Затем люди научились искусственно добывать огонь с помощью трения или высекания искр из камней. Первые искусственно сделанные жилища, представляющие центральное дерево с прислоненными к нему шатром ветками, приобрели очаги, каменные стенки которых защищали пламя от ветра и конденсировали тепло.
   Покорение огня и создание очагов в первых жилищах сделали человека менее зависимым от прихотей меняющейся погоды и дали ему новые преимущества в борьбе с животными за свое выживание.
   Следующий тип инноваций связан с использованием новых конструкционных материалов. Кроме камня, люди стали использовать кости, дерево, глину. Примитивная глиняная посуда позволила человеку дольше хранить пищу, т. е. повысить эффективность использования добычи. Первые ткацкие станки V в. до н. э. позволили получить новый материал, который в сочетании со звериными шкурами сделал одежду человека более удобной и практичной. Все это обеспечило следующий важный шаг по пути независимости людей от природы – переход от охоты и собирательства к земледелию и скотоводству.
   Таким образом, примитивные, на первый взгляд, инновации, такие как каменные рубила и очаги с огнем, оказались судьбоносными. Это был качественный скачок, отделивший человека от животных. Поэтому мы смело можем сказать, что человек создал инновацию, но и инновация создала человека. Не будь первых изобретений – не было бы и человечества.
Простые механизмы
   Первыми техническими инновациями, давшими огромный импульс развития, конечно же, стали такие простые механизмы, как рычаг, салазки, наклонная плоскость и колесо.
   Эти приспособления позволили человеку резко повысить свою энергообеспеченность, хотя, как известно, использование рычага не дает никакого выигрыша в работе: выигрываем в силе, проигрываем в расстоянии. Но приведем конкретный пример: пусть человеку требуется поднять очень тяжелый камень, настолько тяжелый, что поднять его без рычага (или более сложной системы рычагов) невозможно. Использование механизма, пусть даже при низком КПД, позволяет все же достичь требуемого результата и совершить необходимую работу. Попытка поднять камень без технической поддержки обречена на неудачу, камень, несмотря на наши титанические усилия, останется лежать на своем месте, и совершенная работа будет равна нулю. Использование колеса уменьшает силу трения при транспортировке грузов и значительно повышает тем самым КПД. Прототип колес – катки, которые подкладывали под тяжелый транспортируемый груз.
   Результаты использования простых механизмов мы можем видеть и сегодня – это исполинские сооружения древних египтян. Для постройки пирамид была необходима доставка огромных каменных глыб из каменоломен Мемфиса и подъем их на огромную высоту. Для доставки применялись салазки, под которые подкладывали катки, а для подъема – шадуфы (журавли с противовесами) и наклонные плоскости.
   Для подъема камня насыпали огромный пандус, по которому втаскивали каменные блоки. По мере роста пирамиды насыпали новые пандусы. Когда же сооружение было готово, песок убирали.
   Таким весьма трудоемким способом удавалось строить сооружения, поражающие своими размерами и сегодня: например, самая известная пирамида Хуфу (Хеопса), построенная около 2400 лет до н. э., в первозданном варианте имела массу около 7 млн тонн, 146,7 м высоты, 232,4 м длины стороны квадратного основания, а масса отдельных блоков превышала 2 тонны!
   Менее известный, но более прагматичный результат трудов древнеегипетской цивилизации также поражает своей масштабностью. В V до н. э. египтяне прорыли Суэцкий канал, соединяющий Средиземное море с Красным! По словам Геродота, для прохода вдоль канала требовалось четыре дня пути, по ширине канала легко могли разойтись два больших корабля (триеры). Эта постройка стоила жизни 120 тыс. строителей (так что если кто-то считает, что он устает на учебе или на работе, пусть вспомнит про египетские пирамиды и каналы).
   В более поздние времена античной Греции использовались уже не примитивные журавли, а сложные многоблочные механизмы, называемые полиспастами. Они и сегодня используются альпинистами и туристами, когда надо в полевых условиях создать значительное усилие (например, туго натянуть трос для переправы через реку).
