Ямвлих, ученый, живший в IV веке и написавший девять книг о пифагорейском братстве, рассказывает о том, как Пифагор пришел к открытию принципов, лежащих в основе музыкальной гармонии.
   «Однажды Пифагор был глубоко погружен в размышления о том, как бы изобрести механическое устройство для слуха, которое было бы надежным и незамысловатым. Такое устройство было бы подобно циркулям, линейкам и оптическим инструментам, измышленным для зрения… Божественная удача распорядилась так, что Пифагор проходил как-то раз мимо кузницы, в которой работали кузнецы, и услышал удары молотков о железо, производивших во всех комбинациях, кроме одной, разнообразные гармонические звуки».
   Как рассказывает далее Ямвлих, Пифагор, сгорая от нетерпения, вбежал в кузницу, чтобы выяснить, как возникает гармония молотов. Он заметил, что большинство молотов, если ими ударить одновременно, порождают гармоническое звучание, но одна комбинация молотов всегда порождала неприятное звучание. Рассмотрев хорошенько молоты, Пифагор понял, что те, которые издавали гармоническое звучание, находились в простом математическом отношении: их массы образовывали друг с другом простые отношения, или дроби. Иначе говоря, молоты, вес которых составляет половину, две трети или три четверти веса какого-то определенного веса, порождают гармонические звучания. С другой стороны, молот, порождающий дисгармонию (если ударить им одновременно с любым из других молотов), имеет вес, не образующий простого отношения с весом любого из других молотов.
   Пифагор открыл, что простые отношения чисел отвечают за гармонию в музыке. Ученые усомнились в правдивости истории, рассказанной Ямвлихом о Пифагоре. Более достоверно известно, что Пифагор применил свою новую теорию музыкальных отношений к лире, рассматривая свойства одной струны. Если просто ущипнуть струну, то возникает стандартная нота, или тон, который создается всей длиной колеблющейся струны. Зажав струну в определенных точках, можно породить другие колебания и тоны, как показано на рис. 1. Важно то, что гармонические тона возникают только при зажиме струны в определенных точках.
   Например, зажав струну точно посередине и затем ущипнув ее, мы получим тон октавой выше в гармоническом созвучии с первоначальном тоном. Если струну зажать на расстоянии одной трети, четверти или пятой длины от конца, то получатся другие гармонические тона. Но стоит зажать струну в точке, отстоящей от конца на расстоянии, не образующем простую дробь с длиной струны, как издаваемый струной звук не будет гармонировать с другими тонами.
    Рис. 1. Свободно колеблющаяся открытая струна издает основной тон. Если точно посредине струны создать узел колебания, то издаваемая струной нота станет на октаву выше и будет гармонировать с исходной нотой. Другие гармоники мы получим, перемещая узел в другие положения, соответствующие простым дробям (например, трети, четвертой или пятой части) от полной длины струны
 
   Пифагор впервые открыл математическое правило, которому подчиняется физическое явление, и показал тем самым, что между математикой и физикой существует фундаментальная взаимосвязь. Со времени этого открытия ученые стали заниматься поиском математических правил, которым, судя по всему, подчиняется каждый физический процесс в отдельности, и обнаружили, что числа возникают во всех явлениях природы.
   Например, некоторое число входит в закономерность, которой подчиняются длины рек. Профессор Ханс-Хенрик Стоун, специалист по физике Земли из Кембриджского университета, вычислил отношение между истинной длиной реки от истока до устья и расстоянием «по прямой», как могла бы лететь птица. И хотя это отношение варьируется от реки к реке, его среднее значение лишь немногим больше 3, т. е. истинная длина реки примерно в 3 раза больше расстояния от источников до устья по прямой.
   В действительности это отношение примерно равно 3,14, что близко к значению числа ? — отношению длины окружности к ее диаметру. Число ? первоначально возникло в геометрии окружностей, но появляется снова и снова при самых различных обстоятельствах во многих разделах науки.
