Проверить этот расчет экспериментально по просьбе И. Шкловского пытались еще в 1949 году сотрудники Крымской обсерватории. Но имевшийся у них тогда радибтелескоп мог "прослушивать" туманность, лишь когда она восходила над морем, а там ее закрывали горы... Все же радиоизлучение обнаружили. Это сделали австралийские ученые в том же 1949 году, подтвердив тем самым мысль, высказанную И. Шкловским годом раньше. Для них оно оказалось "неожиданно мощным".
   Объяснил его происхождение И. Шкловский (1953 год). Помогла идея, сформулированная в 1950году шведскими физиками Альвеном и Херлфсоном и независимо немецким астрофизиком Кипенхойером. Но тщательно разработана она была главным образом в СССР, прежде всего И. Шкловским. Это позволило довести ее до уровня отточенной теории. Если не вдаваться в подробности, то суть ее такова.
   Сильная незримая радиация, испускаемая остатками Сверхновой, генерируется сверхбыстрыми и сверхэнергичными электронами, "простреливающими" магнитные поля. Эффект этот именуется с_и_н_х_р_о_т_р_о_н_н_ы_м, по названию ускорителей, в которых протекает аналогичный процесс.
   Ну а где же наши добрые старые знакомые?
   В 1963 году были зарегистрированы довольно интенсивные потоки рентгеновских лучей, которые исходят от Крабовидной туманности. Как ни удивительно, они той же природы, что и радиоволны Краба. Не тепловой, как в случае Солнца, нейтронных звезд или "черных дыр" с их колоссальными температурами, а именно синхротронной, обусловленной торможением быстрых электронов магнитными полями. Таково же, кстати, происхождение и слабого видимого свечения этой туманности.
   В 1968-1969 годах выяснилось, что в Крабовидной туманности упрятан самый замечательный из всех известных пульсаров. В отличие от всех остальных он тройной: и рентгеновский, и радиоволновой, и оптический. Мигает 30 раз в секунду, притом синхронно во всех диапазонах.
   В 1967 году мир узнал о великом астрономическом открытии XX века открытии пульсаров. К 1976 году на карте неба их насчитывалось уже почти двести (из десятков тысяч, которые, вероятно, существуют в галактике). Они, главным образом, радиоволновые (практически все). И в ничтожном меньшинстве - рентгеновские (например, уже упоминавшиеся Геркулес Х-1, Центавр Х-3). Последние, как мы знаем, являют собой системы, вызывающие ассоциацию с каруселью, на которой вихрем кружатся рыхлый Гулливер и сверхплотный лилипут.
   Вспомним, что представляет собой малютка в такой паре. Это нейтронная звезда. А теперь вообразите, что она одинока и вращается сама по себе, подобно волчку, вокруг собственной оси. Перед нами модель радиопульсара. Полный оборот он совершает гораздо быстрее, чем наша планета, - не за сутки и даже не за минуты.
   Иной - за 3,75 секунды (максимум), иной - за 0,033секунды (минимум). И соответственно с той же периодичностью "мигает".
   Разумеется, так лишь кажется тем, кто его наблюдает с Земли. Ибо сам пульсар, конечно, ничего не включает и не выключает, а только поворачивает, как маяк, свой прожекторный луч. Отсюда ясно: если такой источник существует в природе, скажем, в недрах туманности, оставленной той или иной Сверхновой, это еще не значит, что он непременно даст о себе знать землянам. Его собранная в пучок радиация может пробегать мимо, не задевая нашу планету. Понятно и другое: трудно переоценить роль космонавтики, открывшей перед учеными возможность забрасывать зонды с телескопами в далекие уголки вселенной.
   Тройной "маяк" Крабовидной туманности виден, к счастью, хорошо. Полагают, что это сверхплотное шарообразное тело диаметром около 10 километров, оставшееся от Сверхновой 1054 года в результате коллапса.
   Оно вращается с рекордной частотой - 30 раз в секунду. И с той же периодичностью - 1/30, точнее 0,033 секунды, - на Земле отмечаются всплески рентгеновского, видимого, радиоволнового излучения, синхронные во всех трех диапазонах.
   Но вот что любопытно. Если пульсар столь компактен, то и наблюдаться должен в виде крохотной мерцающей звездочки. Между тем рентгеновский объект Телец Х-1, отождествленный с Крабом, как, впрочем, и радиоволновой (Телец А), - отнюдь не точечный, а диффузный, "размазанный" расплывающимся пятном.