   Если бы не эти нехитрые «гаджеты» (от англ, gadget — приспособление, безделушка, ерунда), мы не увидели бы ни знаменитых египетских пирамид, ни Сфинкса, ни Великой Китайской стены.
Подкова и хомут
   Из технических «безделушек» более позднего времени, кардинально повлиявших на развитие цивилизации, необходимо выделить подковы и хомуты. Подковы, по некоторым версиям, использовали кельты около 400 г. до н. э., а широкое распространение в Европе они получили сравнительно недавно, в VIII–X вв. н. э. При внешней простоте этих устройств, их нельзя назвать тривиальными: попробуйте прикрепить груз к лошади так, чтобы она могла его тянуть долгое время и не повредить себя. Запрячь лошадь может далеко не каждый – этому надо учиться. И сделать это значительно сложнее, чем завести автомобиль. Но усилия того стоят: коэффициент полезного действия тяглового усилия лошади увеличивается чуть ли не втрое.
   Энергетический скачок позволил кардинально увеличить количество распахиваемых земель в Европе, а потребность в железе для подков обусловила развитие других ремесел.
   Считается, что именно эти приспособления определили развитие Римской империи: повышение производительности труда в сельском хозяйстве привело к общему экономическому росту; так как тягловая сила – основной «двигатель» того времени – стала работать значительно эффективнее, появилась возможность транспортировать различные достаточно тяжелые военные машины (о них речь чуть ниже), что привело к росту возможностей римской армии; появление удобного транспорта в виде запряженных в повозки лошадей обусловило необходимость постройки многочисленных дорог, объединяющих огромные пространства Римской империи в единое государство.
   Магистральные дороги римлян строились с такой основательностью, что ей могли бы позавидовать и современные строители: на будущей магистрали снимался весь грунт до скальной породы; затем укладывался нижний слой из каменных плит (statumen), скрепляемых известковым раствором; далее толщиной 20 см заливался раствор с булыжником, щебнем и битым кирпичом (ruderato); третий слой (nucleus) состоял из смеси гравия и песка толщиной в 30–50 см; и, наконец, сверху укладывались широкие гладкие каменные плиты (summa crusta). Общая высота слоев достигала 1,5 м, а ширина дороги – от 10 до 30 м. Неудивительно, что эти магистрали сохранились до сих пор. На них можно видеть колеи, пробитые в камне деревянными колесами повозок, тысячелетиями катавшихся по ним.
 
   Длина таких магистралей к концу I в. до н. э. составляла 90 тыс. км. Основных магистралей было пять: первая, построенная в 312 г. до н. э., вела в Капую, далее до порта Брундизии, с переправой в Македонию и далее в Азию; вторая (с двумя морскими переправами) в Африку; третья по берегу Адриатического моря соединяла с Балканскими странами; четвертая доходила до Испании и там разветвлялась; пятая пересекала нынешнюю Францию и после переправы расходилась на множество щебеночных и грунтовых дорог на Британских островах.
   Вместе с грунтовыми и щебеночными дорогами протяженность дорог получалась грандиозной – 300 тыс. км. Неудивительно, что Римская империя сохраняла свою управляемость на протяжении многих сотен лет. Своими экономическими и военными успехами империя во многом была обязана этим дорогам, которые не могли быть построены без удобных, надежных и экономичных транспортных средств, какими были подкованные лошади, запряженные в повозку посредством хомута.
   Так что известное стихотворение С.Я. Маршака, демонстрирующее причинно-следственные связи между отсутствием в кузнице гвоздя и поражением армии, не так далеко от истины: многие столетия римская армия вступала в города во многом благодаря подкове и гвоздю!
Водяные мельницы
   Логично предположить, что следующий принципиальный скачок в энергообеспечении был сделан именно в Римской империи как самой передовой державе того времени, и связан он с появлением водяных мельниц. По сути, водяная мельница – это энергостанция, в которой в качестве источника энергии используется уже не мускульная сила людей и животных, а вода. Описание таких мельниц сделано Витрувием во II в. до н. э., но в Риме существовали общественные водяные мельницы уже в IV до н. э.