   Например, появление числа ? в отношении истинной длины реки от истоков до устья к расстоянию от ее истоков до устья по прямой — результат борьбы между порядком и хаосом. Эйнштейн первым высказал предположение о том, что реки имеют тенденцию ко все более извилистому руслу, так как малейшее искривление русла приводит к ускорению течения у «наружного» берега, что в свою очередь приводит к ускорению эрозии берега и увеличению крутизны поворота. Чем круче поворот, тем быстрее течение у «наружного» берега; чем быстрее течение, тем сильнее эрозия; чем сильнее эрозия, тем круче поворот реки, и т. д.
   Однако, существует в природе процесс, который укрощает хаос: увеличение извилистости русла приводит к появлению петель и, наконец, к «короткому замыканию» русла: река спрямляет русло, а замкнутая петля, оставшаяся в стороне от русла, становится старицей. Баланс между этими двумя противоположными факторами приводит к близкому к ? среднему значению отношения истинной длины реки и расстоянием между истоками и устьем по прямой. Отношение равное ? чаще всего встречается у рек, текущих по равнинам с очень слабым уклоном. Таковы, например, реки Бразилии и Сибири.
   Пифагор понял, что всюду, от гармонии в музыке до планетных орбит, скрыты числа, и это открытие позволило ему сформулировать афоризм: «Все сущее есть Число». Постигая смысл и значение математики, Пифагор разрабатывал язык, который позволил бы и ему самому, и другим описывать природу Вселенной. С тех пор каждое существенное продвижение в математике давало ученым словарь, необходимый для лучшего объяснения явлений в окружающем мире. Не будет преувеличением сказать, что успехи математики порождали коренные сдвиги в естествознании.
   Исаак Ньютон был не только открывателем закона всемирного тяготения, но и выдающимся математиком. Его величайшим вкладом в математику стало создание математического анализа — дифференциального и интегрального исчисления. Позднее физики использовали язык математического анализа для более точного описания закона всемирного тяготения и решения задач, связанных с гравитацией. Созданная Ньютоном классическая теория гравитации пережила века и уступила место общей теории относительности Альберта Эйнштейна, давшего новое, более подробное объяснение гравитации. Идеи самого Эйнштейна стали возможными только благодаря новым математическим понятиям, позволившим ему развить более изощренный язык для своих более сложных (по сравнению с ньютоновскими) научных идей. Современная интерпретация гравитации также стала возможной под влиянием последних достижений математики. Новейшие квантовые теории гравитации связаны с успехами математической теории струн, в которой геометрические и топологические свойства трубок наилучшим образом объясняют силы природы.
   Из всех взаимосвязей между числами и природой, изученных членами пифагорейского братства, наиболее важным стало соотношение, которое ныне носит имя основателя братства. Теорема Пифагора дает нам соотношение, которое выполняется для всех прямоугольных треугольников и, следовательно, определяет прямой угол. В свою очередь, прямой угол определяет перпендикуляр, т. е. отношение вертикали к горизонтали, а в конечном счете — отношение между тремя измерениями нашего мира. Математика — через прямой угол — определяет самую структуру пространства, в котором мы живем. Это очень глубокая мысль.
   Между тем, формулировка теоремы Пифагора сравнительно проста. Действительно, чтобы понять ее, нужно прежде всего измерить длину двух более коротких сторон ( xи y), — так называемых катетов, — прямоугольного треугольника, и каждую из полученных длин возвести в квадрат ( x 2и y 2). Затем нужно сложить квадраты длин ( x 2+ y 2). Для треугольника, изображенного на рис. 2, сумма равна 25.
  x= 3, y= 4, z= 5
x 2+ y 2= z 2
9 + 16 = 25
Рис. 2
    Теперь вы можете измерить длину наибольшей стороны z— так называемой гипотенузы — и возвести полученное число в квадрат. Самое замечательное заключается в том, что число z 2совпадает с вычисленной вами ранее суммой, т. е. 5 2= 25. Иначе говоря, в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.
