Благодаря такому подходу передача данных происходит не только быстрее (не нужно повторно передавать весь объем), но и с большей гарантией того, что они будут доставлены, даже несмотря на то, что за качество доставки отвечает уровень LLC.

CSMA/CA

   Метод доступа к передающей среде CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance), или метод множественного доступа с контролем несущей частоты и избеганием коллизий, также является модификацией протокола CSMA. Данный метод доступа к среде чаще всего используется в беспроводных сетях, работа которых описана спецификацией IEEE 802.11.
   В отличие от метода доступа к среде CSMA/CD, в которой jam-сигнал высылается только при обнаружении коллизии, метод CSMA/CA сначала отправляет jam-сигнал, информирующий о том, что станция хочет передавать данные, и только потом передает сигнал. После того как выслан jam-сигнал, станция еще некоторое время ожидает и проверяет канал на наличие аналогичных jam-пакетов. Если таковой обнаружен, то есть кто-то уже ведет вещание, станция ждет случайный промежуток времени, и затем процесс повторяется. Если никаких чужих передач не обнаружено, станция начинает передавать данные до тех пор, пока все они не будут переданы. При таком подходе, даже если будет обнаружен чужой jam-пакет, это приведет не к коллизии при передаче данных, а лишь к коллизии jam-пакетов.

Token Ring

   Данный метод доступа к общей передающей среде характерен только для сетей, построенных с применением сетевой топологии «кольцо», представителями которых и являются Token Ring и FDDI.
   В данном методе используется понятие маркера (Token) – метки специального типа, которая является одним из типов кадра, применяемых для обмена информацией в сетях подобного рода. При наличии маркера любой компьютер сети может передавать данные столько, сколько это будет необходимо, и при этом ему никто не помешает.
   Организация сети по топологии «кольцо» подразумевает, что данные передаются по кругу всем участникам сети. При этом блок данных снабжается адресом отправителя, адресом получателя и маркером. Когда получатель, предварительно сверив адрес из блока данных со своим физическим адресом, понимает, что данный пакет адресован ему, он изменяет блок данных, убрав из него маркер. Этот факт и является свидетельством того, что передача данных уже ведется, и другие участники сети просто передают данные далее. После того как данные попали к отправителю, он начинает передачу данных по сформировавшемуся маршруту и ведет ее до тех пор, пока весь объем данных не будет передан. Затем получатель освобождает маркер, добавив его в последний пакет подтверждения доставки, и после этого любой участник сети может захватить его для своих нужд.

