Страница:
Проблема преобразования климата холодной планеты поставлена в рассказе М. Лейнстера «Критическая разница» (1959 год). Энергию для жизни колонисты черпают из ионосферы своей планеты. Чтобы сделать ионосферу более мощной (прием увеличения), запускают туда облако из металлических паров калия, натрия и цинка. Эти металлы значительно легче, чем атмосферные газы, ионизуются излучением звезды. В верхних слоях атмосферы создается ограниченный район, насыщенный ионами металлов, эффективность воздействия излучения звезды увеличивается, обеспечивается дополнительный приток энергии.
Перечисленные идеи, вообще говоря, не затрагивают самых неизменных свойств того или иного объекта. Поэтому идеи, характеризующие астроинженерную деятельность экстенсивного типа, могли быть получены и с помощью приемов увеличения, ускорения и т.д. Изменение неизменяемого — это идеи, касающиеся, например, изменения мировых постоянных, а также управления процессами, которые считаются неуправляемыми в принципе. В качестве примеров можно привести управление гравитацией («Галактический полигон» Г. Гуревича), управление разбеганием галактик («Порт Каменных Бурь» Г. Альтова), управление процессами зарождения жизни на планетах («Великая сушь» В. Рыбакова), изменение мировых постоянных — скорости света, постоянной Планка и др. («Все законы Вселенной», «Крутизна», «Бомба замедленного действия» П. Амнуэля).
Подобные идеи, связанные с глобальными преобразованиями, обычно используются фантастами для исследования социальных аспектов развития человечества. Действительно, для литературы важна не только (и чаще даже — не столько) сама идея, но и те следствия, к которым приведет ее осуществление. В рассказе В. Рыбакова «Великая сушь» (1979 год) земляне хотят помочь зарождению жизни и разума на одной из планет в далекой звездной системе. Дело в том, что из глубин Галактики к планете движется поток частиц, способный погубить зародившуюся жизнь. Земляне отводят поток прочь, но их расчет оказывается неверен. На самом деле поток частиц должен был не уничтожить жизнь, а стимулировать ее развитие. Результат действий людей — Великая сушь. Ошибка стоила жизни целому миру.
При всей своей грандиозности предсказания астроинженерной деятельности в галактических масштабах вызывают все же некоторое недоверие. И дело не только в том, что реальные следы астроинженерной деятельности иных цивилизаций не обнаружены. Причина, скорее, в том, что перечисленные примеры астроинженерной деятельности (изменить неизменяемое) — иллюстрация экстенсивного подхода к проблемам эволюции. Между тем, не вдаваясь в рассуждения о сроках, можно предположить, что в будущем развитие человечества не будет однозначно связано с энерговооруженностью и пространственной экспансией.
Интенсивное развитие цивилизации — изменение кажущихся неизменными биологических законов, форм взаимодействия между цивилизацией и средой. Предсказания фантастов могут не оправдаться, если пользоваться лишь экстенсивными приемами увеличения или ускорения, или если изменять неизменяемые свойства лишь космической среды обитания.
Интересна поэтому другая группа идей, связанная с биологическими изменениями в человеке. Таковы идеи переконструирования биологической природы человека в «Городе» К. Саймака, «Эдеме» и «Непобедимом» С. Лема, повестях А. и Б. Стругацких «Полдень. XXII век», «Жук в муравейнике» и «Волны гасят ветер».
Преобразуя объект или факт (явление) с помощью тех или иных приемов, нужно помнить: если использование приема не привело к новой фантастической идее, поступите наоборот — изменяйте не объект (факт, явление), а среду, в которой этот объект находится. Или — любую выбранную часть объекта. Или — совокупность объектов (переход к подсистеме и надсистеме).
4. Фантастическое моделирование
5. Метод фантограмм
6. Модификации приемов
Перечисленные идеи, вообще говоря, не затрагивают самых неизменных свойств того или иного объекта. Поэтому идеи, характеризующие астроинженерную деятельность экстенсивного типа, могли быть получены и с помощью приемов увеличения, ускорения и т.д. Изменение неизменяемого — это идеи, касающиеся, например, изменения мировых постоянных, а также управления процессами, которые считаются неуправляемыми в принципе. В качестве примеров можно привести управление гравитацией («Галактический полигон» Г. Гуревича), управление разбеганием галактик («Порт Каменных Бурь» Г. Альтова), управление процессами зарождения жизни на планетах («Великая сушь» В. Рыбакова), изменение мировых постоянных — скорости света, постоянной Планка и др. («Все законы Вселенной», «Крутизна», «Бомба замедленного действия» П. Амнуэля).
Подобные идеи, связанные с глобальными преобразованиями, обычно используются фантастами для исследования социальных аспектов развития человечества. Действительно, для литературы важна не только (и чаще даже — не столько) сама идея, но и те следствия, к которым приведет ее осуществление. В рассказе В. Рыбакова «Великая сушь» (1979 год) земляне хотят помочь зарождению жизни и разума на одной из планет в далекой звездной системе. Дело в том, что из глубин Галактики к планете движется поток частиц, способный погубить зародившуюся жизнь. Земляне отводят поток прочь, но их расчет оказывается неверен. На самом деле поток частиц должен был не уничтожить жизнь, а стимулировать ее развитие. Результат действий людей — Великая сушь. Ошибка стоила жизни целому миру.
