, которому удалось продвинуться на пути к доказательству гипотезы Гольдбаха, была присуждена Сталинская премия в размере 100 000 рублей.
   Из всех проблем, способных с большей или меньшей вероятностью занять место Великой теоремы Ферма, наибольшие шансы имеет проблема плотнейшей упаковки шаров Кеплера. В 1609 году немецкий ученый Иоганн Кеплер доказал, что планеты движутся не по круговым, а по эллиптическим орбитам. Это открытие совершило переворот в астрономии и позднее помогло Исааку Ньютону найти закон всемирного тяготения. Математическое наследие Кеплера не столь грандиозно по своим масштабам, как наследие Ньютона, но не менее глубоко. Проблему плотнейшей упаковки шаров можно сформулировать как задачу о том, как наиболее экономно сложить из апельсинов пирамиду.
   Проблема родилась в 1611 году, когда Кеплер написал небольшое сочинение «О шестиугольных снежинках», предназначенное в дар его покровителю Иоганну Вакгеру фон Вакенфельсу. В этом сочинении Кеплер успешно объяснил, почему снежинки всегда имеют шестиугольную форму, высказав предположение, что рост каждой снежинки начинается с обладающего гексагональной симметрией зародыша, который, падая в атмосфере, увеличивается в размерах. Непрерывно изменяющиеся ветер, температура и влажность позволяют каждой снежинке сохранять индивидуальность, а малые размеры зародыша приводят к тому, что условия, от которых зависит его рост, остаются одинаковыми со всех шести сторон, тем самым способствуя сохранению симметрии. В этом, на первый взгляд легкомысленном, сочинении проявился присущий Кеплеру замечательный талант извлекать глубокие и далеко идущие результаты из простейших наблюдений. Впоследствии Кеплер стал одним из основоположников кристаллографии.
   Интерес Кеплера к расположению и самоорганизации частиц вещества привел его к обсуждению другого вопроса — о плотнейшей упаковке частиц, при которой они занимают наименьший объем. Если предположить, что частицы имеют форму шаров, то ясно, что как бы они ни располагались в пространстве, между ними неизбежно останутся зазоры, и вопрос состоит в том, чтобы объем зазоров свести к минимуму. Кеплер рассмотрел несколько различных вариантов расположения шаров и для каждого варианта вычислил коэффициент заполнения пространства.
   Один из первых вариантов расположения шаров, рассмотренных Кеплером, сейчас принято называть гранецентрированной кубической решеткой. Ее можно построить, выложив сначала нижний слой шаров так, чтобы каждый шар был окружен шестью другими шарами. Второй слой образуют шары, уложенные в «ямки» поверх первого слоя, как показано на рис. 24. По существу, второй слой повторяет первый, но только слегка смещен относительно первого, чтобы шары второго слоя расположились в ямках первого слоя. Именно так обычно укладывают апельсины торговцы фруктами. Коэффициент заполнения пространства такой укладки составляет 74 %. Это означает, что при укладке апельсинов в картонный ящик гранецентрированная стратегия позволяет заполнить 74 % объема ящика апельсинами.
 
 
 
    Рис. 24. В гранецентрированной кубической упаковке шаров каждый слой состоит из сфер уложенных так, что каждая из них окружены шестью другими сферами. Поверх каждого слоя горизонтально накладывается следующий слой так, что любой из его шаров располагается не на шаре из предыдущего слоя, а в ямке. Частной разновидностью гранецентрированной кубической упаковки служат пирамиды из апельсинов в витринах овощных магазинов
 
   Гранецентрированную кубическую решетку можно сравнить с другими вариантами упаковки, например, с простой кубической решеткой. В этом случае каждый слой состоит из шаров, расположенных в виде квадратной решетки, а каждый следующий слой расположен в точности поверх предыдущего, как показано на рис. 25. Простая кубическая решетка имеет коэффициент заполнения пространства 53 %.
 
 
    Рис. 25. В простой кубической упаковке каждый слой состоит из шаров расположенных в виде квадратной решетки. Поверх каждого слоя горизонтально накладывается следующий слой так, что каждый его шар располагается строго над шаром предыдущего слоя
 
   Еще один вариант расположения шаров — гексагональная решетка — аналогичен гранецентрированной кубической решетке, поскольку каждый слой состоит из шаров, окруженных шестью другими шарами, но следующий слой не сдвинут относительно предыдущего, а расположен прямо поверх него так, что каждый шар опирается на самую верхнюю точку шара, расположенного под ним, как показано на рис. 26. У гексагональной решетки коэффициент заполнения пространства составляет всего лишь 60 %.
 