Глава 7
Понятие сетевого стандарта

   Функционирование локальной сети обусловлено разнообразными стандартами, в частности моделью взаимодействия открытых систем. Кроме того, на основе модели ISO/OSI создано множество стандартов, которые ориентированы на передачу данных в локальной сети с достаточными по современным меркам скоростью и безопасностью.
   На сегодня существует уже достаточно много технологий построения локальной сети. Однако независимо от того, какие топологии, каналы связи и методы передачи данных используются, все они реализованы и описаны в так называемых сетевых стандартах. Таким образом, стандарт – это набор правил и соглашений, используемых при создании локальной сети и организации передачи данных с применением определенной топологии, оборудования, протоколов и т. д.
   Логично, что сами по себе эти стандарты не появляются: они – результат слаженной работы множества организаций. Принимая во внимание современные требования и возможности, организации разрабатывают все необходимые правила, использование которых позволяет создать сеть с необходимыми возможностями. К числу таких организаций относятся уже упомянутая международная организация по стандартизации, международная комиссия по электротехнике (International Electrotechnical Commision, IEC), международный союз электросвязи (International Telecommunications Union, ITU), институт инженеров электротехники и радиоэлектроники (Institute of Electrical and Electronic Engineers, IEEE), ассоциация производителей компьютеров и оргтехники (Computer and Business Equipment Manufacturers Association, CBEMA), американский национальный институт стандартов (American National Standards Institute, ANSI) и др. Каждая из этих организаций проводит практические исследования и вносит в создаваемые стандарты коррективы.
   Существует достаточно большое количество сетевых стандартов, касающихся абсолютно всех аспектов работы сети. Однако если разработка стандартов относится к определенному типу сети, то имеется четкое разделение на уровне комитетов. При этом в состав комитета входят организации, непосредственно связанные с разрабатываемыми стандартами, то есть те, которые действительно понимают, что они делают и что от них зависит.
   Что касается локальных компьютерных сетей, то за разработку сетевых стандартов отвечает комитет 802 по стандартизации локальных сетей, который в 1980 году был сформирован под эгидой IEEE (Институт инженеров электротехники и радиоэлектроники). Именно поэтому все стандарты, разрабатываемые этим комитетом, в своем названии содержат IEEE 802.
   В составе комитета 802 находится большое количество подкомитетов, каждый из которых работает по своему направлению и отвечает за стандартизацию разных типов сети и создание отчетов, описывающих процессы, которые возникают при передаче разного рода данных. Например, за разработку стандартов для сети с кабельной системой отвечает комитет IEEE 802.3, с использованием радиоэфира – комитет IEEE 802.11 и т. д.
   Наиболее известными подкомитетами являются следующие.
   □ IEEE 802.1. Данный подкомитет занимается разработкой стандартов межсетевого взаимодействия и управления сетевыми устройствами. Он разрабатывает стандарты по управлению локальной сетью, принципам и логике работы активного сетевого оборудования, безопасности протоколов MAC-уровня и т. д.
   □ IEEE 802.2. Этот подкомитет занимается разработкой стандартов для протоколов канального уровня, осуществляющих логическое управление средой передачи данных.
   □ IEEE 802.3. Работа данного подкомитета представляет особый интерес в рамках данной книги, поскольку именно он занимается разработкой стандартов для проводных сетей стандарта Ethernet, которые для доступа к среде передачи данных используют метод множественного доступа с контролем несущей частоты и обнаружением коллизий CSMA/CD. Данный комитет разработал более 30 стандартов, большая часть которых находит свое применение в современных локальных сетях.
   □ IEEE 802.4. Этот комитет разрабатывает стандарты для локальных сетей, которые используют маркерный метод доступа к передающей сети и топологию «шина».
   □ IEEE 802.5. Данный комитет разрабатывает правила и спецификации для локальных сетей, которые в качестве метода доступа к среде передачи данных используют метод маркера, а в основе сети лежит топология «кольцо».
   □ IEEE 802.6. Стандарты данного комитета описывают принципы и правила функционирования сетей городского масштаба (MAN).
   □ IEEE 802.11. Этот комитет разрабатывает стандарты и правила функционирования устройств в беспроводных локальных сетях, которые работают с частотами 2,4; 3,6 и 5 ГГц.
   □ IEEE 802.15. Данный комитет разрабатывает стандарты для персональных беспроводных сетей, использующих такие технологии передачи данных, как ZigBee, Bluetooth и т. д.
   □ IEEE 802.16. Внимание этого комитета занято стандартизацией функционирования локальных сетей (WiMAX) с использованием беспроводной связи в широком диапазоне частот (2-66 ГГц).

Глава 8
Особенности функционирования беспроводных сетей

   □ Режимы функционирования беспроводных сетей
   □ Методы и технологии обработки сигнала
   □ Шифрование и аутентификация
   Использование радиоволн в качестве среды передачи данных имеет целый ряд особенностей, не позволяющих применять методы и режимы работы, которые с успехом используются в проводных сетях. В связи с этим для существующих сетевых стандартов предусмотрены собственные средства доступа к передающей среде, обработки сигнала, шифрования данных и аутентификации и т. д. Далее рассмотрим особенности использования этих механизмов в беспроводных сетях, основанных на принципах Ethernet.

Режимы функционирования беспроводных сетей

   Существует два режима или, как их еще называют, конфигурации работы беспроводного оборудования, которые были описаны беспроводным стандартом IEEE 802.11:
   □ IBBS (Independent Basic Service Set), независимый базовый набор служб;
   □ BBS (Basic Service Set), базовый набор служб.
   Выбор режима определяет принцип функционирования сети, используемое для этого оборудование, характеристики сети, сложность администрирования и многое другое.

