· клетки – форменные элементы;
   · жидкое межклеточное вещество – плазма крови.
   Масса крови составляет 5 % от массы тела человека, объем крови около 5,5 л. Депо крови – печень, селезенка, кожа и кишечник, в кишечнике может депонироваться до 1 л крови. Потеря человеком 1/3 объема крови ведет к смертельному исходу. Соотношение частей крови: плазма – 55–60 %, форменные элементы – 40–45 %. Плазма крови состоит из воды на 90–93 % и содержащихся в ней веществ – 7-10 %. В плазме содержатся белки, аминокислоты, нуклеотиды, глюкоза, минеральные вещества, продукты обмена. Белки плазмы крови: альбумины, глобулины (в том числе иммуноглобулины), фибриноген, белки-ферменты и другие. Функции плазмы – транспорт растворимых веществ.
   В связи с тем, что в крови содержатся как истинные клетки (лейкоциты), так и постклеточные образования – эритроциты и тромбоциты, принято именовать их в совокупности форменными элементами.
   Классификация форменных элементов:
   эритроциты;
   тромбоциты;
   лейкоциты.
   Качественный состав крови (анализ крови) определяется такими понятиями как гемограмма и лейкоцитарная формула. Гемограмма – количественное содержание форменных элементов крови в одном литре или одном миллилитре.
   Гемограмма взрослого человека:
   I. эритроцитов:
   · у женщины – 3,7–4,9 млн в литре;
   · у мужчины – 3,9–5,5 млн в литре;
   · II. тромбоцитов 200–400 тыс. в литре;
   · III. лейкоцитов 3,8–9,0 тыс. в литре.
   2. Эритроциты преобладающая популяция форменных элементов крови. Морфологические особенности:
   · не содержит ядра;
   · не содержит большинства органелл;
   · цитоплазма заполнена пигментным включением – гемоглобином: гемжелезо, глобин-белок.
   Размеры эритроцитов:
   · Нормоциты 7,1–7,9 мкм (75 %);
   · Макроциты больше 8 мкм (12,5 %);
   · Микроциты меньше 6 мкм (12,5 %).
   Форма эритроцитов:
   · двояковогнутые диски – дискоциты (80 %);
   · остальные 20 % составляют сфероциты, планоциты, эхиноциты, седловидные, двуямочные, стоматоциты.
   По насыщенности гемоглобином эритроциты различаются:
   · нормохромные;
   · гипохромные;
   · гиперхромные.
   Различают две формы гемоглобина:
   · гемоглобин А;
   · гемоглобин F – фетальный.
   У взрослого человека гемоглобина А 98 %, гемоглобина F 2 %. У новорожденного ребенка гемоглобина А 20 %, гемоглобина F 80 %. Продолжительность жизни эритроцитов – 120 дней. Старые эритроциты разрушаются макрофагами, в основном, в селезенке, освобождающиеся из них железо используется созревающими эритроцитами. В периферической крови от 1 % до 5 % эритроцитов являются незрелыми и носят название ретикулоцитов. Их содержание отражает интенсивность эритроцитарного кроветворения и имеет важное диагностическое и прогностическое значение. Пойкилоцитоз – наличие в периферической крови большого количества эритроцитов разной формы. Анизоцитоз – наличие в периферической крови большого количества эритроцитов разного размера.
   Функции эритроцитов:
   · Дыхательная – транспорт газов (О2 и СО2);
   · транспорт других веществ, абсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных веществ, токсинов и других).
   II. Тромбоциты или кровяные пластинки, представляют собой фрагменты цитоплазмы особых клеток красного костного мозга – мегакариоцитов.
   Составные части тромбоцита:
   · Гиаломер – основа пластинки, окруженная цитолеммой;
   · Грануломер – зернистость, представленная специфическими гранулами, а также фрагментами зернистой эндоплазматической сети, рибосомами, митохондриями и другими.