   Иными словами (точнее, символами), теорема Пифагора утверждает, что
x 2+ y 2= z 2
   Ясно, что это соотношение выполняется для треугольника на рис. 2, но суть теоремы Пифагора в том, что это равенство остается в силе для любого прямоугольного треугольника, какой вы только можете себе представить. Это — универсальный закон математики, и вы можете положиться на него всякий раз, когда вам доведется встретить треугольник, содержащий прямой угол. И обратно, стоит вам встретить треугольник, удовлетворяющий теореме Пифагора, как вы можете быть абсолютно уверенными в том, что перед вами прямоугольный треугольник.
   Уместно заметить, что, хотя теорема, о которой идет речь, навсегда связана с именем Пифагора, китайцы и вавилоняне использовали ее на тысячу лет раньше. Однако ни китайские, ни вавилонские геометры не знали, что эта теорема выполняется для любого прямоугольного треугольника. Теорема, получившая впоследствии название теоремы Пифагора, оказалась верной для любого прямоугольника, на котором китайцы и вавилоняне могли ее проверить, но они не знали, как показать, что она будет справедлива для всех тех прямоугольных треугольников, которые они не подвергли проверке. Причина, по которой теорему стали называть теоремой Пифагора, заключается в том, что именно он доказал ее универсальную истинность.
   Но каким образом Пифагор узнал, что его теорема верна для любого прямоугольного треугольника? Он не мог надеяться на то, что ему удастся проверить бесконечно много разнообразнейших прямоугольных треугольников, и тем не менее Пифагор сумел обрести уверенность «на все сто процентов» в том, что его теорема — абсолютная истина. Причина его уверенности — в понятии математического доказательства. Поиск математического доказательства — это поиск знания, более точного, чем знание, накопленное какой-нибудь другой научной дисциплиной. Жажда постичь абсолютную истину с помощью метода доказательства двигала математиками на протяжении двух с половиной тысяч лет.

Абсолютное доказательство

   История Великой теоремы Ферма — это история поиска недостающего доказательства. Математическое доказательство гораздо мощнее и строже, чем представление о доказательстве, которым мы пользуемся в нашем повседневном языке, и даже чем то представление о доказательстве, которого придерживаются физики или химики. Понимание различия между естественнонаучным и математическим доказательствами имеет решающее значение для осознания того, чем занимается каждый математик со времен Пифагора.
   Классическое математическое доказательство начинается с серии аксиом — утверждений, которые можно предположить истинными или истинность которых самоочевидна. Затем с помощью логических рассуждений, шаг за шагом, можно прийти к заключению. Если аксиомы истинны, а логика безупречна, то заключение безупречно. Этим заключением и является теорема.
   Математические теоремы опираются на такой логический процесс и, доказанные однажды, они остаются истинными до скончания веков. Математические доказательства абсолютны. Чтобы по достоинству оценить значительность абсолютных доказательств, их следует сравнить с их «бедным родственником» — естественнонаучным доказательством, принятым, например, в физике.
   В физике гипотеза выдвигается для объяснения какого-нибудь физического явления. Если наблюдения за явлением хорошо согласуются с гипотезой, то это свидетельствует в ее пользу, или, как принято говорить, подкрепляет выдвинутую гипотезу. Кроме того, гипотеза должна не только описывать известные процессы, но и предсказывать исход других процессов.
   Для проверки предсказательной силы гипотезы могут проводиться эксперименты, и если они оказываются успешными, то это еще сильнее подкрепляет гипотезу. В конце концов, количество данных, свидетельствующих в пользу гипотезы, может оказаться достаточно большим, и гипотезу принимают в качестве физической теории.