   Откуда это несоответствие?
   Объяснение тут такое. Именно пульсар заставляет туманность светиться во всех трех упомянутых диапазонах. Ибо непрестанно впрыскивает в нее электроны, а те, как мы убедились, дают синхротронное излучение.
   Делится он с ней и своим магнитным полем. Не будь этой "подкачки", Краб потух бы через сотню лет после вспышки Сверхновой. Между тем его мерцающая кисея наблюдается вот уже многие века. Расползается она опять-таки не без содействия непрерывно вливающихся в нее заряженных частиц и магнитных сил, распирающих ее изнутри.
   Вот и получается, будто умершая звезда оставила после себя не только "прах", но и свое "сердце", которое не просто пульсирует, но поддерживает жизнь Краба, вливая в него "свежую кровь", помогая ему "ползти".
   Картина, как видно, иная, чем в случае Геркулеса Х-1 или Центавра Х-3. Там сверхплотный лилипут "обирает" рыхлого Гулливера, оттягивая на себя плазму газообразного раскаленного партнера. Особенно ненасытна "черная дыра" Лебедя Х-1. Как бы то ни было, там и тут рождается рентгеновская радиация. У остальных ее небесных генераторов тоже, как правило, преобладает один из этих двух механизмов: либо тепловой, либо синхротронный.
   Если вспомнить, что открытие пульсаров считают едва ли не величайшим в современной астрономии, то можно представить, как была воспринята весть о самом удивительном из них - тройном. Ошеломляющая новость! "Я никогда не забуду своего ощущения, когда узнал об этом, - признается профессор И. Шкловский. - И вот, пожалуйста: в дополнение ко всем связанным с этой туманностью "чудесам" там находится пульсар, да еще какой!"
   Сенсация вызвала кипение страстей, и ученый вспоминает, как сам затеял спор с авторами открытия, двумя американцами. Оба уверяли, что внутри Краба - два пульсара. "Вот это уже не лезло ни в какие ворора! темпераментно рассказывает И. Шкловский в своей книге "Звезды: их рождение, жизнь и смерть". - Как раз в это время я был в США и, помню, заключил пари с американскими коллегами. Я утверждал, что з Крабовидной туманности может быть только один пульсар, а они, посмеиваясь и указывая на записи импульсов, говорили: два! Ставка была "принципиальная"; один доллар против одного рубля".
   Как выяснилось, второй "маяк" и впрямь действует, причем с рекордно длинным периодом (3,75 секунды), но не внутри туманности, а вне ее. И вообще не связан с ней генетически, как первый, с рекордно коротким периодом (0,033 секунды). "Мне кажется, - заключает с улыбкой советский астрофизик, - я имею все основания считать, что пари выиграно мною, хотя пульсаров оказалось все-таки два. Я не потерял надежды получить свой доллар, который, правда, с тех пор успел подешеветь почти на 30 процентов".
   От Краба продолжают ждать новых сюрпризов.
   Сколько раз подтверждал он свою репутацию едва ли ли не самого замечательного небесного объекта!
   6.
   - Академик Л. Арцимович как-то пошутил: "Наука есть лучший современный способ удовлетворять любопытство отдельных лиц за счет государства". Нельзя забывать, что и драгоценная информация - штука дорогостоящая. Если же рентгеновская астрономия увлекательна, то не увлекает ли она слишком далеко от грешной земли? Пусть она полезна для теории. А для практики?
   - Фундаментальная наука в отличие от прикладной не ставит перед собой задачу вносить сиюминутный вклад в народное хозяйство. Но недаром говорят: нет ничего практичней хорошей теории. Она может быть поистине революционной для техники.
   - То ли будет, то ли нет... Не лучше ли синица в руках, чем журавль в облаках? Или Лебедь Х-1 вместе с Крабом и иже с ними...
   - "А какое будущее ожидает вашего ребенка"? Так вопросом на вопрос ответил М. Фарадей, когда у него поинтересовались перспективами его "абстрактного"
   открытия, которое впоследствии дало жизнь электрогенераторам и электромоторам.
   ...Многие десятки и сотни миллионов лет назад, когда на Земле и духу человеческого не было, нашу планету населяли гигантские пресмыкающиеся. Иные были высотой с 3-5-этажный дом, длиной в десятки метров.
