При некоторых обследованиях (скажем, при съемке сосудов сердца) экспозицию необходимо сократить до 0,001 секунды. И значит, соответственно увеличить мощность. Технически такое вполне реально:
   достаточно расширить площадочку на аноде, куда нацелен сфокусированный пучок электронов. Но тогда изображение проиграет в резкости. Поперечник этого фокусного пятна не должен превышать двух миллиметров.
   Идеальной была бы точечная мишень. Уже удалось получить такой источник с помощью лазера. Эксперименты обнадеживают.
   Сейчас продолжаются попытки усовершенствовать анод так, чтобы он, с одной стороны, не перегревался, а с другой - стал более жаропрочным. Пока что его делают из таких тугоплавких материалов, как вольфрам, молибден. Возможно, пригодится графит, обладающий завидной термостойкостью. Если из него будет создан достаточно прочный и компактный анод, мощность трубки значительно увеличится.
   Предстоит справиться и с другими задачами. При жестких режимах работы анод должен вращаться быстрее, иначе он расплавится. Однако при больших скоростях да еще высоких температурах не выдерживают подшипники. Нужна особая смазка: не только термостойкая, но и нелетучая, рассчитанная на работу в вакууме.
   25.
   - Итак, все новые проблемы?
   - Да, но и все новые поиски, новые находки.
   Без этого немыслимо развитие, которое всегда идет через преодоление противоречий.
   - Но зачем окунаться в атмосферу вашей кухни нам, непосвященным?
   - Ее нелишне почувствовать всем. В эпоху научнотехнической революции не только рентгенолог или иной ученый - любой наш современник, сознает он это или нет, обязан мыслить иначе, чем его деды, не вправе ограничиваться простым исполнением привычных функций "по старинке". Не может не интересоваться: почему так, а не иначе и как лучше? Иначе говоря, должен не бежать от проблем, не закрывать их, а вскрывать, ставить и разрешать.
   Что произошло бы с нашими современниками и потомками, если бы на Земле вдруг не стало серебра?
   Иные усмехнутся: никакой трагедии, проживем и без него. Чайные ложки, мол, да подстаканники можно делать из нержавеющей стали...
   Что ж, ювелирная промышленность и впрямь легко обошлась бы без этого драгоценного металла. Куда труднее отказаться от него электротехнике, но и тут наверняка удастся подыскать достойную замену. А вот как быть кинофотоиндустрии? Это единственная из трех названных отраслей - главных его потребительниц, которая без серебра просто немыслима.
   Кто не знает, что светочувствительной пленку делают соединения серебра? Всем известно и то, что она нужна не только кинооператору и фоторепортеру, но и тому, кто спасает людей от болезней, от смерти, - рентгенологу.
   Вот уж подлинно драгоценный металл! В первую очередь для медицины. И это один из дефицитнейших элементов на Земле. По некоторым подсчетам, его мировых запасов хватит разве лишь на 20 лет. Конечно, какая-то его часть возвращается благодаря утилизации
   отходов, но именно часть. А расходы продолжают расти.
   Его экономия - одна из насущнейших задач, важность которой многие, к сожалению, все еще не осознали в полной мере.
   Рентгеновская пленка имеет два эмульсионных слоя.
   Каждый квадратный метр содержит 14 граммов серебра. Используется же она в огромных и к тому же растущих количествах. Проблема налицо. А поиски, решения?
   Мы помним, что такое флюорография. Что профилактические обследования населения этим методом, хотя и остаются массовыми, кое-где, однако, начали уже сворачиваться. В будущем их масштабы станут, вероятно, намного меньше, чем ныне. Сократится и расход пленки.
   Но сберегать ее в еще больших количествах позволило бы повсеместное распространение опыта, накопленного флюорографией.
   Флюорограмма имеет только один светочувствительный слой. Кроме того, она по площади в 10-20 раз меньше крупноформатной стандартной рентгенограммы.
   И в большинстве случаев может ее заменить, что сулит немалую экономию. Конечно, изображение будет мельче.