При всей своей грандиозности предсказания астроинженерной деятельности в галактических масштабах вызывают все же некоторое недоверие. И дело не только в том, что реальные следы астроинженерной деятельности иных цивилизаций не обнаружены. Причина, скорее, в том, что перечисленные примеры астроинженерной деятельности (изменить неизменяемое) — иллюстрация экстенсивного подхода к проблемам эволюции. Между тем, не вдаваясь в рассуждения о сроках, можно предположить, что в будущем развитие человечества не будет однозначно связано с энерговооруженностью и пространственной экспансией.
Интенсивное развитие цивилизации — изменение кажущихся неизменными биологических законов, форм взаимодействия между цивилизацией и средой. Предсказания фантастов могут не оправдаться, если пользоваться лишь экстенсивными приемами увеличения или ускорения, или если изменять неизменяемые свойства лишь космической среды обитания.
Интересна поэтому другая группа идей, связанная с биологическими изменениями в человеке. Таковы идеи переконструирования биологической природы человека в «Городе» К. Саймака, «Эдеме» и «Непобедимом» С. Лема, повестях А. и Б. Стругацких «Полдень. XXII век», «Жук в муравейнике» и «Волны гасят ветер».
Преобразуя объект или факт (явление) с помощью тех или иных приемов, нужно помнить: если использование приема не привело к новой фантастической идее, поступите наоборот — изменяйте не объект (факт, явление), а среду, в которой этот объект находится. Или — любую выбранную часть объекта. Или — совокупность объектов (переход к подсистеме и надсистеме).
4. Фантастическое моделирование
Моделирование явления, один из методов прогностики, широко используется фантастами и очень полезно для развития творческой фантазии. Многие фантастические произведения — это мысленные модели общества или мира, физически и биологически отличного от земного прототипа. Цель моделирования миров в фантастике — не предсказание их реального существования (это особенно относится к поджанру fantasy), а борьба с психологической инерцией, развитие воображения. Новая модель мира, придуманная фантастами, обычно позволяет по-новому оценить привычную ситуацию, содержит парадокс или обращает внимание читателя на тенденцию, которая пока скрыта от взгляда и лишь в будущем сможет проявить себя в полной мере.
Моделируя миры, фантасты часто пользуются идеями частной и общей теорий относительности, которые выглядят фантастическими даже и без изменения их с помощью приемов фантазирования. В качестве примера можно упомянуть вывод теории о том, что при увеличении размеров и массы гравитирующей системы может наступить момент, когда дальнейшее увеличение размеров начнет приводит к уменьшению площади поверхности системы. При достаточно большой массе система может вовсе исчезнуть для внешнего наблюдателя! На основе этого вывода общей теории относительности советский физик М. А. Марков предположил, что может существовать мир, находящийся на самой грани исчезновения для внешнего наблюдателя. Воспринимается же он как элементарная частица с массой в миллионную долю грамма и размерами, на двадцать (!) порядков меньшими, чем размер электрона. Между тем, такой объект «фридмон» может заключать в себе целую Метагалактику.
Подобные идеи появились в фантастике даже раньше, чем была сформулирована общая теория относительности. В 1912 году Р. Кеннеди в романе «Тривселенная» утверждал, что атомы — это замкнутые вселенные со всеми свойствами той единственной огромной Вселенной, которая открывается нам в мире звезд и галактик.
Фантастические модели тесно связывают друг с другом микромир и мегамир. Проникнуть к границам Вселенной можно, двигаясь вглубь атома (прием «наоборот»: если нужно двигаться в даль Вселенной, отправляйся в противоположном направлении — в глубь атома!). Тесная связь Вселенной и микрокосмоса проявляется в фантастических моделях и таким образом: исследователь, воздействуя на микромир, тем самым изменяет мегаструктуру Вселенной. Бомбардируя элементарные частицы, мы изменяем свойства квазаров в нашем же мире.
Правомерность такой идеи далеко не очевидна, но явно прослеживается стремление фантастов создать своего рода «единую картину мироздания», связывающую все структурные уровни материального мира. Таковы модели, описанные в рассказах В. Тивиса «Четвертое измерение» (1961 год), М. Емцева и Е. Парнова «Уравнение с Бледного Нептуна» (1964 год).
Моделирование миров можно найти в произведениях С. Лема. Так, герой романа «Голос неба» (1968 год) обнаруживает непрерывный и изотропный нейтринный фон сложной временной структуры, аналогичный известному фоновому реликтовому электромагнитному излучению. В романе сталкиваются различные мнения о природе нейтринного фона и даже философские концепции. Согласно одной гипотезе, нейтринный фон возник в момент Большого Взрыва, поскольку Вселенная, предшествовавшая нашей, состояла из антивещества. Согласно другой гипотезе нейтринный фон — это сигнал, переданный нам через сингулярность цивилизацией, существовавшей в предшествовавшей Вселенной.
Если реальный научный поиск заключается в установлении и объяснении наблюдательных или экспериментальных фактов, то поиск научно-фантастический начинается с предсказания самого наблюдательного факта: хотя нейтринный фон и предсказан наукой, но вовсе не столь сложно организованный, как в романе С. Лема (прием искусственности). Писатель не только предлагает любопытный артефакт, но разрабатывает и логико-познавательную линию — полную аналогию научного исследования.
Есть в фантастике произведения, герои которых не только рассуждают о сущности космической сингулярности, но и проникают в нее физически, даже проходят «сквозь» нее. Именно таким путем попадают в другие вселенные персонажи романа П. Андерсона «Время: нуль» (1971 год). Идея фантаста перекликается с высказанной позднее Н. С. Кардашевым мыслью о том, «воротами» в иные вселенные могут быть черные дыры.