   Изначально мельницы использовали для помола и просеивания зерна, позже в средневековой Европе их приспособили для сукновального дела, для изготовления бумаги, для ковки железа, резки бревен, дубления кожи, заточки инструментов и пр. Еще каких-нибудь 200 лет назад на всех уральских металлургических заводах заводчика Демидова использовались водобойные молоты, приводимые в движение колесами водяных мельниц.
Ветряные мельницы
   Ветряная мельница – аэродинамический механизм, который выполняет механическую работу за счет энергии ветра, улавливаемой крыльями мельницы.
   В кодексе вавилонского царя Хаммурапи, жившего примерно в 1750 г. до н. э., уже упоминаются ветряные мельницы. Греческий изобретатель Герои Александрийский в I в. н. э. приспособил мельницу для надувания мехов органа.
   Первые ветряные мельницы имели не совсем привычный для нас вид: они вращались вокруг вертикальной оси, вместо крыльев часто использовались лопатки или паруса, а персидская мельница, например, была еще и с оболочкой, закрывающей часть лопаток. Ветер дул в отверстие и вращал барабан мельницы, похожий внешним видом на гребное колесо первых пароходов. Понятно, что если ветер менял свое направление, для продолжения работы колеса нужно было «перемещать» отверстие, ловить ветер. В китайской мельнице вместо лопаток использовались поворотные паруса. Такая мельница, наверное, больше походила на плавающие по кругу парусники.
   Те мельницы, с которыми боролся Дон Кихот, имели горизонтальную ориентацию ротора. Они появились в XII в. во Фландрии, Юго-Восточной Англии и Нормандии. Важное усовершенствование таких мельниц было сделано в XIII в.: все здание мельницы стало поворачиваться навстречу ветру. Это значительно повышало время ее использования, так как не нужно было ждать ветра требуемого направления.
   Водяные и ветряные мельницы долгое время являлись единственными источниками энергии, поэтому они были локальными центрами, вокруг которых концентрировалась промышленность и сельское хозяйство. Хозяин мельницы был самым уважаемым человеком в округе. Богатство и зажиточность жителей той или иной местности определялись по плотности расположения мельниц. Как сейчас мы определяем приближение к большому городу по дымящим трубам заводов, так раньше определяли приближение к крупному населенному пункту по машущим крыльям ветряных мельниц.
   Идея получения энергии от поворачивающейся мельницы оказалась настолько удачной, что используется и развивается до сих пор. Хотя современный «ветряк» выглядит совсем по другому, он не мелет больше зерно, а вырабатывает электроэнергию, но принцип его действия остался неизменным. А старые добрые мельницы в северной Европе можно видеть и сегодня. Некоторые из них, несмотря на преклонный возраст, давно переваливший за сто, а то и двести лет, всё еще могут работать! Но их время осталось в прошлом, победил их не Дон Кихот, а появившийся позднее паровой двигатель.
Военные машины древности
   Если источников энергии в древности было не так уж и много – лошадь да мельница, – то история оружия насчитывает куда как больше разных технических устройств. Как красиво и устрашающе звучат названия военных машин: баллисты, требушеты, онагры, гастрафеты, скорпионы, перьеры, тенсионные спрингалды, эйнармы, полиболы!
   Несмотря на такое разнообразие, действие всех этих технических устройств сводятся всего к двум принципам: использование потенциальной энергии деформированного упругого элемента (как в луке) и удлинение плеча броскового рычага при вращательном движении для увеличения линейной скорости снаряда (как в праще). То есть праща и лук являются теми техническими инновациями, которые в различных сочетаниях и исполнениях нашли дальнейшее развитие во всех вышеупомянутых механизмах.