   Тонны стальных мышц, закованные в бронеподобную шкуру; страшные челюсти, способные сокрушать древесные стволы; могучий хвост, наносящий жертве смертоносные удары...
   Все это делало ящеров властелинами фауны, а обилие растительной и животной пищи среди роскошной зелени в теплом климате обещало им безбедное существование. Тем не менее колоссы мезозойской эры вымерли повсеместно примерно 70 миллионов лет назад.
   Почему?
   Гипотез немало. Одна из них связана с влиянием небесных таинственных невидимок.
   В 1957 году И. Шкловский и В. Красовский высказали предположение, ч го гибель огромных рептилий вызвана стойким увгличением интенсивности космических лучей. Вероятно, десятикратным и даже стократным. Это вполне могло произойти, если где-то неподалеку от солнечной системы вспыхнула Сверхновая. Радиация - как корпускулярная, так и волновая (в частности, рентгеновская) - губительно повлияла на наследственность звероящеров, что и привело к искоренению их рода.
   "Проверкой этой гипотезы было бы палеонтологическое доказательство того, что рептилии вымерли на Земле повсеместно за время, не превышающее нескольких десятков тысячелетий". - пишет И. Шкловский в книге "Вселенная. Жизнь. Разум".
   Так наводятся мосты от небесных к земным делам.
   Правда, проблема все еще кажется "оторванной от жизни". Но задумаемся над такой фантазерской идеей: а что, если Солнце вспыхнет, как Сверхновая? Будет, прямо скажем, жарко: все планеты тотчас испарятся. Кроме разве лишь столь далеких, как Юпитер, Сатурн.
   Впрочем, и эта надежда проблематична.
   Перед нами вопрос, который уже самой постановкой своей направлен против скептицизма: а зачем человеку звезды, нужны ли они в хозяйстве? Ответить позволяет именно "абстрактное теоретизирование" - учение об их эволюции, свой вклад в которое продолжает вносить и рентгеновская астрономия.
   Вероятно, каждый небесный икс-объект рожден Сверхновой, вспыхнувшей очень давно, может быть, миллионы лет назад. Но каждый имеет свою биографию.
   Почему один оказался "черной дырой", другой - нейтронной звездой? Может ли наше Солнце стать таким вот рентгеновским излучателем?
   Сегодня светимость Солнца гораздо больше первоначальной. Она будет расти и впредь. Вместе с его размерами. Со временем наше дневное светило из желтого карлика станет красным гигантом с радиусом, который в десятки раз больше нынешнего. "Распухнет" настолько, что, быть может, даже заполнит собой орбиту Меркурия, как бы подпоясавшись ею. Вопрос о судьбах этой мертвой планеты, пожалуй, и впрямь не назовешь жизненно важным. "А любопытно, черт возьми, что будет после нас с людьми, что станется потом?" - вопрошал Н. Асеев, и это не праздное любопытство.
   Светимость Солнца увеличится в сотни раз. Намного ощутимей окажется и его рентгеновская радиация.
   По крайней мере, для астронавтов, для бесчисленных обитателей "эфирных поселений" в обжитом космосе.
   А что на Земле? Возможны временные трудности, которые будут длиться миллионолетиями. Средняя температура поднимется на сотни градусов. Океаны закипят.
   Пары воды затянут небо тучами, сплошной облачной пеленой. Зато глазам лунного наблюдателя лик Земли предстанет еще более прекрасным, чем сегодня, словно закутанным в белый пуховый платок.
   Что потом? Рано или поздно Солнце из красного гиганта станет белым карликом - маленькой звездой гораздо большей плотности и куда меньшей светимости, чем ныне. Процедура такова: оно сбросит наружные оболочки, и от него останется лишь внутреннее ядро.
   Его излучение, включая рентгеновское, станет несравненно слабее. Прежние неприятности снимет как рукой.
   Метеопрогноз на будущее: "прохладнее", хотя и "солнечнее". Да, водяные пары в атмосфере сконденсируются, плотная завеса облаков рассеется; на обе макушки планеты снова надвинутся белоснежные шапки, затем замерзнут океаны, и материки окажутся под ледниковым панцирем. Белое безмолвие всюду будет оживляться жутким воем обжигающего морозного ветра, а мрачное однообразие снежной пустыни от полюсов до экватора - огненными всплесками вулканических извержений...
