Статистика измерений температуры показывает, что минимальная суточная температура в городе часто бывает на 5—10 градусов Цельсия выше, чем в сельской местности. Зимой это обусловлено высоким уровнем тепловыделения систем и объектов большого города (главным образом отопительной системой и промышленными объектами). В летний период кирпичные городские строения и асфальтовые покрытия улиц поглощают, аккумулируют и переизлучают значительно больше солнечной энергии (на единицу площади), чем почвы и растительность в сельской местности. Кроме того, значительно меньшая часть солнечной энергии расходуется в городе на испарение выпавших атмосферных осадков, поскольку основная их часть стекает со зданий и улиц и попадает в коллекторы системы водоотведения, не успев испариться.

Какие бывают шкалы температур и чем они отличаются?

   Температурные шкалы представляют собой системы сопоставимых числовых значений температуры. Существуют абсолютная термодинамическая температурная шкала (шкала Кельвина) и различные эмпирические температурные шкалы, реализуемые при помощи свойств веществ, зависящих от температуры. Построение шкалы Кельвина основано на втором начале термодинамики, началом ее отсчета является абсолютный нуль температуры, а единица температуры – кельвин (К) – определяется как 1/273 16 часть термодинамической температуры тройной точки воды. Эмпирические температурные шкалы различаются начальными точками отсчета и размером применяемой единицы температуры. В шкале Цельсия один градус (°C) равен 1/100 разности температур кипения воды и таяния льда при атмосферном давлении, точка таяния льда принята за 0 °C, кипения воды – за 100 °C.
   В практически вышедшей из употребления шкале Реомюра один градус (°R) равен 1/80 разности температур кипения воды и таяния льда при атмосферном давлении, точка таяния льда принята за 0 °R. В шкале Фаренгейта один градус (°F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. В США и некоторых других странах, где принято измерять температуру по шкале Фаренгейта, применяют также абсолютную температурную шкалу Ранкина. Соотношение между кельвином и градусом Ранкина: K = 1,8 °Ra, по шкале Ранкина точка таяния льда соответствует 491,67 °Ra, точка кипения воды 671,67 °Ra. В 1968 году Международным комитетом мер и весов принята международная практическая температурная шкала (МПТШ-68), в основу которой положены 11 первичных воспроизводимых температурных точек (в том числе тройная точка воды, точки кипения неона, затвердевания серебра и золота), каждой из которых присвоено определенное значение температуры. Температура, определенная по МПТШ-68, в пределах современной точности измерений совпадает с температурой по термодинамической температурной шкале, принятой в физике за основную.

Как холодной зимой выглядит снегирь в объективе прибора ночного видения?

   Если холодной зимой направить объектив прибора ночного видения на снегиря (как, впрочем, и любую другую птицу, комфортно чувствующую себя в зимние холода), на экране возникнет только птичий глаз. Дело в том, что теплопроводность птичьих перьев и пуха очень низка (в 1,5–2 раза меньше теплопроводности сухого воздуха), а потому пух и перья снегиря надежно защищают его от потери тепла даже в самые лютые морозы. Таким же свойством обладают шерсть и мех многих животных. Говорят, что в свое время кончились неудачей попытки обнаружить с помощью приборов ночного видения караваны моджахедов в Афганистане, ночами переправляющих оружие из Пакистана: их защитили одеяла из верблюжьей шерсти.

Почему капля воды, упавшая на слабо нагретую сковороду, испаряется почти мгновенно, а на раскаленной сворачивается в шарик и долго бегает по металлу, не меняясь в размерах?

   Капля воды на очень горячей сковороде «плавает» на слое пара, который служит своеобразной теплоизолирующей прослойкой. К тому же капля при этом под действием сил поверхностного натяжения сворачивается в шарик, зона ее контакта (а значит, и теплообмен) с раскаленным металлом сильно уменьшается.

Во сколько раз теплопроводность серебра больше теплопроводности олова, теплопроводность олова больше теплопроводности кирпича, а теплопроводность кирпича больше теплопроводности воздуха?