   Но его можно увеличить для рассматривания с помощью специальных проекторов. Дело, понятно, не только в материальной выгоде. Если компактную флюорографическую камеру установить на электронно-оптический усилитель стационарного аппарата, можно полностью заменить крупноформатные снимки на 70- или 100-миллиметровые флюорограммы, снизив при этом лучевые нагрузки.
   Такая комбинация обладает еще одним достоинством. Она позволяет запечатлеть .исследуемый орган почти кинематографически - многократно с коротким интервалом по заданной программе. Например, с частотой 6 кадров в секунду. Это очень важно при регистрации быстротекущих процессов. Таких, как, скажем, глотание "бариевой каши" (контрастной массы) и ее продвижение по пищеводу.
   Хорошо, а не уменьшится ли вместе с размерами изображения его диагностическая информативность? Да, если пленка 70-миллиметровая. Нет, если она 100-мил* лиметровая. Сделанные на ней снимки по разрешающей силе равноценны стандартным крупноформатным рентгенограммам. Правда, требуют увеличения, но при необходимости могут разглядываться и без проектора, невооруженным глазом.
   Предположим, однако, что кто-то сочтет для себя абсолютно необходимым изображения в натуральную величину. Что ж, на них вовсе не обязательно расходовать пленку. Можно обойтись обычной писчей бумагой.
   В народном хозяйстве давно уже применяется ксерография (от греческого "ксерос" - "сухой"). Она основана на способности селеновой пластины накапливать электростатический заряд, а затем терять его под действием видимых (или рентгеновских) лучей, сохраняя его на затемненных участках. В результате на поверхности пластины возникает скрытое изображение.
   Его проявляют, опыляя тонкодисперсным красящим порошком, который точно воспроизводит распределение света и теней. Рисунок затем перепечатывают на бумагу.
   Так получают электрорентгенограммы, затрачивая на это 2-3 минуты. Одна селеновая пластина выдерживает 2-3 тысячи таких процедур, что позволяет сберечь до 3 килограммов серебра. Изображение мало уступает по качеству обычному рентгенографическому, а нередко бывает и более информативным: видны даже волосы, очень хорошо прорисовываются мягкие ткани.
   Спору нет, всякая экономия должна быть разумной.
   Если есть возможности повысить эффективность диагностики, они должны быть реализованы, путь даже понадобятся дополнительные затраты. Вот, к примеру, уже упоминавшаяся цветная рентгенография. Ей необходима пленка, притом еще более дорогая, чем черно-белая. Но цель оправдывает средства: изображение оказывается информативнее. Как же его получают?
   Есть несколько способов. Вот один из них. Обследуемый объект снимают трижды, каждый раз при ином напряжении рентгеновской трубки, то есть в лучах неодинаковой жесткости. Изготовляют три черно-белых негатива. Каждый из них окрашивают одним из основных цветов: первый - синим, второй зеленым, третий - красным. Затем все три совмещают и делают один отпечаток на цветной пленке.
   Все вроде бы просто и хорошо, но, к сожалению, пациент получает три дозы вместо одной. Этого недостатка лишен метод тоноразделения, предложенный в 1963 году немецким ученым Р. Гаройсом. Здесь нужна лишь однократная экспозиция. На снимке выделяют различные зоны плотности, и на каждую из них изготовляют свою копию рентгенограммы. В конце концов все совмещают на цветной пленке, получая условно окрашенное изображение.
   Чтобы упростить такие превращения, создается специальная цветная пленка. Она имеет несколько слоев.
   Каждый реагирует на определенную интенсивность рентгеновской радиации. После проявления возникает чернобелое изображение, а после отбеливания окрашенное.
   Самые светлые участки выглядят красными, более темные - зелеными, синими, фиолетовыми.
   Такая рентгенограмма богаче информацией, но ее анализ требует определенного навыка и психологической перестройки. Алая кровь и коричневая желчь, контрастированные соответствующими препаратами, оказываются зелеными, как и кости, и все, что хорошо задерживает проникающую радиацию. Зато ажурная структура легких, прозрачная масса мягких тканей предстанет взору врача пурпурной.
   Ясно, что тут нет ничего общего с естественной палитрой красок. Но ведь ее искажают и черно-белые снимки, к которым все мы давно привыкли. Почему бы не привыкнуть и к искусственно измененным цветам? В конце концов, ведь наше восприятие цвета также условно, потому что оно опосредовано нашими органами чувств.