   В конце концов Солнце совсем остынет и погаснет, став из белого карлика черным. Мертвым небесным телом скромных габаритов (размерами меньше Земли), но зато солидной плотности (в миллионы раз больше, чем у воды).
   Нарисованная картина при всей своей яркости, разумеется, гипотетична. Если же она правдоподобна, то нельзя забывать, что не так страшен черт, как его малюют. У человечества в запасе миллиарды лет.
   Какими бы ни были эти космогонические этюды, они хороши уже тем, что дали нам приближенное представление об эволюции звезд, подобных Солнцу. И теперь нам легче понять ответ астрофизиков на вопрос: может ли оно вспыхнуть, как Сверхновая?
   Нет. Почти наверняка. Почему?
   Если звезда имеет ядро, первоначальная масса которого меньше 1,2 солнечной, то, пережив относительно недолгое состояние красного гиганта, она спокойно превращается в белого карлика (а затем, по охлаждении, в черного). Спокойно потому, что ядро освобождается от оболочек медленно, без особых эксцессов. Лишь при массе от 1,2 до 2,4 солнечной, наружные слои будут отбрасываться быстро, бурно, взрывообразно, а сама звезда стремительно сожмется в результате гравитационного коллапса, став нейтронной. Наконец, при значениях массы от 2,4-3 солнечных и выше после катастрофы возникает "черная дыра".
   Источниками смертоносной рентгеновской радиации служат "черные дыры" и нейтронные звезды, но не белые карлики Разумеется, губительна она для тех, кто оказался поблизости от ее источника.
   Итак, солнечная система гарантирована от многих неприятностей, но... Никто не поручится, что она не пройдет через туманность, подобную Крабовидной, оставленную какой-нибудь Сверхновой. А если попадет в нее, что тогда? Ливни космических лучей, которые низвергаются на нашу планету, могут оказаться в сотни раз сильнее, чем ныне, притом надолго. Что это значит, легко видеть из несложного расчета.
   Предельно допустимая доза облучения для человека - 5 рентген за год. Та порция, которую "выдает"
   нам естественная радиоактивность в приземном слое воздуха, сравнительно ничтожна - в среднем 0,125 рентгена за год. На 2/3 она обусловлена земными факторами. Но на 1/3 - небесными, на которые приходится таким образом более 0,04 рентгена. Если же потоки ионизирующей радиации из вселенной увеличатся, допустим, в 300 раз, то "добавка свыше" возрастет до 12 с лишним рентген за год. А для космонавтов в заатмосферном пространстве, где нет многокилометровою воздушного щита, - и того больше.
   Это влияние может оказаться отнюдь не безобидным не только для человека - для всей земной фауны и флоры. Конечно, радиочувствительность различных организмов неодинакова. Для многих из них определена довольно точно летальная (смертельная) доза, которая через 30 дней после облучения убивает 50 процентов животных или растений. Для обезьян это 600 рентген, для мышей - до 650, для карасей - 1800, для змей - от 8 тысяч до 20 тысяч... Еще устойчивей одноклеточные: дрожжи погибают при дозе в 30 тысяч рентген, амебы - 100 тысяч, инфузории - более 300 тысяч... Высшие растения тоже по-разному реагируют на радиацию. Если семена лилии полностью теряют всхожесть, получив "всего" 2 тысячи рентген, то селена капусты выдерживают 64 тысячи и даже больше.
   Некоторые микробы выдерживают сотни тысяч рентген. При таких дозах разрушается даже неживая материя: пластмасса становится хрупкой и растрескивается, стекло теряет прозрачность, а вот некоторые микробы выживают. Очевидно, микроорганизмы обладают способностью приспосабливаться к условиям повышенной радиации и восстанавливать радиационные повреждения. Обнаружены микробы, живущие даже в атомком реакторе. Тем не менее ионизирующая радиация нашла применение в качестве средства холодной стерилизации медицинских изделий из полимерных материалов, не выдерживающих высоких температур, шовного материала и перевязочных средств, хирургических инструментов, лекарственных препаратов, вакцин и пр.
   Установлено даже стимулирующее действие малых доз радиации на животные и растительные организмы.
   Так, хроническое облучение мышей и морских свинок дозой до одного рентгена в день сопровождается saметным увеличением продолжительности жизни животных. Облучение семян зерновых в дозе около 5 тысяч рентген ускоряет всхожесть и ведет к увеличению урожайности растений. Облучение вегетирующих растений в дозе порядка 2-3 тысяч рентген также усиливает их рост. По сравнению с этими цифрами 12 рентген за год могут, чего доброго, показаться сущим пустяком.