    Рис. 26. В упаковке с гексагональной решеткой каждый слой состоит из шаров расположенных так, что каждый из них окружен шестью другими шарами. Поверх каждого слоя горизонтально накладывается следующий слой так, что каждый шар верхнего слоя располагается непосредственно над шаром предыдущего слоя
 
   Кеплер исследовал множество различных конфигураций и пришел к заключению, что в сочинение «О шестиугольных снежинках» стоит включить только одну, а именно ту, которая в последствие получила название гранецентрированной кубической решетки, ибо у нее «упаковка оказывается плотнейшей из возможных». Утверждение Кеплера можно считать вполне разумным, так как коэффициент заполнения пространства для гранецентрированной кубической решетки наибольший из всех тех, которые были им обнаружены. Однако это не исключает возможность существования какого-то другого расположения шаров, с еще большим коэффициентом заполнения пространства, которое Кеплер попросту проглядел.
   Проблема плотнейшей упаковки шаров требует от математиков доказательства того, что гранецентрированная кубическая решетка представляет собой наиболее эффективный вариант упаковки шаров. Эта проблема на полвека старше Великой теоремы Ферма и, как теперь оказалось, еще более неприступна.
   Как и в случае Великой теоремы Ферма, решение проблемы Кеплера сводится к доказательству, охватывающему бесконечное множество возможных вариантов упаковки. Гипотеза Кеплера утверждает, что среди бесконечно многих вариантов расположения шаров нет ни одного такого, у которого коэффициент заполнения пространства был бы больше, чем у гранецентрированной кубической решетки. Математикам предстоит доказать, что это невозможно не только для регулярного, но и для случайного, хаотического, варианта расположения шаров.
   За последние 380 лет никому не удалось доказать, что гранецентрированная кубическая решетка действительно служит оптимальной стратегией упаковки. Но никто пока не открыл более эффективного метода упаковки. Отсутствие контрпримера означает, что для всех практических целей утверждение Кеплера применимо, но в абсолютном мире математики абсолютно необходимо строгое доказательство. Британский специалист по упаковке шаров К. А. Роджерс говорит, что «большинство математиков в правильность гипотезы Кеплера верят, а все физики в ее правильности твердо убеждены, так как это знают».
   Несмотря на отсутствие полного доказательства, за прошедшие со времен Кеплера столетия было пройдено несколько вех на пути к решению. В 1892 году скандинавский математик Аксель Туэ нашел доказательство для двумерного аналога проблемы Кеплера, т. е. обнаружил наиболее эффективное расположение шаров в одном-единственном слое, или, иначе говоря, укладки апельсинов не в ящике, а на подносе. Решением оказалось гексагональное расположение шаров. Впоследствие Тот, Сегрэ и Малер пришли к тому же заключению, но ни один из использованных в двумерном случае методов не применим к исходной трехмерной проблеме Кеплера.
   В наше время некоторые математики попытались подойти к проблеме Кеплера с совершенно другой стороны, а именно — вычислить верхний предел коэффициента заполнения пространства. В 1958 году К. А. Роджерс вычислил его верхний предел, который оказался равным 77,97 %. Это означает, что невозможно расположить шары так, чтобы коэффициент заполнения пространства был выше 77,97 %. Такое значение коэффициента заполнения пространства не намного больше, чем его значение для гранецентрированной кубической решетки, равное 74,04 %. Следовательно, если у какого-нибудь расположения шаров коэффициент заполнения пространства и оказался бы выше, чем у гранецентрированной кубической решетки, то превышение составило бы всего лишь несколько процентов. Оставалось узкое окно в 3,93 %, в которое могло бы «втиснуться» какое-то дикое расположение шаров, которое стало бы контрпримером, опровергающим гипотезу Кеплера. После Роджерса другие математики попытались полностью закрыть образовавшееся окно, понизив верхний предел до 74,04 %. Если бы эти попытки оказались удачными, то для других расположений не осталось бы места, они не могли бы иметь более высокий коэффициент заполнения пространства, чем гранецентрированная кубическая решетка, и тем самым гипотеза Кеплера оказалась бы «оправданной ввиду неявки подозреваемой». К сожалению, снижение верхнего предела оказалось процессом медленным и трудным, и к 1988 году верхний предел удалось уменьшить лишь до 77,84 %, что лишь незначительно улучшает оценку Роджерса.
   Несмотря на столь медленный прогресс, проблема плотнейшей упаковки шаров летом 1990 года неожиданно попала в заголовки на первых полосах газет. Ву-И Хзянь из Калифорнийского университета в Беркли опубликовал результат, который, по его утверждению, был доказательством гипотезы Кеплера. Первоначально реакция математического сообщества была оптимистической, но когда работа Ву-И Хзяня подверглась тщательному рецензированию, в ней был обнаружен ряд ошибок, и доказательство рухнуло.
   Как и в случае с доказательством Уайлса, Хзянь через год представил пересмотренный вариант доказательства, в котором, как он утверждал, ему удалось обойти те проблемы, которые были обнаружены в первоначальном варианте рукописи. К сожалению для Хзяня, его критики продолжали считать, что в его логике остаются пробелы. В письме к Хзяню математик Томас Хейлис попытался объяснить свои сомнения: «Одно предположение, сделанное в Вашей второй статье, представляется мне более фундаментальным и не менее трудным для доказательства, чем остальные… Ваши рассуждения весьма основательно и по существу опираются на это предположение, однако нигде нет и намека на его доказательство».