   Однако физическая теория никогда не может быть доказана на уровне, столь же абсолютном, как тот, на котором принято доказывать математические теоремы: на основе имеющихся данных физическую теорию можно считать обоснованной лишь с большей или меньшей вероятностью. Так называемое физическое, или, более общо, естественнонаучное доказательство, основано на наблюдениях и данных, доставляемых нашими органами чувств. И те, и другие обманчивы и дают лишь приближение к истине. Как заметил Бертран Рассел: «Хотя это может показаться парадоксом, все точные науки пронизаны идеей приближения».
   Даже наиболее широко признанные естественнонаучные «доказательства» неизменно содержат в себе небольшой элемент сомнения. Иногда сомнение становится меньше; но оно никогда не исчезает полностью. Иногда выясняется, что предложенное доказательство неверно. Слабость физического доказательства приводит к научным революциям, во время которых на смену одной теории, считавшейся «верной» приходит другая теория, которая может быть всего лишь уточнением прежней теории, а может полностью противоречить ей.
   Например, в поиске фундаментальных частиц материи каждое поколение физиков «перепахивало» или, по крайней мере, уточняло и усовершенствовало теорию своих предшественников. Современный этап поиска мельчайших «кирпичиков», из которых построена Вселенная, начался в первые годы XIX века, когда в результате серии экспериментов Джон Дальтон пришел к гипотезе о том, что все в мире состоит из отдельных атомов и что эти атомы — мельчайшие частицы материи.
   В конце XIX века Дж. Дж. Томсон открыл электрон — первую известную субатомную частицу, и атом перестал быть мельчайшей частицей материи.
   В начале XX века физики построили «полную» теорию атома: вокруг ядра, состоящего из протонов и нейронов, обращаются электроны. Протоны, нейроны и электроны были горделиво провозглашены физиками полным набором ингредиентов, из которых состоит Вселенная. Затем анализ космических лучей обнаружил существование других элементарных частиц — пионов и мюонов. Еще больший переворот в физике произошел в 1932 году, когда было открыто антивещество — существование антипротонов, антинейтронов, антиэлектронов и т. д. К тому времени физики, занимавшиеся изучением элементарных частиц, не могли с уверенностью сказать, сколько существует различных частиц, но по крайней мере утверждали, что обнаруженные частицы действительно элементарны, т. е. неделимы. Так продолжалось до 60-х годов, когда появилось понятие кварка. Протон, так же, как нейтрон, пион и мюон, оказался состоящим из кварков, несущих электрический заряд, равный дробной части заряда электрона. Мораль всей этой истории в том, что физики непрестанно меняют свою картину мира, а иногда даже стирают ее совсем и начинают рисовать с самого начала. В следующем десятилетии самое представление о частице как о точечном объекте может претерпеть замену на представление о частицах как о струнах — тех самых струнах, которые, возможно, послужат наилучшему объяснению гравитации. Согласно теории струн, трубки длиной в одну миллиардную миллиардной миллиардной миллиардной метра (такие маленькие, что они кажутся точками) могут совершать различные колебания, и каждое такое колебание порождает определенную частицу. Такое представление аналогично открытию Пифагора, обнаружившего, что одна струна лиры может порождать различные ноты в зависимости от того, как она колеблется.
   Писатель-фантаст и футуролог Артур Кларк писал, что если какой-нибудь знаменитый профессор утверждает, будто нечто несомненно истинно, то весьма вероятно, что на следующий день это нечто окажется ложным. Физическое доказательство ненадежно и шатко. В то же время математическое доказательство абсолютно и лишено и тени сомненья. Пифагор умер в полной уверенности, что его теорема, бывшая истиной в 500 году до н. э., останется истинной навсегда.
   Физика живет, словно подчиняясь решению суда. Теория считается верной, если имеется достаточное количество данных, «неопровержимо» подтверждающих ее предсказания. Иное дело — математика. Она не полагается на данные, полученные в результате могущих оказаться ошибочными экспериментов, а строит свои заключения на основе «железной», т. е. не знающей ошибок, логики. Примером различия между физическим и математическим подходом может служить задача о шахматной доске с выпиленными угловыми полями (рис. 3).