IBBS

   Независимый базовый набор служб (его называют также ad-hoc, режим независимой конфигурации, «точка – точка») – один из режимов работы беспроводной локальной сети, причем самый простой из них. Это выражается в том, что для организации беспроводной сети не нужно никакого дополнительного оборудования, кроме беспроводных адаптеров, установленных на рабочих станциях. При этом каждый беспроводный адаптер сотрудничает сразу со всеми беспроводными адаптерами в сети (рис. 8.1).
   Если провести аналогию с проводными сетями, то можно сказать, что данный режим очень похож на топологию «шина», когда данные от одного устройства отправляются сразу всем устройствам и сами устройства определяют, кому эти данные адресованы.
   Хотя при этом не используется отдельно стоящее центральное управляющее устройство, тем не менее, чтобы объединить все рабочие станции в локальную сеть, один из беспроводных адаптеров нужно настроить в качестве «ведущего»: необходимо настроить идентификатор сети, метод аутентификации и шифрования, ключ сети и т. д.
 
   Рис. 8.1. Беспроводная сеть в режиме IBBS
 
   Данный режим конфигурации сетевого оборудования имеет свои плюсы и минусы.
   Из плюсов можно отметить быстрое развертывание сети в любых условиях, поддержку до 256 подключений, возможность соединения двух рабочих станций на значительном удалении друг от друга (10 и более километров).
   Главные минусы – низкая скорость передачи данных (не более 11 Мбит/с), которая к тому же делится между всеми участниками локальной сети, и малый диаметр действия сети.
   Данная конфигурация сети идеально подходит, когда нужно быстро соединить между собой два компьютера, чтобы передать между ними небольшой объем данных. Если же требуется выполнение более серьезных задач, то стоит использовать режим BBS.

BBS

   Базовый набор служб, или режим инфраструктуры, – еще один режим работы беспроводной сети, который подразумевает использование центрального управляющего узла, называемого точкой доступа (Access Point). Все беспроводные станции подключаются к этой точке доступа (рис. 8.2).
 
   Рис. 8.2. Беспроводная сеть в режиме BBS
 
   При этом вся необходимая для функционирования сети информация находится в точке доступа. Чтобы подключиться к ней, каждый беспроводной адаптер должен быть настроен соответствующим образом: необходимо указать идентификатор сети, выбрать метод шифрования и т. д.
   Такой принцип организации работы является очень гибким и эффективным, он позволяет не только легко менять методы шифрования и аутентификации и расширять сеть, но и создавать комбинированные сети с большим количеством сегментов.
   Если, опять же, проводить аналогию с проводным вариантом сети, то режим инфраструктуры практически повторяет топологию «звезда». При этом очень многие технические показатели локальной сети зависят от возможностей точки доступа.
   Интересным моментом является возможность увеличения радиуса действия сети. Так, наиболее простой вариант сети подразумевает использование одной точки доступа, но их количество может быть и большим. В этом случае получается некая модификация конфигурации сети, которая получила название расширенного набора служб (Extended Service Set, ESS) (рис. 8.3).
 
   Рис. 8.3. Беспроводная сеть в режиме ESS
 
   Если в беспроводной сети используется несколько точек доступа, они все представляют собой одно целое, то есть умеют обмениваться между собой всей необходимой информацией. Кроме того, беспроводные адаптеры сами могут выбирать, к какой точке доступа им подключаться. Это позволяет получить более устойчивую связь или переключаться с одной точки доступа на другую, если рабочая станция перемещается.
   Возможности точки доступа на этом не заканчиваются. Так, точка доступа может использоваться не только для обслуживания беспроводных устройств: зачастую точка доступа представляет собой коммутатор стандарта 100Base-TX или ему подобного, что позволяет соединять беспроводной и проводной сегменты сети в одно целое с возможностью маршрутизации пакетов между сегментами. Такая организация сети встречается на практике очень часто.

Методы и технологии обработки сигнала

   Вне зависимости от того, какую среду передачи данных использует в своей работе локальная сеть, существует целый набор технологий и методов обработки сигнала, которые применяются совместно с протоколами передачи данных, чтобы передаваемые данные не просто достигли адресата, но дошли быстро, без ошибок и желательно без необходимости их повторной передачи.
   Беспроводная среда, которая всегда была непредсказуемой из-за влияния различных факторов, имеет по сравнению с проводным способом организации сети другой способ обработки сигнала. Так, для уверенной и качественной передачи и обработки данных при различной скорости их пересылки приходится использовать сложные методы и технологии кодирования данных, придающие им большую устойчивость к помехам и, как следствие, уменьшающие скорость их передачи. К тому же, учитывая постоянные физические помехи и наличие большого количества бытовых устройств, создающих радиопомехи, требуется применение целого ряда методов управления модуляцией сигнала и эффективного выбора каналов частот для его передачи.
   Далее мы рассмотрим некоторые основные методы, с помощью которых данные превращаются в радиосигнал, передаются адресату и подвергаются обратному декодированию в формат, понятный компьютеру.