   Но нельзя забывать, что рентгеновская и ей подобная проникающая радиация неспроста названа ионизирующей. Если она не причиняет заметного ущерба на макроуровне (скажем, органам, тканям), это еще не значит, что все в порядке на микроуровне. Ведь она разрушает атомы и молекулы, превращая их в ионы, то есть в обломки целостных химических структур.
   Ее квант для клетки, словно бронебойный снаряд для танка: прорвавшись внутрь, он не всегда убивает, но почти всегда ранит. А если покалечены гены, составные части хромосом? Эти носители наследственности очень чувствительны к внешнему воздействию. Изменения их физико-химической основы - мутации - могут быть, конечно, и полезными, но в большинстве своем оказываются неблагоприятными для будущего потомства.
   Даже одно-единственное микроповреждение (на уровне молекулы) может плачевно отразиться на г_е_н_о_т_и_п_е. То есть на комплексе наследственных признаков, "записанном", как известно, в "генетическом коде" - наборе физико-химических структур внутри одной-единственной клетки, из которой впоследствии развивается организм. А следовательно, отразится и на фенотипе - сочетании этих свойств на макроуровне, то есть у живого существа в целом. Ведь все его особенности, включая цвет глаз, волос и так далее, полностью запрограммированы "генетическим кодом" еще в той крохотной родительской клетке, с которой начинается организм в материнской утробе.
   Фенотип тут упомянут не всуе: именно по нему судят об изменениях в генотипе. Ибо зарегистрировать их детально удается лишь на макроуровне, то есть уже у потомства.
   Мутации обязаны своим происхождением не только облучению. Они могут возникать под влиянием иного действующего начала, скажем, того или иного химического препарата. И даже самопроизвольно. Но легче всего их вызывает именно ионизирующая радиация.
   Разумеется, чем она жестче и интенсивнее, тем значительней эффект.
   Установлено, что она может удвоить частоту мутаций у человека при увеличении дозы не более, чем до 100 рентген за поколение. То есть примерно за 30 лет - от рождения до возраста, когда люди обзаводятся собственными детьми. Стало быть, за год - около трех рентген. Вот и судите, что получится, если уровень естественной радиоактивности в биосфере поднимется до 12 рентген за год.
   Правда, на различных видах растений и животных это скажется по-разному. У одних удвоение частоты мутаций вызывается едва ли не тысячекратным увеличением дозы. Но это у короткоживущих. Зато у других, более долговечных, - всего 3-10-кратным.
   Понятно, почему даже "жалкие капли" рентгеновских и иных ионизирующих ливней, которые проникают в биосферу, могли искоренить племя динозавров и других колоссов, когда вдруг умножились стократ при взрыве Сверхновой, притом надолго - на десятки тысячелетий.
   К счастью, вероятность встречи с радиоактивной туманностью, рожденной небесной катастрофой, относительно мала. Однако мы не вправе забывать, что опасными могут стать и не столь грандиозные взрывы.
   Небезобидными бывают и те вспышки, которые происходят ближе к нам, скажем, солнечные. А уж они-то случаются несравненно чаще. Одна из самых мощных наблюдалась, например, в 1972 году. Энергия, выделившаяся тогда в рентгеновском и гамма-диапазоне, оказалась в миллиарды раз больше, чем во всех прочих областях спектра, вместе взятых.
   Обрушиваясь на земную атмосферу, незримые водопады квантов и частиц ионизируют ее верхнюю толщу. Они непрестанно пополняют обломками атомов и молекул ионосферу. И время от времени будоражат ее своими всплесками. На работе радиоаппаратуры это сказывается, как известно, многочисленными помехами.
   Прослежена взаимосвязь между солнечной активностью и погодными условиями на обширных территориях, даже массовыми обострениями сердечно-сосудистых и нервно-психических заболеваний.
   Не все еще тут выяснено досконально, но очевидно одно: сколь бы далекими ни казались небесные явления, их проявления могут быть вполне земными, рядом с нами, не только вокруг нас, но даже в нас самих.
   Сказанное в еще большей степени относится к тем, кто совершает рейсы в заатмосферное пространство, а их все больше и больше. В 1976 году, когда подводились итоги к 15-летию старта Ю. Гагарина, отмечалось, что СССР осуществил 26 пилотируемых полетов, в которых участвовали 34 советских космонавта, в том числе женщина - В. Николаева-Терешкова. Десять космонавтов дважды поднимались на околоземные орбиты, а двое - трижды.