   Об этом знали или догадывались даже древние. Материалист, мыслитель и поэт Лукреций писал:
   Словом, не думай, что вещь, коль она обладает окраской
   Той иль иной, потому ее носит, что в ней основные Тельца ее вещества окрашены цветом таким же.
   Ибо у тел основных никакой не бывает окраски, Ни одинаковой с той, что присуща вещам, ни отличной.
   26.
   - Если флюорография "почти кинематографична"- (до 6 кадров в секунду), то, верно, есть и настоящ&.г кинематографические скорости?
   - Конечно. Существует рентгеновское кино с нормальной, ускоренной и замедленной съемкой. Есть также рентгеновское телевидение. Как и обычное, оно использует магнитную запись изображения.
   - Что это дает? Экономится серебро?
   - Не только. Рентгенологи получили наконец возможность выйти на свет из полумрака своих кабинетос, лучше наладить хранение архивных материалов.
   28 декабря 1895 года - в тот самый день, каким В. Рентген датировал свое первое сообщение "О новом роде лучей",-в подвале "Гран-кафе" на бульваре Капуцинов в Париже состоялся первый публичный платный киносеанс.
   Так начинало свой путь "синема", детище братьев Л. и О. Люмьер. Оно произвело фурор. Демонстрировались снятые на натуре сценки "Завтрак ребенка", "Политый поливальщик", "Выход рабочих с фабрики Люмьера". Кто бы подумал тогда, что их действующих лиц можно увидеть на экране не только движущимися, но и прозрачными, словно сделанными из стекла! Проследить, как функционируют пищевод и желудок малыша, сердце поливальщика, легкие рабочих и скелеты самих братьев Люмьер.
   Ровесники - икс-лучи и "ожившие фото" - не могли не встретиться еще "на заре туманной юности". Что же получилось? Ничего, несмотря на все ухищрения тех, кто мечтал о союзе двух замечательных нововведений. Выяснилось, что киносъемка прямо с флюоресцирующего экрана неосуществима. Мешала слабая его яркость, и никто не знал, как ее усилить без резкого повышения лучевых нагрузок. Так разошлись пути Великого немого и "всевидящего глаза".
   Минули деся гилетия, и рентгенокинематография родилась заново. Этот синтез назревал исподволь: увеличивалась мощность трубок и чувствительность пленки, уменьшалась необходимая экспозиция и радиационная опасность. Но прежде всего он стал возможен благодаря перевороту в рентгенологии, начавшемуся в 50-е годы, когда появились электроннооптические усилители.
   Сегодня никого не удивишь установками, фиксирующими рентгеновское изображение с хорошей четкостью при малой выдержке (400 кадров в секунду и выше).
   Такая спешка, разумеется, не ради кинотрюков. Представьте, что изучается работа сердца и сосудов. Чтобы увидеть движение крови, прозрачной для рентгена, ее нужно "очернить" контрастными препаратами. Но непрестанно циркулируя, кровь стремительно разнесет их по своему ветвящемуся руслу, и те вмиг растают на глазах, как чернильная капля в быстрой струе воды. Тут-то и выручает "лупа времени", которая замедляет для наблюдателя быстротекущий процесс. Скажем, в десять раз, если съемку вести с высокой скоростью (например, 240 кадров в секунду), а демонстрацию - с нормальной (24) или пониженной (16 кадров).
   И наоборот, бывают изменения, слишком неторопливые для нашего нетерпеливого разума; чтобы они воспринимались наилучшим образом, их сжимают во времени.
   Здесь могут пригодиться, кстати, скорости программированной флюорографии с ее 2-4-6 кадрами в секунду ту же ленту потом можно прокрутить быстрее (24 кадра в секунду).
   Все это, несомненно, расширило возможности медицины. Тем не менее Великий немой рентгенологии, притязавший на титул короля в ее царстве, был вынужден ус-- тупить корону более удачливому претенденту. Как рабочий метод диагностики он был вытеснен почти отовсюду, если не считать обследования сердца, более молодым соперником - телевидением с его возможностью записывать изображение магнитным способом. Уделом рентгенокинематографии с ее эффектными фильмами о таинственных невидимках осталась в основном популяризация науки, работа в рекламных и учебныл целях.