После того, как человечество столкнулось с экологическим кризисом, после того, как люди поняли (впрочем, точно ли — поняли?), что вмешиваться в природные процессы неразумно, фантасты начали исследовать возможные экологические следствия вмешательства в значительно более масштабные процессы: следствия астроинженерной деятельности, изменения мировых постоянных и т.д. Размышляя об этом, фантасты исследуют альтернативные возможности.
Первая возможность заключается в том, что саморегуляция процессов во Вселенной далеко еще не познана, она гораздо более глубока, чем нам представляется. Все действия людей, связанные с познанием законов природы, являются результатом действия законов, нами еще не познанных: среди законов природы могут быть такие, которые регулируют познание других законов. Вселенная представляется чрезвычайно стабильной системой, исправляющей все, что может «испортить» в ее механизме человек. Эта ситуация метафорически описана в повести А. и Б. Стругацких «За миллиард лет до конца света» (1976 год).
Вторая возможность связана с тем, что саморегуляция процессов во Вселенной не является естественным явлением, это следствие астроинженерной деятельности разумов — не одного, но многих сразу. В «Новой космогонии» (1971 год) С. Лем исследует ситуацию, когда современные законы природы являются результатом «игры» сверхцивилизаций.
«Если считать „искусственным“ все то, что преобразовано активным разумом,
— пишет С. Лем, — то весь окружающий нас космос уже искусственный… Нынешний космос уже не является полем действия девственных стихийных сил, слепо создающих и уничтожающих солнца и солнечные системы, ничего подобного нет и в помине. В космосе уже невозможно отличить естественное (первичное) от искусственного (преобразованного). Кто выполнил этот космогонический труд? Цивилизации первых поколений. Как? Этого мы не знаем: наши знания слишком ничтожны, чтобы судить об этом.» Если бы создаваемые модели мира ограничивалась только формальными изысканиями в области фантастического конструирования, их ценность для литературы была бы невелика. Фантаст логически последовательно создает ситуацию, настолько парадоксальную, что мысль читателя не может остаться бездейственной. У идей подобного рода сильна обратная связь с читателем, не только положительная, но (чаще!) отрицательная, призывающая читателя активно возражать автору. Модели эти заставляют задуматься и о том, что при колоссальном росте уровня наших знаний о Вселенной астрономия все еще находится в начале бесконечного пути.
Академик Г. И. Наан отмечал: «Узловыми точками прогресса познания являются новые знания о незнании, все более изощренное знание о том, чего именно мы не знаем… Теперь знание о нашем незнании — значительно более квалифицированное, глубокое, рафинированное» (см. сборник «Будущее науки», выпуск 17, 1984). Эту мысль, о которой забывают даже сами ученые, восхищенные собственными достижениями, фантасты упорно проводят в своих произведениях.
Особенно это касается тех произведений, где моделируются миры, невозможность которых часто хотя и возмущает читателя, но тем не менее заставляет задуматься над проблемами, которые, возможно, проходили мимо его сознания.
Моделируя миры, фантасты часто пользуются идеями частной и общей теорий относительности, которые выглядят фантастическими даже и без изменения их с помощью приемов фантазирования. В качестве примера можно упомянуть вывод теории о том, что при увеличении размеров и массы гравитирующей системы может наступить момент, когда дальнейшее увеличение размеров начнет приводит к уменьшению площади поверхности системы. При достаточно большой массе система может вовсе исчезнуть для внешнего наблюдателя! На основе этого вывода общей теории относительности советский физик М. А. Марков предположил, что может существовать мир, находящийся на самой грани исчезновения для внешнего наблюдателя. Воспринимается же он как элементарная частица с массой в миллионную долю грамма и размерами, на двадцать (!) порядков меньшими, чем размер электрона. Между тем, такой объект «фридмон» может заключать в себе целую Метагалактику.
Подобные идеи появились в фантастике даже раньше, чем была сформулирована общая теория относительности. В 1912 году Р. Кеннеди в романе «Тривселенная» утверждал, что атомы — это замкнутые вселенные со всеми свойствами той единственной огромной Вселенной, которая открывается нам в мире звезд и галактик.
Фантастические модели тесно связывают друг с другом микромир и мегамир. Проникнуть к границам Вселенной можно, двигаясь вглубь атома (прием «наоборот»: если нужно двигаться в даль Вселенной, отправляйся в противоположном направлении — в глубь атома!). Тесная связь Вселенной и микрокосмоса проявляется в фантастических моделях и таким образом: исследователь, воздействуя на микромир, тем самым изменяет мегаструктуру Вселенной. Бомбардируя элементарные частицы, мы изменяем свойства квазаров в нашем же мире.
Правомерность такой идеи далеко не очевидна, но явно прослеживается стремление фантастов создать своего рода «единую картину мироздания», связывающую все структурные уровни материального мира. Таковы модели, описанные в рассказах В. Тивиса «Четвертое измерение» (1961 год), М. Емцева и Е. Парнова «Уравнение с Бледного Нептуна» (1964 год).
Моделирование миров можно найти в произведениях С. Лема. Так, герой романа «Голос неба» (1968 год) обнаруживает непрерывный и изотропный нейтринный фон сложной временной структуры, аналогичный известному фоновому реликтовому электромагнитному излучению. В романе сталкиваются различные мнения о природе нейтринного фона и даже философские концепции. Согласно одной гипотезе, нейтринный фон возник в момент Большого Взрыва, поскольку Вселенная, предшествовавшая нашей, состояла из антивещества. Согласно другой гипотезе нейтринный фон — это сигнал, переданный нам через сингулярность цивилизацией, существовавшей в предшествовавшей Вселенной.