   Размеры тромбоцитов – 2–3 мкм, форма округлая, овальная, отростчатая. По степени зрелости тромбоциты подразделяются на:
   · юные;
   · зрелые;
   · старые;
   · дегенеративные;
   · гигантские.
   Продолжительность жизни тромбоцитов – 5–8 дней. Функции тромбоцитов: участие в механизмах свертывания крови посредством склеивания пластинок и образования тромба, разрушения пластинок и выделения одного из многочисленных факторов, способствующих превращению глобулярного фибриногена в нитчатый фибрин.
   3. Лейкоциты или белые кровяные тельца, ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровяное русло и проявляют свои функции в основном в тканях. Лейкоциты представляют собой неоднородную группу и подразделяются на несколько популяций. Классификация лейкоцитов основана на:
   · содержании гранул в цитоплазме;
   · отношении к красителям по тинкториальным свойствам;
   · степени зрелости клеток данного типа;
   · морфологии и функции клеток;
   · размера клеток.
   Классификация лейкоцитов:
   I. зернистые (гранулоциты) – нейтрофилы (65–75 %): юные (0–0,5 %); палочкоядерные (3–5 %); сегментоядерные (60–65 %);
   эозинофилы (1–5 %);
   базофилы (0,5–1,0 %);
   II. незернистые (агранулоциты):
   лимфоциты (20–35 %): Т-лимфоциты; В-лимфоциты;
   моноциты (6–8 %).
   Лейкоцитарная формула – это процентное соотношение различных форм лейкоцитов (к общему числу лейкоцитов – 100 %). В таблице классификации лейкоцитов представлена лейкоцитарная формула здорового организма.
   I. Нейтрофильные лейкоциты, нейтрофилы – самая большая популяция лейкоцитов (65–75 %). Морфологические особенности нейтрофилов:
   · сегментированное ядро;
   · в цитоплазме имеются мелкие гранулы, окрашивающиеся в слабо оксифильный (розовый) цвет, среди которых различают неспецифические азурофильные гранулы – разновидность лизосом, специфические гранулы, другие органеллы развиты слабо. Размеры в мазке 10–12 мкм.
   По степени зрелости нейтрофилы подразделяются на:
   · юные (метамиелоциты) 0–0,5 %;
   · палочкоядерные 3–5 %;
   · сегментоядерные (зрелые) 60–65 %.
   Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. По нейтрофилам определяют половую принадлежность крови – по наличию у одного из сегмента околоядерного сателлита (придатка) в виде барабанной палочки (у женщин). Продолжительность жизни нейтрофилов 8 дней, из них 8-12 ч они находятся в крови, а затем выходят соединительную и эпителиальную ткани, где и выполняют основные функции.
   Функции нейтрофилов:
   · фагоцитоз бактерий;
   · фагоцитоз иммунных комплексов (антиген-антитело);
   · бактериостатическая и бактериолитическая;
   · выделение кейлонов и регуляция размножения лейкоцитов.
   II. Эозинофильные лейкоциты или эозинофилы. Содержание в норме 1–5 %, размеры в мазках 12–14 мкм. Морфологические особенности эозинофилов:
   · двухсегментное ядро;
   · в цитоплазме крупная оксифильная (красная) зернистость, состоящая из двух типов гранул: специфические азурофильные – разновидность лизосом, содержащих фермент пероксидазу, неспецифические гранулы, содержащие кислую фосфатазу, другие органеллы развиты слабо.
   Функции эозинофилов:
   участвуют в иммунологических (аллергических и анафилактических) реакциях, угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина несколькими способами:
   · фагоцитируют гистамин и серотонин, выделяемые базофилами и тучными клетками, а также адсорбируют эти биологически активные вещества на цитолемме;
   · выделяют ферменты, расщепляющие гистамин и серотонин внеклеточно;
   · выделяют факторы, препятствующие выбросу гистамина и серотонина базофилами и тучными клетками;
   · способны фагоцитировать бактерии, но в незначительной степени.