   Что касается телевидения, то идею применимости его в рентгенодиагностике француз Довилье запатентовал еще в 1915 году. Прошло, однако, 40 лет, прежде чем проект был реализован. Мысль пробивалась теми же неторными тропами, спотыкаясь на тех же препятствиях, какие преодолевал синтез рентгена и кино.
   Поначалу передающую телевизионную трубку нацеливали прямо на флюоресцирующий экран. После многочисленных неудач пытались обойтись без него, преобразуя икс-лучи в видеосигналы непосредственно, но и это не принесло успеха. Дело сдвинулось с мертвой точки лишь после того, как появились электронно-оптические усилители.
   Электронно-оптический усилитель представляет собой вакуумную колбу с двумя электродами: катодом и анодом. Дно колбы покрыто люминофором. К нему прилегает пленка сурьмяно-цезиевого фотокатода. При просвечивании больного на входном экране появляется свечение, под влиянием которого в фотокатоде возникает эмиссия электронов. Свободные электроны в электрическом поле устремляются к аноду, где устанавливается выходной экран. На нем возникает уменьшенное изображение, яркость которого в несколько тысяч раз больше, чем яркость у входного экрана. Светотеневая картина стала настолько яркой, что ее можно теперь рассматривать на свету. При этом удается не только сохранить, но даже улучшить очень важную характеристику - разрешающую способность, а также уменьшить лучевую нагрузку на организм пациента.
   Казалось бы, диагносты должны довольствоваться достигнутым. Наконец-то они обрели то, о чем мечтали!
   Однако такова диалектика прогресса - беспокойному человеческому разуму всегда мало уже завоеванного; лучшее - враг хорошего, но подавай именно лучшее.
   Изображение, полученное с помощью усилителя, мог рассматривать только один человек (в монокуляр). Возникли трудности, связанные с необходимостью выполнять несколько операций одновременно: анализировать рентгеновскую картину, управлять аппаратурой, наблюдать за пациентом.
   Новые проблемы - новые поиски - новые решения.
   На выходе электронно-оптического преобразователя устанавливается передающая трубка. От нее видеосигналы поступают на кинескоп телевизора. Эта двухступенчатая система вроде бы идеальна, но... Кто поручится, что завтра ею снова не будут недовольны?
   Итак, рентгенотелевидение. Его достоинства?
   Высококачественное изображение, возможность менять его контрастность, получать не только позитивную, но и негативную картину, рассматривать одновременно целой аудиторией, передавать на любые расстояния обычной техникой связи - кабельной, радиорелейной. От привычной обстановки рентгеновского кабинета не остается и следа. Лучше не только больному, который облучается меньше; дистанционное управление позволяет врачу выйти из радиационно опасной зоны, вести все наблюдения из другой комнаты, из другого здания, из другого города.
   И еще: можно работать при свете, электрическом или естественном. Раньше он только мешал рентгеноскопии.
   Теперь помогает. Причина проста. Чтобы разглядеть неяркое изображение, нужна темнота. А к ней глаза привыкают не скоро. Вспомните: войдя в зашторенный рентгеновский кабинет, когда белый день для вас внезапно сменяется ночным мраком, вы поначалу чувствуете себя словно ослепшим, хотя вам, собственно, ничего и видетьто не надо. А каково врачу, который должен различать все детали на экране?
   Светочувствительный слой глаза - сетчатка имеет два типа рецепторов: 100 миллионов палочек, они располагаются на периферии сетчатки, а в центре в области желтого пятна сосредоточено 6,5 миллиона колбочек, они предназначены для зрения при ярком свете. Светочувствительность колбочек довольно низкая, они реагируют только при яркой освещенности. Но зато разрешающая способность колбочкового аппарата гораздо выше, чем палочкового, а кроме того, колбочки способны различать цвета.