   Теплопроводность серебра равна 407 ватт на метр-кельвин, олова – 65 ватт на метр-кельвин, кирпича – около 0,7 ватта на метр-кельвин, воздуха – 0,034 ватта на метр-кельвин. Таким образом, теплопроводность серебра больше теплопроводности олова в 6,3 раза, теплопроводность олова больше теплопроводности кирпича приблизительно в 90 раз, теплопроводность кирпича больше теплопроводности воздуха приблизительно в 20 раз. Теплопроводность серебра больше теплопроводности воздуха в 12 000 раз.

Чему равно «семейное тепло»?

   «Семейное тепло» вполне может быть выражено цифрами. Семья из двух взрослых и двух детей производит за год 1300 киловатт-часов тепловой энергии.

Почему на пляже даже в жару можно простудиться, если долго лежать на одном месте?

   Теплопроводность материалов, покрывающих пляж (песок или галька), невелика. Стоит в самый жаркий день разрыть нагретую поверхность, как доберешься до лежащих под ней холодных слоев. Именно поэтому, если достаточно долго лежать на одном месте, даже в жару можно простудиться. «Виновата» в этом теплопередача между телом человека и отбирающими тепло холодными слоями песка.

Сколько энергии в стакане горячего чая?

   При остывании стакана горячего чая (250 граммов воды) со 100 до 20 градусов Цельсия (от температуры кипения до комнатной) он теряет не менее 84 килоджоулей энергии (средняя удельная теплоемкость воды в этом диапазоне температур равна не менее 4,2 килоджоуля на килограмм-кельвин). Если полностью превратить эту энергию в электрическую, она сможет в течение часа посылать свет 25-ваттной лампочки. Если эту энергию полностью превратить в механическую работу, ее окажется достаточно, чтобы поднять груз в 8540 килограммов на высоту 1 метр (или в 854 килограмма на высоту 10 метров). Такую же работу совершает молотобоец, делая 400 ударов, или огромный 5-тонный паровой молот, падающий с высоты человеческого роста. Вот еще более поразительное сопоставление. Такая же энергия заключается в 38 пулях, вылетевших из ствола ручного пулемета Калашникова (7,62 мм РПК, масса пули 7,9 грамма, начальная скорость 745 метров в секунду), или в 277 пулях, вылетевших из ствола пистолета Макарова (ПМ, масса пули 6,1 грамма, начальная скорость 315 метров в секунду).

Почему французские академики в 1775 году отказалась рассматривать проекты вечного двигателя?

   Вечным двигателем, или перпетуум-мобиле (лат. perpetuum mobile – вечное движение), принято называть воображаемую машину, которая, будучи раз пущена в ход, совершала бы работу неограниченно долгое время, не заимствуя энергии извне. Вечный двигатель противоречит закону сохранения и превращения энергии (возможность работы такой машины неограниченное время означала бы получение энергии из ничего) и потому неосуществим. Первые проекты вечного двигателя относятся к XIII веку (Виллар д'Оннекур, 1245, Англия; Пьер де Марикур, 1269, Франция). Широкую популярность идея вечного двигателя получила в XVI–XVII веках, в эпоху перехода к машинному производству; до XIX века количество проектов вечного двигателя неуклонно возрастало. Идея создания вечного двигателя занимала не только фантазеров-самоучек, мало знакомых с основами физики, но и некоторых ученых. К концу XVIII века вследствие бесплодности многовековых попыток осуществления вечного двигателя среди ученых укрепилось убеждение в невозможности его создания, и с 1775 года французские академики отказались рассматривать проекты вечного двигателя. Теоретически принципиальная неосуществимость вечного двигателя была доказана лишь в середине XIX века – с установлением закона сохранения энергии. Несмотря на это, тщетные попытки создания вечного двигателя предпринимались малосведущими изобретателями и в последующее время.

Что такое энтропия?