   С тех пор, как Хзянь представил усовершенствованный вариант доказательства, между ним и его критиками шла непрекращающаяся борьба. Правильность предъявленного Хзянем усовершенствованного доказательства остается под вопросом. Во всяком случае, для того, кто хочет доказать гипотезу Кеплера, дверь остается открытой. В 1996 году Дуг Мудер изложил свое ви?дение ситуации вокруг доказательства Хзяня, обнаружив некую интригу:
   «Недавно я вернулся с Совместной летней научно-исследовательской конференции по дискретной и вычислительной геометрии, состоявшейся в Маунт Холиоке под эгидой Американского математического общества, Института управленческих наук и Общества промышленной и прикладной математики. Такие конференции проводятся раз в десять лет, поэтому акцент делался на прогрессе, достигнутом за последние десять лет. Хзянь заявил о том, что ему удалось доказать гипотезу Кеплера шесть лет назад. Я обнаружил, что сообщество пришло к согласию по этому поводу: его доказательство "никто не покупает".
   На пленарных лекциях и во время неформальных дискуссий неоднократно обсуждались следующие вопросы.
   1. В статье Хзяня (опубликованной в "International Journal of Mathematics" в 1993 году) не содержится доказательства гипотезы Кеплера. В лучшем случае это набросок доказательства (на 100 страниц!), его общий ход. Таким доказательство могло бы быть.
   2. Эта статья не может считаться даже наброском, так как к некоторым ее утверждениям обнаружены контрпримеры.
   3. Столь же необосновано утверждение Хзяня о якобы найденном им доказательстве гипотезы о додекаэдре (и различных других ранее недоказуемых проблем упаковки шаров).
   4. Работа над гипотезой Кеплера и гипотезой о додекаэдре должна продолжаться так, как если бы статьи Хзяня никогда не существовали.
   В одной из лекций Габор Фейеш-Тот из венгерской Академии наук так отозвался о статье Хзяня: "Эту работу нельзя рассматривать как доказательство. Проблема по-прежнему остается открытой." Ему вторил Томас Хейлис из Мичиганского университета: "Проблема Кеплера остается нерешенной. Я не решил ее. Хзянь не решил ее. Насколько мне известно, никто не решил ее." (Хейлис предсказывал, что его собственный метод позволит решить проблему Кеплера "через год-другой".)
   Самое интересное в этой истории — то, что один математик так и не присоединился к общему мнению, а именно сам Хзянь (он не был участником конференции). Хзянь был великолепно осведомлен о контрпримерах и о том, что специалисты не верят его утверждениям, но продолжал выступать с лекциями по всему миру, в которых не уставал снова повторять эти утверждения. Те математики, которым доводилось лично общаться с Хзянем (например, Хейлис и Бездек), считают, что Хзянь никогда не признавал, что в его статье имеются ошибки.
   Именно по этой причине «пыль» оседала так медленно. Хзянь впервые заявил о том, что располагает доказательством гипотезы Кеплера в 1990 году, т. е. шесть лет назад. Публичные выступления Хзяня достаточно расплывчаты и неопределенны для того, чтобы быть правдоподобными. Через несколько месяцев после первых заявлений о том, что он располагает доказательством, когда появился первый препринт, в доказательстве сразу же были обнаружены пробелы, а вскоре последовали и контрпримеры. Но Хзянь упорно не прекращал лекционную деятельность, и это обстоятельство создавало впечатление, что он, по-видимому, справляется с теми возражениями, которые возникают. Объем его статьи и то, что текст доказательства претерпел несколько переработок до публикации, еще больше усиливали разноголосицу и неразбериху.
   Случай с Хзянем показывает, до какой степени математики полагаются на представления о чести. Математическое сообщество исходит из предположения, что почтенные профессора из самых престижных университетов не станут делать скоропалительные, безосновательные заявления и откажутся от ошибочных утверждений, едва в них будет обнаружен пробел. Тот, кто нарушит сложившуюся систему, основанную на представлениях о профессиональной честности, породит смятение, которое будет длиться долго, так как ни у кого нет ни желания, ни времени следовать повсюду за нарушителем и опровергать его всякий раз, когда он будет высказывать ложные утверждения. (Представьте себе, какой объем работы потребовалось проделать Хейлису, чтобы написать свою разоблачительную статью, опубликованную в 1993 году на страницах журнала "Mathematical Intelligencer", и примите во внимание, что она ничего не дала для математической карьеры самого Хейлиса, — и вы поймете эту проблему. Хзянь опубликовал ответ на статью Хейлиса, но его доводы оказались совершенно несостоятельными. Хейлис счел, что критика ответа Хзяня означала бы вхождение в нескончаемый цикл, на продолжение которого у него просто нет времени.)
   Хзянь мог позволить себе не признавать своих ошибок, но как обстояло с редколлегией "International Journal"? Ясно, что члены редколлегии оказались вовлеченными в процесс, который пошел не так, как предполагалось. Статья Хзяня не была прорецензирована должным образом, если вообще была прорецензирована. Ранее «Journal» не проявлял ни малейшего интереса к проблеме плотнейшей упаковки шаров. Было ясно, что Хзянь остановил свой выбор на "International Journal" не потому, что это было подходящее периодическое издание для публикации его статьи, а потому, что этот журнал издавали его друзья.
   Кароль Бездек, который больше года работал в контакте с Хзянем, пытался заполнить пробелы в его доказательстве, и представил в «Journal» статью, содержащую контрпример одной из лемм Хзяня. Публикация статьи Бездека затянулась надолго — с декабря. Столь долгий срок бывает иногда необходим для рецензирования статьи, но не совсем обычен для контрпримера к самой разрекламированной статье, опубликованной в «Journal» за многие годы».