Если реальный научный поиск заключается в установлении и объяснении наблюдательных или экспериментальных фактов, то поиск научно-фантастический начинается с предсказания самого наблюдательного факта: хотя нейтринный фон и предсказан наукой, но вовсе не столь сложно организованный, как в романе С. Лема (прием искусственности). Писатель не только предлагает любопытный артефакт, но разрабатывает и логико-познавательную линию — полную аналогию научного исследования.
Есть в фантастике произведения, герои которых не только рассуждают о сущности космической сингулярности, но и проникают в нее физически, даже проходят «сквозь» нее. Именно таким путем попадают в другие вселенные персонажи романа П. Андерсона «Время: нуль» (1971 год). Идея фантаста перекликается с высказанной позднее Н. С. Кардашевым мыслью о том, «воротами» в иные вселенные могут быть черные дыры.
После того, как человечество столкнулось с экологическим кризисом, после того, как люди поняли (впрочем, точно ли — поняли?), что вмешиваться в природные процессы неразумно, фантасты начали исследовать возможные экологические следствия вмешательства в значительно более масштабные процессы: следствия астроинженерной деятельности, изменения мировых постоянных и т.д. Размышляя об этом, фантасты исследуют альтернативные возможности.
Первая возможность заключается в том, что саморегуляция процессов во Вселенной далеко еще не познана, она гораздо более глубока, чем нам представляется. Все действия людей, связанные с познанием законов природы, являются результатом действия законов, нами еще не познанных: среди законов природы могут быть такие, которые регулируют познание других законов. Вселенная представляется чрезвычайно стабильной системой, исправляющей все, что может «испортить» в ее механизме человек. Эта ситуация метафорически описана в повести А. и Б. Стругацких «За миллиард лет до конца света» (1976 год).
Вторая возможность связана с тем, что саморегуляция процессов во Вселенной не является естественным явлением, это следствие астроинженерной деятельности разумов — не одного, но многих сразу. В «Новой космогонии» (1971 год) С. Лем исследует ситуацию, когда современные законы природы являются результатом «игры» сверхцивилизаций.
«Если считать „искусственным“ все то, что преобразовано активным разумом,
— пишет С. Лем, — то весь окружающий нас космос уже искусственный… Нынешний космос уже не является полем действия девственных стихийных сил, слепо создающих и уничтожающих солнца и солнечные системы, ничего подобного нет и в помине. В космосе уже невозможно отличить естественное (первичное) от искусственного (преобразованного). Кто выполнил этот космогонический труд? Цивилизации первых поколений. Как? Этого мы не знаем: наши знания слишком ничтожны, чтобы судить об этом.» Если бы создаваемые модели мира ограничивалась только формальными изысканиями в области фантастического конструирования, их ценность для литературы была бы невелика. Фантаст логически последовательно создает ситуацию, настолько парадоксальную, что мысль читателя не может остаться бездейственной. У идей подобного рода сильна обратная связь с читателем, не только положительная, но (чаще!) отрицательная, призывающая читателя активно возражать автору. Модели эти заставляют задуматься и о том, что при колоссальном росте уровня наших знаний о Вселенной астрономия все еще находится в начале бесконечного пути.
Академик Г. И. Наан отмечал: «Узловыми точками прогресса познания являются новые знания о незнании, все более изощренное знание о том, чего именно мы не знаем… Теперь знание о нашем незнании — значительно более квалифицированное, глубокое, рафинированное» (см. сборник «Будущее науки», выпуск 17, 1984). Эту мысль, о которой забывают даже сами ученые, восхищенные собственными достижениями, фантасты упорно проводят в своих произведениях.
Особенно это касается тех произведений, где моделируются миры, невозможность которых часто хотя и возмущает читателя, но тем не менее заставляет задуматься над проблемами, которые, возможно, проходили мимо его сознания.
5. Метод фантограмм
Морфологический анализ, о котором было рассказано выше, может быть дополнен использованием приемов — каждая клетка «морфологического ящика» может быть снабжена еще одной осью: осью изменения идеи с помощью уже рассмотренных приемов фантазирования. Морфологический анализ приобретает, таким образом, еще одно — фантастическое — измерение, а сам метод преобразуется в метод фантограмм, предложенный Г. Альтовым.
Фантограмма потенциально содержит намного больше идей, нежели способен дать морфологический анализ, поскольку каждая из идей, полученных морфологическим методом, многократно изменяется, приобретая фантастические качества.
Рассмотрим для примера клетку морфологического ящика, находящуюся на пересечении линий «непрерывное оптическое излучение» и «планета в иной звездной системе». Намеренно выбрана довольно тривиальная начальная идея — планета светит отраженным светом, и на фоне звезды это излучение неразличимо. Что ж, достроим фантограмму — обратимся к приемам. Прием увеличения требует усилить оптическое излучение планеты, сделать его более мощным, чем полное излучение звезды. Если наша цель — посылка сообщения, достаточно, чтобы излучение планеты было столь мощным лишь в течение короткого времени (прием квантования). Откуда берется энергия излучения? Либо изнутри (использование свойств объекта + увеличение), либо снаружи (использование свойств среды). Единственным достаточно мощным источником энергии является звезда, около которой обращается наша гипотетическая планета.
Итак, первая из идей такова. Каким-то образом планета накапливает энергию, получаемую от звезды, и через некоторое время выделяет эту энергию в виде оптического импульса, который может быть, в частности, модулирован с целью посылки сообщения. Напомню, что речь идет не о передатчике на поверхности планеты (это другая клетка фантограммы), а об использовании свойств самой планеты. Каким образом планета может накапливать энергию светила? Либо в почве, либо в атмосфере.