   Энтропия (от греч. entropia – поворот, превращение) – это функция состояния термодинамической системы, изменение которой в равновесном процессе равно отношению количества теплоты, сообщенного системе или отведенного от нее, к термодинамической температуре системы. Равновесным называют процесс перехода термодинамической системы из одного равновесного состояния в другое, столь медленный, что все промежуточные состояния можно рассматривать как равновесные. Всякий равновесный процесс является обратимым, то есть его возможно осуществить в обратном направлении, последовательно повторяя в обратном порядке все промежуточные состояния прямого процесса. В равновесном (идеальном обратимом) процессе энтропия не изменяется. Неравновесные процессы в изолированной системе сопровождаются ростом энтропии. Энтропия всех веществ при абсолютном нуле температуры равна нулю, именно это значение энтропии принимают за начальную точку ее отсчета. Максимального (равного единице) значения энтропия достигает тогда, когда термодинамическая система приходит в состояние равновесия. Понятие энтропии ввел в 1865 году немецкий физик Рудольф Клаузиус (1822–1888), он же показал, что абсолютное значение энтропии остается неопределенным, определены (и имеют физический смысл) лишь ее изменения в термически изолированных необратимых системах, а в идеальном случае обратимых процессов энтропия остается постоянной. Поэтому энтропию можно также считать мерой отклонения реального процесса от идеального. Введению энтропии физики вначале весьма энергично противодействовали, особенно из-за ее таинственного характера, обусловленного главным образом тем, что она не действует на наши органы чувств. Это не помешало энтропии сыграть фундаментальную роль в развитии термодинамики. В наши дни понятием энтропии широко пользуются в физике, химии, биологии и теории информации.

Чем анион отличается от катиона?

   Анион и катион – ионы, то есть электрически заряженные частицы, образующиеся при потере или присоединении электронов (или других заряженных частиц) атомами или группами атомов (например, молекулами). Понятие и термин «ион» (в переводе с греческого – «идущий») ввел в 1834 году английский физик и химик Майкл Фарадей. Изучая действие электрического тока на водные растворы кислот, щелочей и солей, он предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду), – анионами.

Из чего сделал волосок в лампе накаливания Эдисон?

   В 1879 году великий американский изобретатель Томас Алва Эдисон (1847–1931) создал удобную для промышленного изготовления, достаточно долговечную конструкцию лампы накаливания с угольной нитью. Указанная угольная нить представляла собой обугленное волокно бамбука.

Сегодня стрелку компаса намагничивают с помощью электрического тока. А как это делали, когда электричества еще не знали?

   В давние времена стальные полосы намагничивали полем Земли. Сталь состоит из отдельных намагниченных зерен (доменов). Они расположены хаотично, поэтому суммарное их поле равно нулю. При ударах по материалу домены постепенно выстраиваются цепочками вдоль земного поля – сталь становится магнитной.

Всегда ли молния бьет из грозовой тучи вниз, в землю?

   В 2002 году сообщалось, что во время тропической грозы на побережье Пуэрто-Рико удалось сфотографировать «перевернутую» молнию. Она ударила из тучи не в землю, а в небо, на высоту до 70 километров. По своей сути это был мощный электрический пробой между облаками и ионосферой. Ученые предполагают, что такие разряды происходят довольно часто, просто их не всегда удается зарегистрировать. «Перевернутые» молнии могут играть важную роль в общем энергетическом балансе планеты.

Как часто гремят над Землей молнии?

   Согласно метеорологической статистике, над нашей планетой ежесекундно гремит в среднем около 70 молний.

Почему электричество называется электричеством?

   Греческий философ Фалес из Милета примерно в 600 году до нашей эры заметил, что кусочки смолы, найденные на берегу Балтийского моря (которые мы называем янтарем, а древние греки называли электроном), если их потереть о кусочек меха или шерсти, обретают способность притягивать перышки, нитки или пушинки. Поэтому более тысячи лет спустя английский физик Уильям Гильберт (1544–1603) предложил назвать эту силу взаимного притяжения электричеством, впервые введя этот термин в науку. Гильберт также установил, что помимо янтаря подобным свойством обладают и другие материалы, например стекло.