DSSS

   DSSS (Direct Sequence Spread Spectrum, расширение спектра методом прямой последовательности) – один из основных методов модуляции сигнала, используемый в беспроводных локальных сетях. Данный метод применяется для преобразования исходного сигнала и передачи его одновременно по нескольким каналам связи определенной ширины.
   Принцип его работы достаточно простой и выглядит следующим образом. Диапазон частот, выделенный для беспроводной сети (2400–2483,5 МГц), разбивается на 11 каналов шириной 22 МГц. Далее с помощью метода последовательностей Баркера каждый бит данных превращается в 11 бит, в результате чего получается 11-кратная избыточность. После этого данные передаются параллельно сразу по всем 11 каналам. Такой подход позволяет гарантированно передать и принять весь объем данных даже при слабом уровне сигнала и высоком уровне шумов в каналах. Это не только позволяет экономить энергию, используемую для передачи данных, но и не мешает работе соседних узкополосных устройств, поскольку широкополосная передача данных небольшой мощности воспринимается как обычный шум.

FHSS

   FHSS (Frequency Hopping Spread Spectrum, псевдослучайное изменение рабочей частоты) – еще один метод обработки сигнала с целью расширения его спектра, используемый в беспроводных локальных сетях.
   Метод FHSS также разбивает диапазон частот 2400–2483,5 МГц на полосы, но, в отличие от DSSS, эти каналы имеют ширину 1 МГц и их количество составляет 79. На этом их сходство заканчивается, и дальнейшие принципы работы коренным образом отличаются друг от друга.
   Согласно методу FHSS данные передаются только по одному каналу, но сам канал с частотой не более 20 мс изменяется псевдослучайным образом. Причем схема изменения канала определяется и согласовывается между передатчиком и приемником заранее, на этапе соединения. Подобный подход позволяет значительно уменьшить вероятность того, что передаче данных что-то может помешать. Даже если в один из моментов передачи данных какое-то другое беспроводное оборудование займет нужный канал, сигнал об этом поступит отправителю, и необходимый фрагмент данных будет отправлен повторно.
   По сравнению с DSSS метод FHSS является более помехозащищенным. Причиной является ширина канала, который используется для передачи данных. Так, возможность возникновения помехи для передачи, которая ведется с помощью 79 каналов шириной в 1 МГц, гораздо ниже, чем вероятность появления помехи для передачи, которая использует канал шириной в 22 МГц. Даже если рассмотреть вариант узкополосных помех, то случайное изменение несущей частоты, то есть смена каналов, делает такое влияние некритичным и приводит лишь к незначительному падению скорости передачи данных за счет отсылки дополнительных частей данных.
   По этой причине на практике системы FHSS оказываются более устойчивыми к широкополосным помехам и могут продолжать работать (хотя и с пониженной пропускной способностью) в условиях, когда системы DSSS уже не способны нормально воспринимать полезный сигнал.

OFDM

   OFDM (Orthogonal Frequency Division Multiplexing, ортогональное частотное мультиплексирование) – один из методов цифровой модуляции сигнала, позволяющих увеличить скорость передачи данных за счет разумного использования каналов связи и метода передачи данных. Главной причиной появления и применения этого метода обработки сигнала является поиск способов борьбы с широкополосными помехами – основной причиной плохой связи в условиях большого количества крупногабаритных препятствий в виде многоэтажных жилых домов и других зданий.
   Принцип работы данного метода основан на разбиении потока данных с помощью инверсного дискретного преобразования Фурье на более мелкие составляющие, которые передаются параллельно, каждый на своей частоте. Это позволяет не только добиться высокой скорости передачи данных, но и свести к минимуму разного рода помехи, особенно в виде отображенного сигнала (сигнал, отбиваемый от препятствий, которые стоят на пути его прямого следования). За счет частично перекрывающихся каналов передаваемый код получается избыточным, что может использоваться для восстановления утерянных частей.
   Данные, поступившие получателю, происходят процедуру восстановления целостности, для чего, опять же, используется быстрое дискретное преобразование Фурье, только на этот раз прямое.