Рассмотрим накопление энергии в атмосфере (попробуйте проанализировать следствия накопления энергии в почве, например, химическим или иным способом). Энергия в атмосфере планеты может быть накоплена, в частности, за счет ионизации с последующим использованием энергии рекомбинации (в этом случае нужно еще изобрести некий способ удержать от рекомбинации газ атмосферы в течение долгого времени). Накопление энергии в атмосфере может происходить за счет возбужденных атомов: атомы в атмосфере не ионизируются, но долгое время находятся в возбужденном состоянии (на физическом языке это называется инверсной заселенностью энергетических уровней).
В последнем случае речь идет о создании, в сущности, сверхмощного газового лазера с накачкой от излучения центральной звезды. Для этого атмосфера планеты должна иметь специфические химический состав и плотность. Кстати, излучение лазерного типа в атмосферах планет (например, Марса) уже наблюдалось. Используя этот факт вместе с приемом увеличения, можно получить идею о планете-лазере непосредственно, не прибегая к методу фантограмм. В фантастике, однако, идея межзвездной связи появилась на десять лет раньше, чем был обнаружен реальный астрономический аналог (рассказ П. Амнуэля «Летящий Орел», 1969 год).
Метод фантограмм — очень эффективное «оружие» в создании фантастических идей, в том числе и прогностического характера.
Фантограмма потенциально содержит намного больше идей, нежели способен дать морфологический анализ, поскольку каждая из идей, полученных морфологическим методом, многократно изменяется, приобретая фантастические качества.
Рассмотрим для примера клетку морфологического ящика, находящуюся на пересечении линий «непрерывное оптическое излучение» и «планета в иной звездной системе». Намеренно выбрана довольно тривиальная начальная идея — планета светит отраженным светом, и на фоне звезды это излучение неразличимо. Что ж, достроим фантограмму — обратимся к приемам. Прием увеличения требует усилить оптическое излучение планеты, сделать его более мощным, чем полное излучение звезды. Если наша цель — посылка сообщения, достаточно, чтобы излучение планеты было столь мощным лишь в течение короткого времени (прием квантования). Откуда берется энергия излучения? Либо изнутри (использование свойств объекта + увеличение), либо снаружи (использование свойств среды). Единственным достаточно мощным источником энергии является звезда, около которой обращается наша гипотетическая планета.
Итак, первая из идей такова. Каким-то образом планета накапливает энергию, получаемую от звезды, и через некоторое время выделяет эту энергию в виде оптического импульса, который может быть, в частности, модулирован с целью посылки сообщения. Напомню, что речь идет не о передатчике на поверхности планеты (это другая клетка фантограммы), а об использовании свойств самой планеты. Каким образом планета может накапливать энергию светила? Либо в почве, либо в атмосфере.
Рассмотрим накопление энергии в атмосфере (попробуйте проанализировать следствия накопления энергии в почве, например, химическим или иным способом). Энергия в атмосфере планеты может быть накоплена, в частности, за счет ионизации с последующим использованием энергии рекомбинации (в этом случае нужно еще изобрести некий способ удержать от рекомбинации газ атмосферы в течение долгого времени). Накопление энергии в атмосфере может происходить за счет возбужденных атомов: атомы в атмосфере не ионизируются, но долгое время находятся в возбужденном состоянии (на физическом языке это называется инверсной заселенностью энергетических уровней).
В последнем случае речь идет о создании, в сущности, сверхмощного газового лазера с накачкой от излучения центральной звезды. Для этого атмосфера планеты должна иметь специфические химический состав и плотность. Кстати, излучение лазерного типа в атмосферах планет (например, Марса) уже наблюдалось. Используя этот факт вместе с приемом увеличения, можно получить идею о планете-лазере непосредственно, не прибегая к методу фантограмм. В фантастике, однако, идея межзвездной связи появилась на десять лет раньше, чем был обнаружен реальный астрономический аналог (рассказ П. Амнуэля «Летящий Орел», 1969 год).
Метод фантограмм — очень эффективное «оружие» в создании фантастических идей, в том числе и прогностического характера.
6. Модификации приемов
В практической работе преподаватели курсов РТВ (развития творческого воображения) пользуются еще несколькими способами активизации воображения, которые, в сущности, представляют собой модификации приемов, описанных выше. В некоторых случаях это — прямое заимствование приемов ТРИЗ, отличается лишь постановка задачи.
Используемый на занятиях по РТВ метод «фокальных объектов» является, по существу, модифицированным приемом вынесения (внесения). Выбираем некий объект, называем его фокальным, и на этот объект, как в фокус собирающей линзы, проецируем свойства нескольких других объектов или явлений, подобранных произвольным образом.
Алгоритм использования метода фокальных объектов:
— выберите фокальный объект,
— наугад назовите несколько других объектов (явлений, процессов),
— составьте список свойств и признаков отобранных случайных объектов,
— припишите все эти свойства фокальному объекту,
— для дальнейшего развития идеи (с целью получения нового качества) воспользуйтесь любыми приемами фантазирования, описанными ранее.
Выберем фокальный объект: подводная лодка. Случайные объекты: эрозия, кенгуру, компас.
Свойство компаса — стрелка всегда показывает на север. Перенос: подводная лодка способна двигаться только вдоль магнитных силовых линий или вдоль других избранных и неизменных направлений, например, по глубинным течениям. Безмоторное движение под водой совершается медленно, но зато это дешевый способ — в будущем такие своеобразные подводные «парусники» можно будет использовать для транспортировки грузов или для туризма.