Рис. 3
   Перед нами шахматная доска, от которой два противоположных угловых поля отпилили так, что осталось только 62 поля. Возьмем 31 кость домино таких размеров, что каждая кость накрывает ровно два шахматных поля. Вопрос: можно ли разложить 31 кость домино на шахматной доске так, что все 62 поля окажутся покрытыми домино? К решению задачи существуют два подхода.
 
    1) Физический подход
   Физик пытается решить задачу экспериментально и, перепробовав с дюжину различных вариантов размещения домино на шахматной доске обнаруживает, что все они заканчиваются неудачей.
   В конце концов физик приходит к убеждению, что в его распоряжении достаточно данных, позволяющих утверждать, что покрыть шахматную доску с двумя выпиленными по диагонали угловыми полями невозможно. Однако физик не может быть до конца уверен в том, что это действительно так, потому что может найтись некоторое расположение домино на шахматной доске, которое не было им экспериментально обнаружено, но именно оно и дает решение задачи. Различных же вариантов расположения домино существует не один миллион, и экспериментально проверить всегда можно лишь малую их толику. Что же касается заключения задачи, то это — теория, основанная на эксперименте, и физику не остается ничего другого, как жить под угрозой, что в один «прекрасный» день эта теория может оказаться отвергнутой.
 
    2) Математический подход
   Математик стремится решить задачу, выстраивая цепочку логических аргументов, приводящую к заключению, вне всяких сомнений правильному и остающемуся безупречным навсегда. Одна из таких цепочек логических аргументов выглядит следующим образом.
   - Оба угловых поля, выпиленные из доски, — белые. Следовательно на доске остались 32 черных поля и только 30 белых поля.
   - Каждое домино покрывает два смежных поля, а смежные поля всегда отличаются по цвету, т. е. одно поле черное, а другое — белое.
   - Следовательно, независимо от расположения домино на шахматной доске, первые 30 костей, выложенных на доску, должны покрыть 30 белых и 30 черных полей.
   - Это означает, что при любом раскладе всегда останется одна домино и два непокрытых черных поля.
   - Но любая кость домино покрывает на шахматной доске два смежных поля, а смежные поля всегда отличаются по цвету. Два оставшихся непокрытыми поля одного цвета, и поэтому накрыть их одной костью домино невозможно. Следовательно, покрыть эту доску 31 костью домино невозможно!
   Приведенное выше доказательство показывает, что шахматную доску с двумя выпиленными по диагонали угловыми полями невозможно покрыть домино при любом расположении костей. Аналогичным образом, Пифагор создал доказательство, из которого следует, что любой прямоугольный треугольник удовлетворяет его теореме. Для Пифагора понятие математического доказательства было священным, и именно математическое доказательство позволило пифагорейскому братству открыть так много. Большинство современных доказательств невероятно сложны, и разобраться в них неспециалисту просто не по силам. В случае теоремы Пифагора ход рассуждений, к счастью, достаточно прост и опирается только на математику, которую изучают в средней школе. Доказательство теоремы Пифагора изложено в Приложении 1.
   Доказательство Пифагора неопровержимо. Оно показывает, что теорема Пифагора выполняется для любого прямоугольного треугольника во Вселенной. Открытие это так потрясло Пифагора, что он в благодарность принес в жертву богам сто быков. [1]Оно стало вехой в развитии математики и одним из самых важных прорывов в истории цивилизации. Значение этого открытия было двояким.
   Во-первых, оно позволило сформулировать представление о том, что такое доказательство. Доказанный математический результат обладает более глубокой истинностью, чем любая другая истина, поскольку получен шаг за шагом с помощью логических рассуждений. Хотя философ Фалес Милетский еще до работ Пифагора использовал несколько простых геометрических доказательств, Пифагор развил идею математического доказательства гораздо дальше и сумел доказать более хитроумные математические утверждения.