   Благодаря двум типам рецепторов человек обладает способностью видеть в огромном диапазоне освещенности, когда самый яркий свет в миллиард раз сильнее самого тусклого. Переход от дневного к сумеречному зрению осуществляется с помощью зрительного пигмента.
   Этот процесс происходит плавно в течение 15-20 минут, у пожилых - еще дольше. Транжирится драгоценное время.
   Но главная потеря в другом. При каждом таком переходе от дневного зрения к сумеречному оно утрачивает остроту. Если прибегнуть к аналогии, это все равно что сменить в фотокамере пленку на более чувствительную, но не столь мелкозернистую, то есть проиграть в резкости. При слабой освещенности изображение для нас неясно, расплывчато, не столь четко расчленено на детали, как при нормальной. По остроумному замечанию одного специалиста, если ночью все кошки серы, это еще полбеды, беда в том, что ты никогда не уверен, кошки ли это вообще.
   Понижается, кстати, не только разрешающая способность, но и скорость восприятия. Обследование удлиняется. Облучение тоже. Да еще адаптация, которая продолжается порой куда дольше, чем само просвечивание. Вот и стараются врачи как можно реже выходить из кабинета, сидя там как на приколе, что мешает рациональному использованию рабочего времени. Мало помогают и темные очки, которые они вынуждены надевать даже в помещении, когда выбираются на свет божий.
   В темной комнате, которая все больше загромождается аппаратурой, трудно ориентироваться всем - и больному и персоналу. Проблема усугубляется тем, что рентгеновские кабинеты все чаще превращаются в настоящие операционные. А хирурги не хотят и не могут действовать на ощупь.
   Становление современной рентгенологии происходило подобно сотворению мира. "Вначале существовал лишь вечный безграничный темный хаос". "Земля была безводна и пуста, и тьма над бездною". Но вот подобно лучезарному Аполлону родилось рентгенотелевидение.
   "И разлились потоки яркого света". Началась новая зра рентгенологии.
   Рентгенотелевидение открыло зеленый светофор целому ряду новых технических возможностей. Возьмем, к примеру, видеомагнитную запись. Магнитная лента не содержит дефицитного серебра. Она не только дешевле, но и удобнее в обращении. Ее не нужно обрабатывать:
   ни проявлять, ни закреплять, ни сушить. Видеомагнитная запись позволяет воспроизводить на телеэкране любое исследование снова и снова для самоконтроля или для последующих уточнений. Это позволяет сократить время просвечивания и, стало быть, снизить дозу облучения пациента. Наконец, магнитную ленту проще хранить, чем огнеопасную кинопленку. Может быть, теперь удастся разрешить проблему рентгеновских архивов.
   27.
   - Неужели рентгенолог обязан быть еще и архивариусом?
   - А почему же нет? Архивное дело - это одна из сфер нашей деятельности, одна из областей рентгенологии.
   - А зачем нужны рентгеновские архивы? Дабы оправдаться в случае неверного диагноза?
   - Нет, для тщательного анализа и сопоставления, чтобы меньше было неточных диагнозов и печальных исходов.
   "Я в голове принес домой весь фон картины "Петр I и Алексей" - с камином, с карнизами, с четырьмя картинами голландской школы, со стульями, с полом и освещением; был всего один раз, чтобы не разбивать впечатления, которое вынес", - писал русский художник Н. Ге о работе над известным своим полотном.
   Столь точно воспроизвести все детали увиденного позволила феноменальная зрительная память, которая называется эйдетической ("фотографической"). Будь эта удивительная способность у всех у нас, тогда врач, мо
   жет, и не обращался бы к архиву, где хранятся рентгенограммы с результатами прежних обследований, а по мере надобности просто восстанавливал бы мысленно, "прокручивая" их перед своим внутренним оком. Но дар эйдетика встречается исключительно редко.
   "Ох уж этот склероз!" - сетуем мы подчас на свою память, полагая, будто ее огрехи обусловлены лишь патологическими изменениями в кровеносных сосудах, питающих мозг. Не возводите напраслину на свои естественные "архивы под черепной крышкой". Так уж они устроены, что через определенное время стирают какуюто часть информации, чтобы освободить место для новой.