Кенгуру — передвигается скачками, носит детенышей в сумке на животе. Пусть и наша подводная лодка передвигается скачками. Порт расположен на дне, куда доставляют пассажиров доставляют в лифте. Лодка совершает прыжок, отталкиваясь от дна, — до следующего порта.
Эрозия — процесс разрушения почвы. Пусть подводная лодка также разрушает воду во время движения (например, превращает в пар, как в «Тайне двух океанов» Г. Адамова, или разлагает комплексы молекул на составные части, как в рассказе В. Журавлевой «Снежный мост над пропастью»).
Результат использования метода фокальных объектов: имеем подводную лодку, которая начинает движение, отталкиваясь от дна, как кенгуру, для того, чтобы набрать начальную скорость. При этом она попадает в подводное течение, где разворачивает «парус» и плывет, разлагая перед собой воду с целью уменьшения лобового сопротивления…
Аналогом метода фокальным объектов является метод ассоциаций, при использовании которого свойствами обмениваются не отдельные объекты, а целые классы объектов или явлений.
Пример. Выберем классы объектов: животные и элементарные частицы. Свойства частиц — масса, заряд, импульс, момент вращения, четность и т.д. Частицы обладают и специфически квантовыми особенностями — например, для них справедлив туннельный эффект. Это специфическое свойство микрочастиц особенно интересно. Что ж, припишем животным свойство проникать сквозь силовые барьеры, например, проходить сквозь стены, но — не всегда, ведь и для частиц существует лишь не равная нулю вероятность такого перехода. Кроме того, животные намагничены и заряжены. Обмениваются друг с другом сигналами в виде вариаций магнитного поля или индуцированием на шкуре своего партнера электрических зарядов в определенном порядке…
Существуют приемы, связывающие получение фантастической идеи с непосредственным решением какой-либо технической задачи в рамках ТРИЗ. Один из таких приемов — «золотая рыбка». Техническая задача предварительно преобразуется таким образом, чтобы стать задачей фантастической. Например, задача может быть сформулирована на уровне ИКР — идеального конечного результата. Чаще всего достижение ИКР невозможно, поскольку такой результат в большинстве случаев фантастичен. Тогда и используется прием «золотая рыбка» — из формулировки вычленяются все фантастические элементы, и в результате остается наиболее вероятное техническое решение (побочным результатом такой процедуры становится фантастическая идея).
Прием получил свое название, поскольку пользоваться им учат на примере известной сказки. Отправился старик к морю, закинул невод, вытянул золотую рыбку. Как взмолится золотая рыбка…
Ситуация фантастическая, но содержит и некие реальные элементы. Обозначим фантастические элементы ситуации буквой Ф, реальные — буквой Р. Мог старик пойти к морю и поймать неводом рыбку? Конечно, это часть Р(1). Правда, рыбка наверняка была бы не золотой и не умела бы разговаривать — это часть Ф(1). Рассмотрим теперь отдельно часть Ф(1). Можно ли все-таки сделать так, чтобы старик поймал именно золотую рыбку? Можно, если в избранную для «эксперимента» часть моря выпустить большое количество золотых рыбок — это часть Р(2). Но рыбка все же не будет говорить человеческим голосом — это часть Ф(2). Однако какие-то сигналы она подавать способна — часть Р(3), — хотя, конечно, и не голосом человека — часть Ф(3). Таким образом можно построить много ступенек, на каждой отделяя реалистическую часть рассуждения от фантастической.
Составной частью АРИЗ является оператор РВС (размеры-время-стоимость), который также может быть использован для развития творческого воображения, поскольку является, в сущности, модификацией приемов увеличения и уменьшения. Вместо произвольных параметров объекта здесь меняют лишь три: размеры, время (продолжительность) действия и стоимость.
Комбинация приемов уменьшения и разделения соответствует в ТРИЗ методу маленьких человечков. Избранный объект (в ТРИЗ это объект задачи) представляется в виде толпы маленьких человечков. Жесткий и трудно поддающийся изменениям образ объекта заменяется при этом образом, более гибким, легко меняющимся — ведь человечков, из которых теперь состоит объект, можно менять местами, их можно организовывать в группы, заставить двигаться по команде или, наоборот, замереть и т.д. Иными словами, техническая задача сначала формулируется с помощью приемов уменьшения и дробления, а затем для ее решения используется прием динамизации.
Наконец, для развития воображения используется метод, заимствованный из прогностики — метод тенденций. Метод основан на необходимости выявить и затем разрешить противоречия, которые возникают при независимом развитии двух реальных тенденций. Алгоритм работы с методом тенденций:
— выбрать две реальные, но внешне не связанные друг с другом тенденции в развитии человечества (науки, техники, культуры и т.д.);
— каждую тенденцию независимо от другой продолжить в будущее, пока именно эта тенденция не станет определяющей в развитии;
— выявить возникшие между тенденциями противоречия;
— с помощью любого из описанных выше приемов сконструировать фантастическую идею, устраняющую возникшее противоречие.
Используя метод тенденций, можно получить вполне прогностические фантастические идеи. В частности, многие идеи утопической и антиутопической фантастики.
Пример использования метода тенденций.
Тенденция 1: количество научных работников на каждую тысячу человек постоянно увеличивается. Тенденция 2: среднестатистический житель планеты все больше времени проводит у экрана телевизора.
Реализация первой тенденции приводит к заключению, что по прошествии некоторого времени все люди на Земле будут научными работниками. При реализации второй тенденции каждый житель планеты будет проводить перед телевизором все 24 часа.