Почему для передачи и распределения электрической энергии используют преимущественно переменный ток, а не постоянный?

   На заре электроэнергетики, когда маломощные генераторы электрического тока располагались на небольших расстояниях от потребителей (нередко в пределах одного населенного пункта), для передачи электрической энергии успешно использовали постоянный электрический ток. Сторонником использования в этих целях постоянного электрического тока был, например, Томас Алва Эдисон. Со временем потребность в электроэнергии возрастала, ее стали вырабатывать на крупных электростанциях с мощными агрегатами (с ростом мощности снижаются относительные затраты на сооружение электростанций и уменьшается стоимость вырабатываемой электроэнергии). В связи с этим возникла также необходимость передавать электроэнергию на большие расстояния. Однако потери электроэнергии при ее передаче тем ниже, чем выше напряжение электрического тока. Это и обусловило целесообразность применения в линиях электропередачи переменного тока, напряжение которого (в отличие от постоянного тока) легко можно трансформировать почти без потерь мощности.

Во сколько раз удельное электрическое сопротивление медного провода меньше удельного электрического сопротивления угольных щеток, а удельное электрическое сопротивление угольных щеток меньше удельного электрического сопротивления фарфора?

   Удельное электрическое сопротивление медного провода равно 0,0000000178 (сто семьдесят восемь десятимиллиардных) ом-метра, угольных щеток – 0,00004 (четыре стотысячных) ом-метра, фарфора – 100 000 000 000 000 (сто триллионов) ом-метров. Таким образом, удельное электрическое сопротивление медного провода меньше удельного электрического сопротивления угольных щеток в 2247 раз, а удельное электрическое сопротивление угольных щеток меньше удельного электрического сопротивления фарфора в 2,5 квинтиллиона (миллиарда миллиардов) раз.

Где и когда загораются огни Эльма?

   Огнями Эльма называют электрические разряды в атмосфере в форме светящихся пучков, наблюдаемые иногда на острых концах возвышающихся объектов (башен, мачт, одиноко стоящих деревьев, вершин скал и т. п.). Свое название эти огни получили в Средние века по названию церкви Святого Эльма, на башнях которой они часто возникали. Огни Эльма образуются в моменты, когда напряженность электрического поля в атмосфере у острия достигает величины около 500 вольт на метр и выше. Это чаще всего бывает во время грозы или при ее приближении, а зимой во время метелей.

Какой научный результат Уильяма Гильберта великий Галилей назвал «достойным удивления»?

   Английский физик Уильям Гильберт (1544–1603) первым предположил, что Земля является большим магнитом, а ее магнитные полюсы совпадают с географическими. Гильберт изготовил «маленькую Землю» в виде намагниченного железного шара, а затем, обводя поверхность этого шара магнитной стрелкой, исследовал его магнитные свойства и обнаружил, что они соответствуют магнитным свойствам Земли – «большого магнита». На основании этого опыта Гильберт заключил, что с точки зрения магнитного действия Земля отличается от исследованного им железного шара лишь своими размерами. Научное и философское значение этого вывода Галилей назвал «достойным удивления». Гильберт стал первым человеком, осмелившимся сопоставить факт, полученный в стенах лаборатории, с явлением космического порядка. Тем самым он нанес тяжелейший удар тысячелетнему мифу, противопоставлявшему подлунный мир миру небесному. Концепция Гильберта в конечном счете означала, что явления космоса следует изучать теми же методами, которые пригодны для изучения обыденных земных явлений.

В какой жидкости монета способна плавать, а пробка – утонуть?