   Участием эозинофилов в аллергических реакциях объясняется их повышенное содержание (до 20–40 % и более) в крови при различных аллергических заболеваниях (глистных инвазиях, бронхиальной астме, злокачественных новообразованиях и других). Продолжительность жизни эозинофилов 6–8 дней, из них нахождение в кровеносном русле составляет 3–8 ч.
   III. Базофильные лейкоциты или базофилы
   Это наименьшая популяция лейкоцитов (0,5–1 %), однако в общей массе в организме их огромное количество. Размеры в мазке 11–12 мкм. Морфологические особенности базофилов:
   · крупное слабо сегментированное ядро;
   · в цитоплазме содержатся крупные гранулы, окрашивающиеся основными красителями, метахроматично, за счет содержания в них гликозоаминогликанов – гепарина, а также гистамина, серотонина и других биологически активных веществ;
   · другие органеллы развиты слабо.
   Функции базофилов заключают в участии в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции)и содержащихся в них вышеперечисленных биологически активных веществ, которые и вызывают аллергические проявления (отек ткани, кровенаполнение, зуд, спазм гладкой мышечной ткани и другие). При встрече с антигенами (аллергенами) некоторые В-лимфоциты и плазмоциты вырабатывают иммуноглобулины Е, которые адсорбируются на цитолемме базофилов и тучных клеток. При повторной встрече базофилов с тем же антигеном на их поверхности образуются комплексы антиген-антитело, которые вызывают резкую дегрануляцию и выход в окружающую среду гистамина, серотонина, гепарина. Базофилы также обладают способностью фагоцитоза, но это не основная их функция.
   4. Агранулоциты не содержат гранул в цитоплазме и подразделяются на две различные клеточные популяции – лимфоциты и моноциты.
   Лимфоциты являются клетками иммунной системы и потому в последнее время все чаще называются иммуноцитами. Лимфоциты (иммуноциты), при участии вспомогательных клеток (макрофагов), обеспечивают иммунитет – защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делится. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты весьма гетерогенная (неоднородная) популяция клеток.
   Классификация лимфоцитов:
   I. По размерам:
   · малые 4,5–6 мкм;
   · средние 7-10 мкм;
   · большие – больше 10 мкм.
   В периферической крови около 90 % составляют малые лимфоциты и 10–12 % средние лимфоциты. Большие лимфоциты в нормальных условиях в периферической крови не встречаются. Электронно-микроскопически малые лимфоциты подразделяются на светлые (70–75 %) и темные (12–13 %).
   Морфология малых лимфоцитов:
   · относительно крупное круглое ядро, состоящее в основном из гетерохроматина (особенно в мелких темных лимфоцитах);
   · узкий ободок базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы – эндоплазматическая сеть, единичные митохондрии и лизосомы.
   Морфология средних лимфоцитов:
   · более крупное и более рыхлое ядро, состоящее из эухроматина в центре и гетерохроматинапо периферии;
   · в цитоплазме более развиты гранулярная и гладкая эндоплазматическая сеть, пластинчатый комплекс, больше митохондрий.
   В крови содержится также 1–2 % плазмоцитов, образующихся из В-лимфоцитов.
   II. По источникам развития лимфоциты подразделяются на:
   · Т-лимфоцитыих образование и дальнейшее развитие связано с тимусом (вилочковой железой);
   · В-лимфоциты, их развитие у птиц связано с особенным органом – фабрициевой сумкой, а у млекопитающих и человека пока точно не установленным ее аналогом.
   Кроме источников развития Т– и В-лимфоциты отличаются между собой и по выполняемым функциям.
   III. По функциям:
   · а) В-лимфоциты и плазмоциты обеспечивают гуморальный иммунитет – защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и других);
   · б) Т-лимфоциты по выполняемым функциям подразделяются на киллеров, хелперов, супрессоров.