   Во-вторых, теорема Пифагора устанавливает связь между абстрактным математическим методом и чем-то осязаемым. Пифагор показал, что математическая истина приложима к физическому миру и служит его логическим основанием. Математика дает физике строгое начало, а затем, к этому незыблемому основанию физики добавляются наблюдения и измерения, отягощенные ошибками.

Бесконечное количество пифагоровых троек

   Пифагорейцы своим страстным поиском истины с помощью доказательства вдохнули в математику живительную силу. Вести о достигнутых ими успехах распространились по всему Древнему Миру, хотя подробности своих открытий пифагорейцы хранили в строгой тайне. От желающих проникнуть в святилище знания не было отбоя, но только самые блестящие умы могли рассчитывать на прием в братство. Один из тех, кому ответили отказом, был кандидат по имени Силон. Он затаил обиду на унизительный отказ и спустя двадцать лет взял реванш.
   Во время шестьдесят седьмой Олимпиады (510 год до н. э.) в соседнем городе Сибарисе произошло восстание. Телис, победоносный лидер восстания, начал варварскую кампанию преследования сторонников прежнего правительства, которая заставила многих из них искать убежища в Кротоне. Телис потребовал, чтобы предателей вернули в Сибарис, чтобы те понесли наказание, но по призыву Мило и Пифагора жители Кротона выступили против тирана в защиту беглецов. Телис пришел в ярость и, быстро собрав армию численностью в 300000 воинов, пошел маршем на Кротон, оборону которого возглавил Мило, собравший под своим началом 100000 вооруженных жителей города. На семидесятый день войны защитники Кротона под предводительством Мило одержали победу. В качестве возмездия Мило приказал повернуть воды реки Кратис так, чтобы они затопили Сибарис и разрушили город.
   Война окончилась, но Кротон бурлил: жители спорили о том, как по справедливости разделить военные трофеи. Опасаясь, что земли достанутся пифагорейской элите, рядовые жители Кротона начали ворчать. Недовольство все более возрастало, так как пифагорейское братство продолжало удерживать в тайне свои открытия, но никаких действий жители Кротона не предпринимали до тех пор, пока в дело не вмешался Силон. Сыграв на страхах, умопомешательстве и зависти толпы, Силон возглавил ее и повел, чтобы разрушить самую блестящую математическую школу, которую когда-либо знал мир. Дом Мило и соседняя школа были окружены. Все двери были закрыты и забаррикадированы, чтобы те, кто находились внутри, не могли спастись, а затем оба здания были подожжены. Мило сумел вырваться из ада и убежать, а Пифагор вместе со своими многочисленными учениками был убит.
   Математика потеряла своего первого героя, но пифагорейский дух не был сокрушен. Числа и математические истины бессмертны. Пифагор показал, что математика в большей степени, чем какая-нибудь другая научная дисциплина, лишена субъективности. Его ученикам и последователям не был нужен учитель, чтобы решить, верна ли та или иная теория. Истинность математической теории не зависит от чьего бы то ни было мнения. Арбитром вместо мнения стала логичность математической конструкции. Величайшим вкладом Пифагора в цивилизацию стал способ достижения истины, не подвластный ошибочности человеческого суждения. После нападения Силона и смерти своего отца-основателя, пифагорейцы покинули Кротон и разбрелись по другим городам Древней Греции.
   Но преследования продолжались, и в конце концов многие пифагорейцы были вынуждены поселиться на чужбине. Вынужденная эмиграция способствовала тому, что пифагорейцы распространили свое математическое учение по всему Древнему Миру. Ученики и последователи Пифагора основали новые школы и обучили своих учеников методу логического доказательства. Помимо известного им доказательства теоремы Пифагора они поведали миру секрет нахождения так называемых пифагоровых троек.