   Такие жидкости называют ферромагнитными, или ферро-жидкостями. Они представляют собой коллоидную систему на основе жидкости (например, воды, керосина или масла), в которой «растворены» мельчайшие частички твердого ферромагнетика (например, железа или никеля). Получившаяся дисперсионная среда «ведет» себя как жидкость, обладающая магнитными свойствами. Приложив к ней вертикально направленное постоянное магнитное поле, можно изменять величину выталкивающей (архимедовой) силы, действующей на погруженное в ферро-жидкость тело. Если вектор напряженности магнитного поля направить вниз, то генерированная в этой жидкости магнитная сила сложится с гравитационной силой (силой тяжести) и ферро-жидкость будет вести себя так, словно ее плотность увеличилась. Как только напряженность магнитного поля достигнет достаточно высокого значения, лежащая на дне сосуда медная монета всплывет, словно она оказалась в жидкости, плотность которой выше плотности меди. Если вектор напряженности магнитного поля направить вверх, то генерированная в жидкости магнитная сила уменьшит действие силы тяжести, и ферро-жидкость будет вести себя так, словно ее плотность снизилась. Когда напряженность магнитного поля достигнет некоторого значения, при котором магнитная сила в жидкости почти уравняется с силой тяжести (ферро-жидкость станет почти «невесомой»), пробка, плавающая на поверхности, утонет.

Сколько в России гидротехнических сооружений и как велика их надежность?

   Всего в России около 65 тысяч гидротехнических сооружений. Только в период с 1998 по первый квартал 2002 года включительно на них произошло более 300 аварий. В связи с этим ежегодно подвергалось затоплению около 50 тысяч квадратных километров территории.

Какая страна на первом месте в мире по использованию энергии ветра?

   По данным на конец 2002 года, общая мощность ветроэнергетических установок в мире достигла 30 379 мегаватт, чего достаточно для питания электричеством 17 миллионов квартир или односемейных домов. Первое место по использованию энергии ветра удерживает Европа (мощность европейских установок составляет 74 процента от мировой), на втором месте – Северная Америка (16,2 процента), третье место – у Азии (8,1 процента). Мировой рекорд по использованию энергии ветра держит Германия: на конец 2002 года там работало 13 759 ветроэнергетических установок общей мощностью более 12 000 мегаватт.

За что присуждается премия «Глобальная энергия»?

   Мировое потребление энергии стремительно растет, и даже в развитых странах уже ощущается ее нехватка. Одной из насущных задач современной цивилизации стали разработка и внедрение передовых методов добычи энергетических ресурсов, создание технологий, позволяющих снизить потребление электричества и горючего. Безопасная и доступная всем энергия – основа стабильности мира и достойного будущего для людей нашей планеты. Именно поэтому по инициативе лауреата Нобелевской премии академика Жореса Ивановича Алферова в нашей стране была учреждена Международная энергетическая премия «Глобальная энергия». Об учреждении премии Президент России Владимир Владимирович Путин объявил 11 ноября 2002 года на саммите глав государств России и Евросоюза. «Глобальная энергия» – первая международная персональная премия, которая ежегодно будет присуждаться ученым за выдающиеся открытия, изобретения и разработки в области энергетики. При присуждении премии безусловное предпочтение отдается работам, приносящим пользу всему человечеству. Премия «Глобальная энергия», по мнению ее инициаторов, будет стоять в одном ряду с наиболее авторитетными научными наградами. Она станет серьезным вкладом России в мировой научно-технический прогресс и послужит стимулом для научных исследований в одной из основных отраслей техники – энергетике.

Какие «черные камни» жгли, к удивлению Марко Поло, китайцы вместо дров?

   Во время своего пребывания в Китае итальянский путешественник Марко Поло (около 1254–1324) сделал удивительное открытие: для получения тепла китайцы широко использовали каменный уголь. Вот как Марко Поло описал это: «По всей стране Катай есть черные камни; выкапывают их в горах как руду, и горят они как дрова. Огонь от них сильнее, нежели от дров. Если вечером, скажу вам, развести хорошенько огонь, он продержится всю ночь, до утра. Жгут эти камни, знайте, по всей стране Катай. Дров у них много, но жгут они камни, потому что и дешевле, да и деревья сберегаются». В Европе каменный уголь получил широкое применение лишь в середине XIX века, хотя известен был с древнейших времен.