   Киллеры или цитотоксические лимфоциты обеспечивают защиту организма от чужеродных клеток или генетически измененных собственных клеток, осуществляется клеточный иммунитет. Т-хелперы и Т-супрессоры регулируют гуморальный иммунитет: хелперы – усиливают, супрессоры – угнетают. Кроме того, в процессе дифференцировки и Т– и В-лимфоциты вначале выполняют рецепторные функции – распознают соответствующий их рецепторам антиген, а после встречи с ним трансформируются в эффекторные или регуляторные клетки.
   В пределах своих субпопуляций и Т– и В-лимфоциты различаются между собой по типу рецепторов к различным антигенам. При этом разнообразие рецепторов столь велико, что имеются лишь небольшие группы (клоны) клеток, имеющие одинаковые рецепторы. При встрече лимфоцита с антигеном, к которому у него имеется рецептор, лимфоцит стимулируется, превращается в лимфобласт, а затем пролиферирует в результате чего образуется клон новых лимфоцитов с одинаковыми рецепторами.
   по продолжительности жизни лимфоциты подразделяются на:
   · короткоживущие (недели, месяцы)преимущественно В-лимфоциты;
   · долгоживущие (месяцы, годы)преимущественно Т-лимфоциты.
   Моноциты это наиболее крупные клетки крови (18–20 мкм), имеющие круглое бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы. По своей функции моноциты являются фагоцитами. Моноциты являются не вполне зрелыми клетками. Они циркулируют в крови 2-е суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов. Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему или мононуклеарную фагоцитарную систему (МФС).
   5. Возрастные особенности крови
   У новорожденных:
   · эритроцитов 6–7 млн в 1 л (эритроцитоз);
   · лейкоцитов 10–30 тыс. в 1 л (лейкоцитоз);
   · тромбоцитов 200–300 тыс. в 1 л, то есть как у взрослых.
   Через 2 недели содержание эритроцитов снижается к показателям взрослых (около 5 млн в 1 л). Через 3–6 месяцев число эритроцитов снижается ниже 4–5 мл в 1 л – это физиологическая анемия, а затем постепенно достигает нормальных показателей к периоду полового созревания. Содержание лейкоцитов у детей через 2 недели снижается до 9 15 тыс. в 1 л и к периоду полового созревания достигает показателей взрослых.
   Лейкоцитарная формула у новорожденных детей
   Наибольшие изменения в лейкоцитарной формуле отмечаются в содержании нейтрофилов и лимфоцитов. Остальные показатели существенно не отличаются от показателей взрослых.
   Классификация лейкоцитов
   Сроки развития:
   I. Новорожденные:
   · нейтрофилы 65–75 %;
   · лимфоциты 20–35 %;
   II. 4-е сутки – первый физиологический перекрест:
   · нейтрофилы 45 %;
   · лимфоциты 45 %;
   III. 2 года:
   · нейтрофилы 25 %;
   · лимфоциты 65 %;
   IV. 4 года – второй физиологический перекрест:
   · нейтрофилы 45 %;
   · лимфоциты 45 %;
   V. 14–17 лет:
   · нейтрофилы 65–75 %;
   · лимфоциты 20–35 %.
   6. Лимфа состоит из лимфоплазмы и форменных элементов, в основном лимфоцитов (98 %), а также моноцитов, нейтрофилов, иногда эритроцитов. Лимфоплазма образуется посредством проникновения (дренажа) тканевой жидкости в лимфатические капилляры, а затем отводится по лимфатическим сосудам различного калибра и вливается в венозную систему. По пути движения лимфа проходит через лимфатические узлы, в которых она очищается от экзогенных и эндогенных частиц, а также обогащается лимфоцитами.
   По качественному составу лимфа подразделяется на:
   · периферическую лимфу – до лимфатических узлов;
   · промежуточную лимфу – после лимфатических узлов;
   · центральную лимфу – лимфа грудного протока.