Доказательства на чипах

   В первой схватке с Великой теоремой Ферма единственным оружием Уайлса были карандаш, бумага и чистая логика. И хотя его доказательство использует самые современные методы теории чисел, оно выдержано в лучших традициях Пифагора и Евклида. Но недавно появились зловещие признаки того, что доказательство Уайлса, возможно, стало одним из последних примеров классического доказательства, и будущие доказательства столь сложных проблем будут полагаться не столько на изящные рассуждения, сколько на грубую силу.
   Первые признаки того, что некоторые называют упадком математики, появились в октябре 1852 года в Англии, когда Фрэнсис Гатри, который мог уделять математике лишь часть своего времени, предложил одну, на первый взгляд, безобидную задачу. Однажды, раскрашивая от нечего делать карту графств Британии, Гатри наткнулся на головоломку, которая показалась ему простой, хотя решить ее он так и не сумел. Гатри просто хотел узнать, каково минимальное число красок необходимо взять для раскраски любой мыслимой карты при условии, чтобы никакие две смежные области (имеющие общую границу) не оказались окрашенными в один и тот же цвет.
   Например, для раскрашивания карты, изображенной на рисунке, трех красок недостаточно. Следовательно, для раскрашивания некоторых карт необходимы по крайней мере четыре краски. Гатри хотел узнать, окажется ли четырех красок достаточно для раскрашивания всех карт, или для некоторых карт могут потребоваться пять, шесть или больше красок.
    Разочарованный неудачей, но заинтригованный, Гатри упомянул об этой задаче в беседе со своим братом Фредериком, студентом Университетского колледжа в Лондоне. Тот, в свою очередь, рассказал о ней своему профессору, знаменитому Августу Де Моргану, который в письме от 23 октября сообщил великому ирландскому математику и физику Уильяму Роэну Гамильтону: «Мой студент попросил меня сегодня объяснить одну задачу, которая мне не была ранее известна и пока не понятна до конца. Он утверждает, что если любую фигуру разделить любым способом на части и раскрасить их различными красками так, чтобы фигуры, имеющие общий отрезок граничной линии, были окрашены в различные цвета, то всего потребуются четыре краски, но не больше. Мне известен случай, когда требуется четыре краски. Вопрос: нельзя ли придумать случай, когда необходимы пять или более красок?.. Если Вы придумаете очень простой пример, который покажет, насколько я глуп, то, думается, мне надо будет поступить, как Сфинксу» [24].
   Гамильтону не удалось придумать карту, для раскраски которой потребовалось бы пять цветов, но он не сумел и доказать, что такой карты не существует. Весть о проблеме четырех красок быстро распространилась по Европе, но, несмотря на все усилия, проблема упорно не поддавалась решению, хотя казалась простой. Герман Минковский однажды на лекции заявил, что проблема четырех красок не была решена потому, что найти решение пытались только третьеразрядные математики. Но и его собственные усилия в течение нескольких недель не увенчались успехом. «Небеса разгневались на меня за мое высокомерие, — вынужден был признать Минковский. — Мое доказательство также оказалось с изъяном».
   Автор задачи о четырех красках Фрэнсис Гатри вскоре покинул Англию и отправился в Южную Африку, где занялся адвокатской деятельностью. Но в конце концов он вернулся к математике, став профессором Кейптаунского университета. Впрочем, Гатри проводил больше времени на ботаническом факультете, чем со своими коллегами-математиками. Помимо проблемы четырех красок его единственной заявкой на славу стало описание вереска, названого в его честь Erica guthriei.
 