   Первой появилась праща. Она представляет собой круглый лоскут кожи с двумя длинными ручками. В этот лоскут вкладывают камень, потом берут за ручки и сильно раскручивают камень над головой, затем отпускают одну веревочку и освобожденный камень по касательной к описываемой окружности движения устремляется в цель. Использование пращи позволяет придавать камню значительно большую скорость, чем при простом броске рукой, но при этом сильно страдала прицельность. Даже при долгих тренировках точность попаданий оставляла желать много лучшего, а шанса раскрутить второй камень враг часто не предоставлял.
   Более точным оказался лук. Первые упоминания о массовом использовании лука относятся к 1500 г. до н. э., хотя, конечно, он был изобретен еще раньше. Все основные усовершенствования классического лука связаны с изменением его конструкционных материалов. Сначала делали цельнодеревянные луки, затем композиционные, состоящие из нескольких склеенных разных пород деревьев и даже костей. Дальность полета определялась коэффициентом жесткости лука и величиной его деформации. Чем труднее натягивать тетиву, тем большей кинетической энергией обладает вылетающий снаряд (стрела или болт). Понятно, что убойная сила лука ограничена физическими возможностями заряжающего его лучника.
   Поэтому все дальнейшие усовершенствования связаны с увеличением силы натяжения лука, которое достигалось использованием различных вспомогательных механизмов. Первым промежуточным звеном между луком и арбалетом был гастрафет («брюшной лук»). Для взведения тетивы его одним концом упирали в землю, а на другой конец наваливались животом, отчего и происходит и название «гастрафет».
   Увеличение размеров лука и появление механизмов натяжения тетивы привело к появлению первых полноценных метательных машин, которые уже можно было использовать при осаде крепостей. Замена тетивы лентой, а стрелы – камнем привела к появлению баллист. Баллисты стали прототипом современной полевой артиллерии, их возили на лошадях, мулах или быках.
 
   Одно из самых древних и достоверных описаний применения больших метательных машин можно найти в сообщении Плутарха об осаде Сиракуз римлянами (214–212 гг. до н. э.). Масштабы вооруженности древних армий этими устройствами поражают. Например, при взятии Карфагена (146 г. до н. э.) у защитников было отбито 120 больших катапульт и 200 малых, а также 33 большие баллисты и 52 малые.
   По свидетельству древнеримского историка Вегетия, каждая центурия (воинское подразделение до 100 воинов) имела одну карробал-листу, а на каждую когорту (12 центурий) добавляется еще и катапульта. Таким образом, один легион (60 центурий) имел на вооружении около 60 карробаллист и 5 катапульт. В трактате Вегеция «Военное дело у римлян» описано подробное боевое расписание легиона, должностей и окладов, состава подразделений и даже штатная численность «баллистического» парка легиона. Естественно, что римляне могли поражать противников, менее продвинутых в техническом отношении, на безопасном для себя расстоянии. Битва часто заканчивалась еще до непосредственного рукопашного контакта межу противниками.
   Если учесть, что римские воины постоянно воевали или тренировались в искусстве боя и во взаимодействии между подразделениями, то шансы нападавших на них «любителей-ополченцев» – стремились к нулю.
   Вершиной развития военной мысли античного мира является онагр. Его действие основано на использовании принципа лука и прагци, скручивающийся жгут заменяет тетиву, а груз на веревке движется подобно праще.
   Но с падением Римской империи произошел и упадок в вооружении. В ранние Средние века широко использовался требуше (или требушет), довольно примитивный агрегат, по изяществу намного проигрывающий машинам римлян. Но его преимущество было в простоте устройства и эксплуатации. Принцип действия очень прост. Основу составляет неравно-плечный рычаг, к его короткому плечу привязывают тяжелый груз, а к длинному – веревку на конце которой находится метательный снаряд в мешочке. Тяжелый груз поднимают вверх, рычаг закрепляют – требушет заряжен. Затем рычаг освобождают, груз под действием силы тяжести начинает опускаться вниз, снаряд на другом конце поднимается, разгоняется и вылетает.