   Темпы и масштабы проникновения во вселенную нарастают. В "Основных направлениях развития народного хозяйства СССР на 1976-1980 годы" намечено расширять изучение и освоение космоса. Столбовой дорогой человека в просторы вселенной советская наука считает создание долговременных орбитальных станций со сменяемыми экипажами. Не за горами день, когда появятся более долговечные и более крупные, чем сегодня, небесные лаборатории. Поначалу рассчитанные на срок существования до 10 лет и на сменяемый "штат" в 10-20 человек. А затем - многоцелевые станции-базы на 50-70, даже 100 и более человек.
   Рано или поздно в межпланетном пространстве будут действовать не только лаборатории, но и заводы, электростанции. "Эфирные поселения", которые рисовал в своем воображении К. Циолковский, - уже не "прожектерство мечтателя" Их проекты разрабатываются по последнему слову науки и техники. Иные из них, по данным зарубежной печати, предусматривают сооружение небесных городов на сотни тысяч человек.
   Понятно, сколь важно выяснить во всех деталях радиационную обстановку в космосе, ближнем и дальнем.
   Нанести на карту галактики все, какие возможно, иксобъекты. Разведать, какие из них и насколько часто дают всплески незримого потока, подобные августовской (1975 г.) вспышке источника в созвездии Единорога.
   Сделать все, чтобы таинственные невидимки становились менее и менее загадочными. Чтобы встречи с ними не сулили неприятных сюрпризов.
   В последние годы появилась служба Солнца, ко"^-орая следит за изменениями его рентгеновской активгости. Его невидимые излучения вот уже много лет подряд изучаются с помощью советских спутников ("Космос", "Прогноз"). По договоренности между странами - участницами программы "Интеркосмос" едва ли не каждый четвертый летательный аппарат этой серии несет на борту приборы, которыми регистрируются спектры солнечной короны в рентгеновском диапазоне.
   Таков, например, "Интеркосмос-16", запущенный в июле 1976 года с советской стартовой площадки. Аппаратура для спутника разрабатывалась в ГДР, СССР, Чехословакии и Швеции.
   Значение рентгеновской и гамма-астрономии будет возрастать тем больше, чем дальше проникнет человек в просторы вселенной. А он уже сегодня не ограничивается "каботажным" космоплаванием: вспомнить хотя бы экспедиции лунопроходцев. Завтра, еще в нашем веке, вполне реален пилотируемый полет к Марсу с многомесячным пребыванием экипажа в межпланетном пространстве. Впрочем, все продолжительней становятся и путешествия людей по околоземным орбитам. Такие рейсы, регулярные, массовые, выдвигают новые требования перед астрономией невидимого.
   "Знать, чтобы предвидеть, предвидеть, чтобы действовать". Таков девиз этой, да и любой иной науки, когда она посвящает себя разведке дальнего прицела, фундаментальным исследованиям. Какими бы ни были их задачи, сверхзадача одна - стать опорой прикладных изысканий, помочь решению практических проблем.
   7.
   - Не пора ли все же спуститься из заоблачных далей на грешную землю? Мы ведь и на своей планете окружены мощными источниками рентгеновских лучей.
   Кроме того, раз уж новейшая астрофизика успела сделать столько интересных открытий, то добрая старая физика наверняка еще больше, не так ли?
   - Как ни странно, по числу важнейших открытий, сделанных в последнее пятнадцатилетие, счет 5:2 в пользу астрономии, не физики.
   - И все-таки, уж коли далекие, "за тридевять небес", икс-объекты столь тесно связаны с жизнью людей, то близкие нам и подавно. Так что не лучше ли вернуться в лоно рентгенологии? Тем более что она располагает самыми мощными из наземных источников рентгеновских лучей, верно ведь?
   - Нет, не она - физика.
   "Ослепительная зеленоватая вспышка, взрыв, сознание подавлено, волна горячего ветра, и в следующий момент все вокруг загорается... Миг - и с людей свалилась вспыхнувшая одежда, вздулись руки, лицо, грудь; лопаются багровые волдыри, и лохмотья кожи сползают на землю... Оглушенные и обожженные люди, обезумев, сбившись ревущей толпой, слепо тычутся, ища выхода..."