    Фрэнсис Гатри понял, что карту графств Британии он мог бы раскрасить всего лишь в четыре цвета, причем так, что никакие два соседних графства не оказались бы раскрашенными в один и тот же цвет. Затем он стал размышлять над тем, хватит ли четырех цветов для аналогичной раскраски любой другой карты
 
   Проблема четырех красок оставалась нерешенной четверть века. Надежда на успех появилась в 1879 году, когда британский математик Альфред Брей Кемпе опубликовал в «American Journal of Mathematics» статью, в которой, по его утверждению, содержалось решение головоломки Гатри. Казалось, Кемпе удалось доказать, что для раскраски любой карты требуется самое большее четыре краски, и тщательное изучение доказательства вроде бы подтверждало его правильность. Кемпе был тотчас же избран членом Королевского общества, а позднее возведен в рыцарское звание за вклад в развитие математики.
   Но в 1890 году лектор Дурхэмского университета Перси Джон Хивуд опубликовал работу, потрясшую математический мир. Через десять лет после того, как Кемпе, казалось бы, решил проблему четырех красок, Хивуд не оставил от его решения камня на камне, показав, где в решении Кемпе была допущена принципиальная ошибка. Единственной хорошей новостью было то, что Хивуду удалось получить оценку для максимального числа красок: оно могло быть равно четырем или пяти, но не более.
   Хотя Кемпе, Хивуду и другим так и не удалось решить проблему четырех красок, их попытки внесли большой вклад в новый раздел математики — топологию. В отличие от геометрии, которая занимается изучением точной формы и размеров объекта, топологию интересуют только самые фундаментальные свойства объекта, составляющие его суть.
   Например, когда геометр изучает квадрат, его интересуют такие свойства квадрата, как равная длина сторон и то, что все внутренние углы квадрата прямые. Когда же тополог изучает квадрат, его интересует только то обстоятельство, что контур квадрата представляет одну сплошную замкнутую линию, т. е. по существу — петлю. Поэтому для тополога окружность неотличима от квадрата, поскольку окружность также представляет собой одну петлю. Математик Джон Келли как-то раз заметил: «Тополог — это тот, кто не отличает бублик от кофейной чашки».
   Топологическую эквивалентность квадрата и окружности можно наглядно представить себе и другим способом, вообразив, что квадрат или окружность начерчены на резиновом листе. Если выбрать за исходную фигуру квадрат, то, растягивая, сжимая, изгибая и перекручивая резиновый лист (но не разрывая его и не склеивая никакие точки), квадрат можно превратить в окружность. С другой стороны, квадрат невозможно превратить в крест, как бы мы ни деформировали резиновый лист. Следовательно, квадрат и крест топологически не эквивалентны. Из-за такого подхода к наглядному представлению топологических свойств фигур топологию часто называют «геометрией на резиновом листе».