Как велика доля ядерной энергетики в производстве электроэнергии?

   На долю ядерной энергетики в общем производстве электроэнергии приходится: в Литве – 85 процентов; во Франции – 76,1 процента; в Бельгии – 55,5 процента; в Швеции и Болгарии – по 46,5 процента; в Словакии, Швейцарии, Словении, Южной Корее, Испании, Финляндии, Германии и на Украине – более одной трети; в США – 22,5 процента; в России – 11,8 процента. В России доля электроэнергии от АЭС составляет: в Центральном районе (включая Москву) – более 17 процентов, на Северо-Западе – около 50 процентов, на северо-западе Чукотского автономного округа – 60 процентов, на Кольском полуострове – 70 процентов, в Центрально-Черноземном районе – 80 процентов. Доля поставки электроэнергии АЭС на федеральный оптовый рынок энергии достигает 37 процентов, столько же идет на экспорт.

Как велика мощность самых крупных атомных электростанций?

   Самые крупные атомные электростанции мира: Фукусима (Япония) – 10 энергоблоков общей мощностью 9096 мегаватт; Брюс (Канада) – 7 энергоблоков, 6372 мегаватта; Запорожская АЭС (Украина) – 6 энергоблоков, 6000 мегаватт; Гравелин (Франция) – 6 энергоблоков, 5706 мегаватт; Палюэль (Франция) – 4 энергоблока, 5528 мегаватт. Среди атомных станций России самые крупные – Балаковская и Курская, мощность каждой из них 4000 мегаватт.

Чему равен КПД электрической батарейки?

   Коэффициент полезного действия (КПД) электрической батарейки можно оценить по следующему факту: на изготовление батарейки затрачивается энергии в 2 тысячи раз больше, чем эта батарейка способна отдать в процессе своей работы.

Когда и кем разработан первый проект Волжской ГЭС и какую реакцию он вызвал у местной общественности?

   Первый проект использования гидроресурсов Волги в районе Самарской Луки был разработан в 1913 году. Автором его был Глеб Максимилианович Кржижановский (1872–1959) – уроженец Самары, ученый-энергетик, будущий председатель Государственной комиссии по электрификации России (ГОЭЛРО). О реакции местной общественности на этот проект можно судить по следующему письму: «Конфиденциально. Стол № 4, № 685. Депеша. Италия, Сорренто, провинция Неаполь. Графу Российской империи его сиятельству Орлову-Давыдову. Ваше сиятельство, призывая на вас Божью благодать, прошу принять архипастырское извещение: на ваших потомственных исконных владениях прожектеры Самарского технического общества совместно с богоотступником инженером Кржижановским проектируют постройку плотины и большой электрической станции. Явите милость своим прибытием сохранить божий мир в Жигулевских владениях и разрушить крамолу в зачатии. С истинным архипастырским уважением имею честь быть вашего сиятельства защитник и богомолец. Епархиальный архиерей преосвященный Симеон, епископ Самарский и Ставропольский. Июня 9 дня 1913 года».

Во сколько раз энергия, получаемая Землей от Солнца, больше энергии, вырабатываемой Красноярской ГЭС (за одинаковый промежуток времени)?

   Согласно статистическим данным, среднегодовая выработка электроэнергии Красноярской ГЭС составляет 18 миллиардов киловатт-часов. Мощность падающего на Землю солнечного излучения равна около 200 триллионов киловатт. Следовательно, энергия этого излучения за год составляет 1,75 квинтиллиона (миллиарда миллиардов) киловатт-часов. С учетом того, что около половины энергии солнечного излучения отражается облаками и поверхностью Земли, рассеивается и поглощается земной атмосферой, наша планета за год получает около 0,9 квинтиллиона киловатт-часов солнечной энергии. Таким образом, энергия, получаемая Землей от Солнца за год, больше среднегодовой выработки энергии Красноярской ГЭС в 50 миллионов раз.