   Установлено: через полчаса улетучивается до 40 процентов того, что мы узнали впервые. На следующий день остается уже не 60 процентов полученных сведений, а всего 35, через трое суток - 25, через месяц - примерно 20, и так далее. Это нормально.
   Между тем болезни исчисляются десятками тысяч, а симптомы сотнями тысяч, и с прогрессом диагностики их количество постепенно растет. Ясно, что все это не упомнить нормальному человеку. Просто невозможно, а главное - не нужно. Когда память загромождается без разбору всякой всячиной, это опасно не только перегрузками для мозга. Необъятная масса бессвязных сведений мешает вычленять суть, лишает мышление гибкости, делает его консервативным, бескрылым, сковывая воображение, заставляя соскальзывать в привычную колею стандартных схем. А ведь анализ, проводимый диагностом, отнюдь не механический перебор вариантов, но самый настоящий творческий акт, в основе которого и логика и интуиция.
   "Я знал человека, который никогда ничего не забывал, - рассказывает профессор К. Платонов, видный наш психолог. - Он был буквально задавлен воспоминаниями и не мог выразить ни одной собственной мысли. Он воспроизводил прочитанные ему несколько дней назад большие газетные статьи, смысла которых не понимал.
   И в то же время не умел пересказать своими словами даже детскую книжку". Случай, конечно, патологический. Не все эйдетики таковы. Но и тем из них, кто имеет "нормально феноменальную" память, вовсе необязательно заполнять ее до отказа.
   Короче говоря, рентгеновские архивы необходимы.
   Они нужны и специалисту, особенно молодому, чтобы возвратиться, скажем, к какому-то интересному случаю в собственной практике, не попавшему еще ни в один учебник или справочник. Они нужны и студентам, когда те постигают премудрости диагностики на различных примерах, как типичных, так и исключительных.
   Представьте: при просвечивании обнаружено затемнение в легких, подозрительное на ателектаз - спадение, вызываемое нарушением проходимости бронха. Опухоль? Если да, то необходимо срочное хирургическое вмешательство. Но подобную же картину дает и недуг, при котором операция противопоказана, цирроз легкого на почве пневмонии или туберкулеза, перенесенных раньше.
   Собран консилиум. При обсуждении выясняется, что пациент года два назад лежал в клинике с болезнью органов дыхания. И тут очень важно установить, какие элементы рентгенологической картины - последствия старого, заглохшего процесса, а какие - нового, угрожающего страданиями и смертью.
   Человек за свою долгую жизнь переносит различные заболевания, которые оставляют своп следы. Перед рентгенологом возникают примерно те же проблемы, что и перед археологом на раскопках древнего городища: сменялись эпохи и цивилизации, культурный слой покрывался пеплом пожарищ и прахом запустения... Чтобы заставить говорить тот пласт, который оказывается главным, определяет сегодняшнее состояние больного и наилучшее лечение, нужно отбросить все, что не имеет или почти не имеет значения, затрудняя трактовку картины.
   В подобной ситуации всегда нелишне иметь для сравнения рентгенограммы, отражающие предысторию недуга. Если обследования проводились и прежде, очень важно сопоставить их с новейшими, особенно в диагностике некоторых злокачественных опухолей, имеющих на ранних стадиях сходство с доброкачественными.
   ...Мужчина 46 лет, еще недавно вполне здоровый, об-, ращается к врачу с воспалением легких. Выявляется шаровидное образование в легком, заставляющее подозревать рак. Но есть сомнение: аналогичная картина наблюдается при доброкачественных опухолях и кистах, не требующих экстренных мер. Если образование маленькое и расположено в глубине легочной ткани, к нему затруднен доступ для зондирования через бронхи и для пункпии через грудную стенку. Ни клиническое состояние больного, ни лабораторные данные в таких случаях не позволяют поставить точный диагноз. Единственный критерий надежности для предоперационной диагностики - оценка темпов, какими растет опухоль.
   Злокачественные новообразования развиваются быстро, доброкачественные медленно.
   К счастью, в архиве найдена рентгенограмма нашего больного, полученная несколько месяцев назад в связи с профилактическим осмотром. На ней нет ничего такого, что заставило бы подозревать рак. Иное дело теперь.