Противоречие: ученый должен думать, ставить эксперименты, но как он сможет этим заниматься, проводя все время перед телевизором? Используем прием динамизации — пусть зритель-ученый может не только смотреть передачу, но и вмешиваться в ее ход. Предположим, на экране показывают извержение вулкана, и человек перед телевизором нажатием клавиши (или с помощью иного способа — биотоков, например) вводит в действие роботов-исследователей или роботов-строителей, которые возводят плотину на пути магмы и т.д. Вся деятельность человечества разделяется на две части. Первая — техническая, полностью передоверенная роботам, компьютерам и прочим автоматическим системам. Вторая — мыслительная, которая остается прерогативой людей, следящих за развитием техносферы, думающих и принимающих решения.
Наиболее сложные задания на развитие воображения — ситуационные. Здесь заранее не оговаривается использование какого-то конкретного приема фантазирования, можно выбрать любой прием или их сочетание. Условием задания становится некая фантастическая ситуация, которая, в свою очередь может быть получена из реальной с помощью приемов (переход от факта к псевдофакту). Цель задания — извлечь из ситуации все возможные следствия.
Одна из модификаций ситуационного задания известна как метод Дж. Арнольда. Профессор Дж. Арнольд (США) для развития воображения студентов предлагал им решать любые технические задачи, но не для земных условий, а вообразив себя на некоей фантастической планете со своеобразными условиями: температура на ее поверхности, например, меняется от -43 градусов до -151 градусов Цельсия, атмосфера состоит из метана, моря — из аммиака, сила тяжести в десять раз больше земной. На планете живут разумные существа-метаняне, руки у них с тремя пальцами, а реакции замедленны. Задание таково: нужно последовательно разработать метанянскую технику — средства транспорта, строительство, инструментарий и т.д. Попробуйте придумать автомобиль, работающий в условиях такой планеты, и продумать все следствия, которые возникнут при эксплуатации такого автомобиля.
Задача Арнольда может быть усложнена еще и необходимостью самим придумать необычную планету, в условиях которой придется «работать». Разумеется, в качестве планеты-прототипа можно использовать Землю, изменяя с помощью приемов какой-либо один параметр.
Вот примеры фантастических планет, во всем подобных Земле, отличающихся лишь тем, что…
Используемый на занятиях по РТВ метод «фокальных объектов» является, по существу, модифицированным приемом вынесения (внесения). Выбираем некий объект, называем его фокальным, и на этот объект, как в фокус собирающей линзы, проецируем свойства нескольких других объектов или явлений, подобранных произвольным образом.
Алгоритм использования метода фокальных объектов:
— выберите фокальный объект,
— наугад назовите несколько других объектов (явлений, процессов),
— составьте список свойств и признаков отобранных случайных объектов,
— припишите все эти свойства фокальному объекту,
— для дальнейшего развития идеи (с целью получения нового качества) воспользуйтесь любыми приемами фантазирования, описанными ранее.
Выберем фокальный объект: подводная лодка. Случайные объекты: эрозия, кенгуру, компас.
Свойство компаса — стрелка всегда показывает на север. Перенос: подводная лодка способна двигаться только вдоль магнитных силовых линий или вдоль других избранных и неизменных направлений, например, по глубинным течениям. Безмоторное движение под водой совершается медленно, но зато это дешевый способ — в будущем такие своеобразные подводные «парусники» можно будет использовать для транспортировки грузов или для туризма.
Кенгуру — передвигается скачками, носит детенышей в сумке на животе. Пусть и наша подводная лодка передвигается скачками. Порт расположен на дне, куда доставляют пассажиров доставляют в лифте. Лодка совершает прыжок, отталкиваясь от дна, — до следующего порта.
Эрозия — процесс разрушения почвы. Пусть подводная лодка также разрушает воду во время движения (например, превращает в пар, как в «Тайне двух океанов» Г. Адамова, или разлагает комплексы молекул на составные части, как в рассказе В. Журавлевой «Снежный мост над пропастью»).
Результат использования метода фокальных объектов: имеем подводную лодку, которая начинает движение, отталкиваясь от дна, как кенгуру, для того, чтобы набрать начальную скорость. При этом она попадает в подводное течение, где разворачивает «парус» и плывет, разлагая перед собой воду с целью уменьшения лобового сопротивления…
Аналогом метода фокальным объектов является метод ассоциаций, при использовании которого свойствами обмениваются не отдельные объекты, а целые классы объектов или явлений.
Пример. Выберем классы объектов: животные и элементарные частицы. Свойства частиц — масса, заряд, импульс, момент вращения, четность и т.д. Частицы обладают и специфически квантовыми особенностями — например, для них справедлив туннельный эффект. Это специфическое свойство микрочастиц особенно интересно. Что ж, припишем животным свойство проникать сквозь силовые барьеры, например, проходить сквозь стены, но — не всегда, ведь и для частиц существует лишь не равная нулю вероятность такого перехода. Кроме того, животные намагничены и заряжены. Обмениваются друг с другом сигналами в виде вариаций магнитного поля или индуцированием на шкуре своего партнера электрических зарядов в определенном порядке…
Существуют приемы, связывающие получение фантастической идеи с непосредственным решением какой-либо технической задачи в рамках ТРИЗ. Один из таких приемов — «золотая рыбка». Техническая задача предварительно преобразуется таким образом, чтобы стать задачей фантастической. Например, задача может быть сформулирована на уровне ИКР — идеального конечного результата. Чаще всего достижение ИКР невозможно, поскольку такой результат в большинстве случаев фантастичен. Тогда и используется прием «золотая рыбка» — из формулировки вычленяются все фантастические элементы, и в результате остается наиболее вероятное техническое решение (побочным результатом такой процедуры становится фантастическая идея).