   В области лимфатических узлов происходит не только образование лимфоцитов, но и миграция лимфоцитов из крови в лимфу, а затем с током лимфы они снова попадают в крови и так далее. Такие лимфоциты составляют рециркулирующий пул лимфоцитов.
   Функции лимфы:
   · дренирование тканей;
   · обогащение лимфоцитами;
   · очищение лимфы от экзогенных и эндогенных веществ.

ЛЕКЦИЯ 7. Кроветворение

   1. Виды кроветворения
   2. Теории кроветворения
   3. Т-лимфоцитопоэз
   4. В-лимфоцитопоэз
   1. Кроветворение (гемоцитопоэз)процесс образования форменных элементов крови.
   Различают два вида кроветворения:
   миелоидное кроветворение:
   · эритропоэз;
   · гранулоцитопоэз;
   · тромбоцитопоэз;
   · моноцитопоэз.
   лимфоидное кроветворение:
   · Т-лимфоцитопоэз;
   · В-лимфоцитопоэз.
   Кроме того, гемопоэз подразделяется на два периода:
   · эмбриональный;
   · постэмбриональный.
   Эмбриональный период гемопоэза приводит к образованию крови как ткани и потому представляет собой гистогенез крови. Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови как ткани.
   Эмбриональный период гемопоэза осуществляется поэтапно, сменяя разные органы кроветворения. В соответствии с этим эмбриональный гемопоэз подразделяется на три этапа:
   · желточный;
   · гепато-тимусо-лиенальный;
   · медулло-тимусо-лимфоидный.
   Желточный этап осуществляется в мезенхиме желточного мешка, начиная со 2-3-ей недели эмбриогенеза, с 4-ой недели он снижается и к концу 3-го месяца полностью прекращается. Процесс кроветворения на этом этапе осуществляется следующим образом, вначале в мезенхиме желточного мешка, в результате пролиферации мезенхимальных клеток, образуются «кровяные островки», представляющие собой очаговые скопления отростчатых мезенхимальных клеток. Затем происходит дифференцировка этих клеток в двух направлениях (дивергентная дифференцировка):
   · периферические клетки островка уплощаются, соединяются между собой и образуют эндотелиальную выстилку кровеносного сосуда;
   · центральные клетки округляются и превращаются в стволовые клетки.
   Из этих клеток в сосудах, то есть интраваскулярно начинается процесс образования первичных эритроцитов (эритробластов, мегалобластов). Однако часть стволовых клеток оказывается вне сосудов (экстраваскулярно) и из них начинают развиваться зернистые лейкоциты, которые затем мигрируют в сосуды.
   Наиболее важными моментами желточного этапа являются:
   · образование стволовых клеток крови;
   · образование первичных кровеносных сосудов.
   Несколько позже (на 3-ей неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.
   Гепато-тимусо-лиенальный этап гемопоэза осуществляется в начале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение, начиная с 5-ой недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7-8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем в постнатальном периоде до его инволюции (в 25–30 лет). Процесс образования Т-лимфоцитов в этот момент носит название антиген независимая дифференцировка. Селезенка закладывается на 4-й неделе, с 7–8 недели она заселяется стволовыми клетками и в ней начинается универсальное кроветворение, то есть и миелоилимфопоэз. Особенно активно кроветворение в селезенке протекает с 5-го по 7-ой месяцы внутриутробного развития плода, а затем миелоидное кроветворение постепенно угнетается и к концу эмбриогенеза (у человека) оно полностью прекращается. Лимфоидное же кроветворение сохраняется в селезенке до конца эмбриогенеза, а затем и в постэмбриональном периоде.
   Следовательно, кроветворение на втором этапе в названных органах осуществляется почти одновременно, только экстраваскулярно, но его интенсивность и качественный состав в разных органах различны.