   Древнегреческий ученый Архимед, большинству из нас известный по открытому им закону и по истории купания в ванной, был еще и величайшим военным инженером. Изобретенные им механические устройства позволяли крошечной армии города Сиракузы долгое время выдерживать осаду римской армии – самой большой и оснащенной армии того времени. По легендам, Архимед применял систему зеркал для сожжения римских кораблей на подступах к городу и даже изобрел пушку, в которой водяной пар выстреливал каменные ядра. Если это так, то Архимед опередил свое время даже не на века, а на целое тысячелетие!
   Как примерно выглядело взятие Сиракуз, мы можем увидеть в фильме… «Властелин Колец»! В нем действие разворачивается в несуществующем мире-фэнтези, но при показе штурма крепостей очень красочно изображены вполне реальные военные приспособления древности. В этом фильме можно наблюдать действия требушетов, баллист, таранов, арбалетов и онагров.
   Дальнейшее развитие получил миниатюрный вариант баллисты, который стали называть арбалетом. Специальный механизм натяжения тетивы позволял стрелять с очень большой скоростью короткими стрелами – болтами. Пробивная способность этого оружия сводила к нулю преимущества рыцарской защиты. Городские ополчения стали мощной силой, способной противостоять профессиональным отрядам рыцарей. Типичная ситуация, когда дилетант, вооруженный новым техническим средством, оказывается значительно сильнее профессионала с устаревшим вооружением.
   Время карманных арбалетов и гигантских деревянных монстров закончилось с появлением огнестрельного оружия. Но и сегодня, глядя на все эти баллисты, мы восхищаемся древними конструкторами, сумевшими довести до совершенства практическое воплощение идеи действия лука и пращи.

Темы для докладов и рефератов

   1. Архимед – величайший военный инженер древности.
   2. Техническое оснащение римской армии.
   3. Боевые машины древности в современных фантастических фильмах (на примере фильма «Властелин Колец»).
   4. Законы физики в метательных машинах.
   5. Техническое обеспечение древнеримского Колизея.
   6. Устройство древней китайской мельницы.
   7. Современные простые механизмы в арсенале альпиниста.

Литература

   1. Виргинский В. С., Хотеенков В.Ф. Очерки истории науки и техники с древнейших времен до середины XV века: кн. для учителя. – М.: Просвещение, 1993.
   2. Военно-исторический портал античности и средних веков – www.xlegio.ru.
   3. Официальный сайт журнала «Наука и жизнь». – www.nkj.ru

2.2. Тепловые двигатели

   Век машин: заменить цель скоростью.
Карел Чапек

   «Ничто не может сравниться с коляской, запряженной лошадью», – настаивал Чонси Депью, президент Центральной железнодорожной компании Нью-Йорка, отговаривая своего племянника от вложения денег в новую компанию Генри Форда. И было это чуть больше 100 лет назад…
   Облик нашего современного мира уже немыслим без вездесущих автомобилей, так же невозможно представить, каким бы был наш мир без самолетов, теплоходов, железнодорожного транспорта, чем бы мы занимались вечерами, если бы не было электричества.
   Все это оказалось бы невозможным, если бы не был изобретен двигатель внутреннего сгорания (ДВС).
   Трудно сказать, с чего начинается история его воцарения. Как и всякое техническое изобретение, своим появлением ДВС обязан множеству различных предпосылок: разным изобретениям, созданию новых конструкционных материалов и видов топлива.
 
   Справедливым будет начать историю с 1705 г., когда английский изобретатель Томас Ньюкомен построил пароатмосферную машину для откачки воды из шахт. Это, конечно, был не двигатель внутреннего сгорания в классическом понимании, но в нем присутствовали главные элементы будущего ДВС – поршни. Нагретый пар под давлением поступал в цилиндр и совершал работу, толкая поршень. Также там использовался кривошипношатунный механизм и маховик. Все эти детали присутствуют и в современных двигателях.
   Двигатель Ньюкомена имел чрезвычайно низкий КПД и важен был только потому, что наглядно демонстрировал принцип, который можно использовать для превращения внутренней энергии топлива в кинетическую энергию для совершения работы. Ползунову и Уатту удалось повысить КПД паровой машины.