Прием получил свое название, поскольку пользоваться им учат на примере известной сказки. Отправился старик к морю, закинул невод, вытянул золотую рыбку. Как взмолится золотая рыбка…
Ситуация фантастическая, но содержит и некие реальные элементы. Обозначим фантастические элементы ситуации буквой Ф, реальные — буквой Р. Мог старик пойти к морю и поймать неводом рыбку? Конечно, это часть Р(1). Правда, рыбка наверняка была бы не золотой и не умела бы разговаривать — это часть Ф(1). Рассмотрим теперь отдельно часть Ф(1). Можно ли все-таки сделать так, чтобы старик поймал именно золотую рыбку? Можно, если в избранную для «эксперимента» часть моря выпустить большое количество золотых рыбок — это часть Р(2). Но рыбка все же не будет говорить человеческим голосом — это часть Ф(2). Однако какие-то сигналы она подавать способна — часть Р(3), — хотя, конечно, и не голосом человека — часть Ф(3). Таким образом можно построить много ступенек, на каждой отделяя реалистическую часть рассуждения от фантастической.
Составной частью АРИЗ является оператор РВС (размеры-время-стоимость), который также может быть использован для развития творческого воображения, поскольку является, в сущности, модификацией приемов увеличения и уменьшения. Вместо произвольных параметров объекта здесь меняют лишь три: размеры, время (продолжительность) действия и стоимость.
Комбинация приемов уменьшения и разделения соответствует в ТРИЗ методу маленьких человечков. Избранный объект (в ТРИЗ это объект задачи) представляется в виде толпы маленьких человечков. Жесткий и трудно поддающийся изменениям образ объекта заменяется при этом образом, более гибким, легко меняющимся — ведь человечков, из которых теперь состоит объект, можно менять местами, их можно организовывать в группы, заставить двигаться по команде или, наоборот, замереть и т.д. Иными словами, техническая задача сначала формулируется с помощью приемов уменьшения и дробления, а затем для ее решения используется прием динамизации.
Наконец, для развития воображения используется метод, заимствованный из прогностики — метод тенденций. Метод основан на необходимости выявить и затем разрешить противоречия, которые возникают при независимом развитии двух реальных тенденций. Алгоритм работы с методом тенденций:
— выбрать две реальные, но внешне не связанные друг с другом тенденции в развитии человечества (науки, техники, культуры и т.д.);
— каждую тенденцию независимо от другой продолжить в будущее, пока именно эта тенденция не станет определяющей в развитии;
— выявить возникшие между тенденциями противоречия;
— с помощью любого из описанных выше приемов сконструировать фантастическую идею, устраняющую возникшее противоречие.
Используя метод тенденций, можно получить вполне прогностические фантастические идеи. В частности, многие идеи утопической и антиутопической фантастики.
Пример использования метода тенденций.
Тенденция 1: количество научных работников на каждую тысячу человек постоянно увеличивается. Тенденция 2: среднестатистический житель планеты все больше времени проводит у экрана телевизора.
Реализация первой тенденции приводит к заключению, что по прошествии некоторого времени все люди на Земле будут научными работниками. При реализации второй тенденции каждый житель планеты будет проводить перед телевизором все 24 часа.
Противоречие: ученый должен думать, ставить эксперименты, но как он сможет этим заниматься, проводя все время перед телевизором? Используем прием динамизации — пусть зритель-ученый может не только смотреть передачу, но и вмешиваться в ее ход. Предположим, на экране показывают извержение вулкана, и человек перед телевизором нажатием клавиши (или с помощью иного способа — биотоков, например) вводит в действие роботов-исследователей или роботов-строителей, которые возводят плотину на пути магмы и т.д. Вся деятельность человечества разделяется на две части. Первая — техническая, полностью передоверенная роботам, компьютерам и прочим автоматическим системам. Вторая — мыслительная, которая остается прерогативой людей, следящих за развитием техносферы, думающих и принимающих решения.
Наиболее сложные задания на развитие воображения — ситуационные. Здесь заранее не оговаривается использование какого-то конкретного приема фантазирования, можно выбрать любой прием или их сочетание. Условием задания становится некая фантастическая ситуация, которая, в свою очередь может быть получена из реальной с помощью приемов (переход от факта к псевдофакту). Цель задания — извлечь из ситуации все возможные следствия.
Одна из модификаций ситуационного задания известна как метод Дж. Арнольда. Профессор Дж. Арнольд (США) для развития воображения студентов предлагал им решать любые технические задачи, но не для земных условий, а вообразив себя на некоей фантастической планете со своеобразными условиями: температура на ее поверхности, например, меняется от -43 градусов до -151 градусов Цельсия, атмосфера состоит из метана, моря — из аммиака, сила тяжести в десять раз больше земной. На планете живут разумные существа-метаняне, руки у них с тремя пальцами, а реакции замедленны. Задание таково: нужно последовательно разработать метанянскую технику — средства транспорта, строительство, инструментарий и т.д. Попробуйте придумать автомобиль, работающий в условиях такой планеты, и продумать все следствия, которые возникнут при эксплуатации такого автомобиля.
Задача Арнольда может быть усложнена еще и необходимостью самим придумать необычную планету, в условиях которой придется «работать». Разумеется, в качестве планеты-прототипа можно использовать Землю, изменяя с помощью приемов какой-либо один параметр.
Вот примеры фантастических планет, во всем подобных Земле, отличающихся лишь тем, что…