PBCC

   PBCC (Packet Binary Convolutional Coding, двоичное пакетное сверточное кодирование) – один из методов кодирования данных, позволяющий увеличить скорость передачи данных за счет сжатия кода.
   Принцип работы метода сверточного кодирования заключается в следующем. При прохождении так называемого сверточного кодера последовательность входящих бит изменяется: каждому биту данных ставится в соответствие дополнительный бит или биты информации. За счет этого получается нужная избыточность кода, которая делает данные более устойчивыми к помехам и позволяет расшифровать их, даже если часть сообщения будет утеряна.
   Что касается избыточности кода, то этот параметр регулируется в зависимости от потребностей. Так, если каждому биту информации соответствует два бита, то скорость сверточного кодирования составляет 1/2, если каждым двум битам соответствует 3 бита, то скорость кодирования составляет 2/3 и т. д.
   Сверточный кодер использует определенную систему запоминающих ячеек, которые хранят состояние предыдущего сигнала. Например, если применить систему из шести запоминающих ячеек, то в результате можно получить данные о шести предыдущих состояниях. Этот факт и позволяет восстанавливать данные, даже если большая часть из них будет повреждена или утеряна.
   После того как на выходе получается избыточный код, он подвергается фазовой модуляции с помощью одного из методов, например BPSK (двоичная модуляция), QPSK (квадратичная модуляция), 8-PSK (восьмипозиционная фазовая модуляция) и т. д.
   При попадании сигнала в приемник данные проходят обратный процесс преобразования, для чего, как правило, используется декодер Витерби.

CCK

   ССК (Complementary Code Keying, кодирование с использованием комплементарных кодов) – одна из технологий, при использовании которой данные проходят этап кодирования с целью получения избыточности кода и применения этой избыточности для восстановления (если появится такая необходимость).
   Технология ССК достаточно сложна с математической точки зрения, но общий принцип ее работы сводится к следующему: каждый бит передаваемых данных кодируется с помощью восьмибитовой последовательности (слова), что приводит к добавлению дополнительных бит информации.
   Эта технология применяется в паре с одним из методов модуляции сигнала, который занимается непосредственно передачей данных.
   Для декодирования данных со стороны приемника используется та же схема кодирования, которая применялась для кодирования информации.

CCK-OFDM

   CCK-OFDM – гибридная технология кодирования, представляющая собой симбиоз технологии ССК и метода модуляции сигнала OFDM. Такой подход позволяет увеличить скорость передачи данных за счет того, что заголовок кадра, то есть служебная часть данных, кодируется с помощью технологии ССК, а сами данные передаются с использованием кодирования ODFM.

MIMO

   MIMO (Multiple Input, Multiple Output, множественный прием/передача) – технология, с помощью которой прием и передача данных ведется с помощью раздельных антенн, количество которых может быть любым.
   Причиной появления данной технологии стала необходимость увеличения радиуса сети и скорости передачи данных. Конечно, повышения дальности и качества связи можно достичь и за счет использования более мощных передатчиков и антенн с увеличенным коэффициентов усиления. Однако существующие стандарты строго ограничивают мощность передатчика, особенно для систем офисного или домашнего применения, поэтому такой подход не является эффективным.
   Как уже было сказано, для приема и передачи данных используются разные антенны, при этом существуют алгоритмы и методы обработки сигнала, позволяющие свести к минимуму взаимные наводки в передающем и приемном тракте устройства.
   Повышение скорости передачи данных стало возможным также за счет увеличения ширины канала со стандартных 22 до 40 МГц и применения более совершенных методов кодирования.

Шифрование и аутентификация

   Безопасность работы в локальной сети, а тем более безопасность ваших личных данных всегда была и будет тем вопросом, которому уделяется повышенное внимание. Даже несмотря на то, что разные данные представляют различную ценность, они в любом случае должны быть защищены от кражи и использования без вашего ведома. Согласитесь, вам навряд ли понравится, если содержимое вашей личной переписки узнает кто-то другой или результатами ваших продолжительных исследований воспользуется ваш конкурент. А еще меньше вам понравится, если в один прекрасный день вы обнаружите, что ваш банковский счет «внезапно» и без вашего ведома опустел и с этим ничего нельзя сделать.
   
Конец бесплатного ознакомительного фрагмента