   Ползунов использовал два цилиндра, соединенных кривошипно-шатунным механизмом. Пар в цилиндры подавался попеременно, он толкал каждый из цилиндров вниз. В первом двигателе Ньюкомена пар подавался в один цилиндр попеременно по разные стороны поршня. В ходе технической эволюции победил вариант, впервые использованный Ползуновым.
   В 1785 г. один из первых двигателей Уатта был установлен на пивоваренном заводе в Лондоне. Машина имела мощность в 24 лошадиных силы, диаметр цилиндра 63 см, ход поршня 1,83 м (!) и маховик диаметром 4,27 м. Но по тем временам это был компактный двигатель. При таких размерах отдельные детали также были немаленькими. Неудивительно, что этот двигатель сохранился в рабочем состоянии до сих пор. Его можно увидеть и даже привести в действие в музее «Пауэрхаус» в Австралии.
   Иван Иванович Ползунов умер в 38 лет и не дожил до пуска своего изобретения, который состоялся в июне 1766 г. на Барнаульском медеплавильном заводе. Машина проработала всего 43 дня, но дала прибыль в 12418 рублей, (огромные деньги по тем временам). Затем она была разрушена, а идея – забыта.
   Следующий важный шаг был сделан в 1801 г.: Филипп Лебон взял патент на конструкцию газового двигателя. Действия этой машины основывалось на том же принципе, что и у паровых машин. Но разница заключалась в том, что в качестве рабочего тела использовался не водяной пар, а смесь светильного газа с воздухом. В двигателе Лебона были предусмотрены два компрессора и камера смешения. Один компрессор накачивал в камеру сжатый воздух, а другой – сжатый светильный газ. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, т. е. попеременно действовавшие рабочие камеры находились по обе стороны поршня. В этом устройстве уже можно увидеть прообраз современного двигателя. В 1804 г. Лебон погиб, так и не успев довести свою идею до практического применения. Паровая машина пока оставалась вне конкуренции.
   Бельгийский инженер Жан Этьен Ленуар создал первый коммерчески успешный ДВС. Основная идея заключалась в том, чтобы воспламенять смесь непосредственно в цилиндре с помощью электрической искры. Для успешной работы своего двигателя Ленуар создал систему водяного охлаждения и смазку. Так родились системы и механизмы, узнаваемые и в современном двигателе.
   В 1877 г. немецкий изобретатель Август Отто усовершенствовал двигатель Ленуара, доработал кривошипно-шатунный механизм и создал первый четырехтактный двигатель, резко увеличив тем самым его КПД. Топливом для двигателей по-прежнему служил светильный газ.
   Еще в 1872 г. американец Брайтон в качестве топлива пытался использовать смесь керосина с воздухом, затем смесь бензина с воздухом. Для получения смеси им был создан один из первых «испарительных» карбюраторов, но он оказался неудачным.
   Немецкий инженер Готлиб Даймлер вместе со своим другом Вильгельмом Майбахом в 1883 г. создали двигатель без газогенератора, очень легкий, компактный и мощный. Увеличение мощности было достигнуто за счет увеличения частоты вращения вала с зажиганием смеси от раскаленной полой трубки.
   Завершением формирования современного облика ДВС мы обязаны венгерскому инженеру Донату Банки, запатентовавшему в 1893 г. карбюратор, принцип действия которого используется и поныне. Бензин в нем не испаряется, а мелко распыляется. Для этого воздух продувается вдоль поверхности бензина, поддерживаемой на постоянном уровне.
   В том же 1893 г. 23 февраля Рудольф Дизель получил патент на свой «экономичный термический двигатель». Экономичность в этом двигателе достигалась за счет большей степени сжатия топлива. При таком сжатии происходит адиабатное нагревание и самовоспламенение горючей смеси, впрыскиваемой через специальную форсунку. Первый работающий образец был построен Дизелем в 1897 г.
   Карбюраторные и дизельные двигатели получились наиболее удачными из всех. Развитие и конкуренция этих двигателей продолжается до сих пор с переменным успехом.