   Медулло-тимусо-лимфоидный этап кроветворения. Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, то есть является универсальным кроветворным органом. В то же время в тимусе, в селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение. Если красный костный мозг не в состоянии удовлетворить возросшую потребность в форменных элементах крови (при кровотечении), то гемопоэтическая активность печени, селезенки может активизироваться – экстрамедуллярное кроветворение.
   Постэмбриональный период кроветворения – осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфатических узлах, миндалинах, лимфоидных фолликулах).
   Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.
   2. Теории кроветворения:
   · унитарная теория (А. А. Максимов, 1909 г.) – все форменные элементы крови развиваются из единого предшественникастволовой клетки;
   · дуалистическая теория предусматривает два источника кроветворения, для миелоидного и лимфоидного;
   · полифилетическая теория предусматривает для каждого форменного элемента свой источник развития.
   В настоящее время общепринятой является унитарная теория кроветворения, на основании которой разработана схема кроветворения (И. Л. Чертков и А. И. Воробьев, 1973 г.).
   В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток. Всего в схеме кроветворения различают 6 классов клеток:
   · 1 класс – стволовые клетки;
   · 2 класс – полустволовые клетки;
   · 3 класс – унипотентные клетки;
   · 4 класс – бластные клетки;
   · 5 класс – созревающие клетки;
   · 6 класс – зрелые форменные элементы.
   Морфологическая и функциональная характеристика клеток различных классов схемы кроветворения.
   1 класс – стволовая полипотентная клетка, способная к поддержанию своей популяции. По морфологии соответствует малому лимфоциту, является полипотентной, то есть способной дифференцироваться в любой форменный элемент крови. Направление дифференцировки стволовой клетки определяется уровнем содержания в крови данного форменного элемента, а также влиянием микроокружения стволовых клеток – индуктивным влиянием стромальных клеток костного мозга или другого кроветворного органа. Поддержание численности популяции стволовых клеток обеспечивается тем, что после митоза стволовой клетки одна из дочерних клеток становится на путь дифференцировки, а другая принимает морфологию малого лимфоцита и является стволовой. Делятся стволовые клетки редко (1 раз в полгода), 80 % стволовых клеток находятся в состоянии покоя и только 20 % в митозе и последующей дифференцировке. В процессе пролиферации каждая стволовая клетка образует группу или клон клеток и потому стволовые клетки в литературе нередко называются колоние-образующие единицы – КОЕ.
   2 класс – полустволовые, ограниченно полипотентные (или частично коммитированные) клетки-предшественницы миелопоэза и лимфопоэза. Имеют морфологию малого лимфоцита. Каждая из них дает клон клеток, но только миелоидных или лимфоидных. Делятся они чаще (через 3–4 недели) и также поддерживают численность своей популяции.
   3 класс – унипотентные поэтин-чувствительные клетки-предшественницы своего ряда кроветворения. Морфология их также соответствует малому лимфоциту. Способны дифференцироваться только в один тип форменного элемента. Делятся часто, но потомки этих клеток одни вступают на путь дифференцировки, а другие сохраняют численность популяции данного класса. Частота деления этих клеток и способность дифференцироваться дальше зависит от содержания в крови особых биологически активных веществ – поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и другие).
   Первые три класса клеток объединяются в класс морфологически неидентифицируемых клеток, так как все они имеют морфологию малого лимфоцита, но потенции их к развитию различны.
   4 класс – бластные (молодые) клетки или бласты (эритробласты, лимфобласты и так далее). Отличаются по морфологии как от трех предшествующих, так и последующих классов клеток. Эти клетки крупные, имеют крупное рыхлое (эухроматин) ядро с 2 4 ядрышками, цитоплазма базофильна за счет большого числа свободных рибосом. Часто делятся, но дочерние клетки все вступают на путь дальнейшей дифференцировки. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.
   5 класс – класс созревающих клеток, характерных для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток – от одной (пролимфоцит, промоноцит), до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферическую кровь (например, ретикулоциты, юные и палочкоядерные гранулоциты).