Страница:
Андрей Кашкаров
Электронные фокусы для любознательных детей
Вступление
В любой, даже самой небольшой комнате можно удобно расположить предметы интерьера, так, что для каждого из них найдется свое место. Дети будут в восторге, если необходимые для творчества предметы «спрятать» в нишу, замаскированную под домик. Такую конструкцию я видел в семейно-досуговом центре в Ленинградской области. Как оказалось после моих настойчивых расспросов, «архитектор» такого интересного решения неизвестен. Тем не менее, сама идея, на мой взгляд, заслуживает самого пристального внимания, ведь ее можно не только повторить в своих домах, но и усовершенствовать под конкретные задачи и условия – для радиолюбительского детского творчества.
Нам понадобятся небольшой набор инструментов – паяльник мощностью 40 Вт с маленьким жалом и подставкой, пинцет, набор отверток, стрелочный или цифровой (с дисплеем) тестер, лупа, набор для пайки (канифоль и припой ПОС-61), кассеты под радиоэлементы и – желательно– небольшой по размерам осциллограф; с его помощью ребята-начинающие радиолюбители познают принцип работы схем.
Итак, рассмотрим на конкретном примере как «спрятать» все эти необходимые вещи в заранее приготовленную нишу небольшой комнаты.
Само углубление делать не надо – надо использовать уже готовый «рельеф местности» и ваших интерьеров – городские квартиры почти везде угловаты и «затейны».
Итак, с местом определились. Теперь решим – какой интерьер детского уголка выбрать для творчества.
Здесь поможет творческая жилка: закрепите с помощью консолей и саморезов несколько полок из ДВП или ДСП. Поскольку нагрузка на них невелика – до 20 кг – можно применить гипсокартон. Потребуется 3–4 полочки по размерам соответствующим нише (в интерьерах комнаты). Под первой полочкой (на полу) расположите ящик с игрушками, на первой полочке – поставьте тестер, а на второй (если считать снизу) полочке установите часы и набор инструментов.
Все получившиеся отсеки закройте дверцами-ставнями и… ваш детский замысловатый уголок для творчества готов. Поскольку первое знакомство с электроникой обязательно проводить в присутствии взрослых наставников, такое расположение технических принадлежностей не только экономит место в комнате, но и является сдерживающим фактором для доступа к электричеству в ваше отсутствие.
Рассмотренный метод «скрытого» уголка хорош тем, что экологически безопасен, практически не требует вложений, красив, удобен, и нравится детям, подходит к стилю оформления комнаты.
Самым лучшим материалом для изготовления мебели для детской комнаты является дерево – натуральный, «дышащий» материал, обладающий природной энергетикой дерева. Но натуральное дерево, представленное в массиве – достаточно дорогой материал. Как наиболее бюджетный вариант рекомендую остановить выбор на мебели, покрытой шпоном натурального дерева, к примеру, дверцы шкафчика и полочки удобно сделать из ДСП. Ее удобно протирать и чистить.
Еще один безусловный плюс рекомендуемой конструкции: мебель для детского уголка должна быть нетравматичной, без острых углов, устойчивой, удобной и прочной. Родителям и самому ребенку должно быть комфортно пользоваться уголком, где «спрятаны» инструменты его увлечения и продукт его творчества – готовые радиолюбительские конструкции.
С таким оформлением можно приступать к изучению конструкций, изложенных в книге.
Нам понадобятся небольшой набор инструментов – паяльник мощностью 40 Вт с маленьким жалом и подставкой, пинцет, набор отверток, стрелочный или цифровой (с дисплеем) тестер, лупа, набор для пайки (канифоль и припой ПОС-61), кассеты под радиоэлементы и – желательно– небольшой по размерам осциллограф; с его помощью ребята-начинающие радиолюбители познают принцип работы схем.
Итак, рассмотрим на конкретном примере как «спрятать» все эти необходимые вещи в заранее приготовленную нишу небольшой комнаты.
Само углубление делать не надо – надо использовать уже готовый «рельеф местности» и ваших интерьеров – городские квартиры почти везде угловаты и «затейны».
Итак, с местом определились. Теперь решим – какой интерьер детского уголка выбрать для творчества.
Здесь поможет творческая жилка: закрепите с помощью консолей и саморезов несколько полок из ДВП или ДСП. Поскольку нагрузка на них невелика – до 20 кг – можно применить гипсокартон. Потребуется 3–4 полочки по размерам соответствующим нише (в интерьерах комнаты). Под первой полочкой (на полу) расположите ящик с игрушками, на первой полочке – поставьте тестер, а на второй (если считать снизу) полочке установите часы и набор инструментов.
Все получившиеся отсеки закройте дверцами-ставнями и… ваш детский замысловатый уголок для творчества готов. Поскольку первое знакомство с электроникой обязательно проводить в присутствии взрослых наставников, такое расположение технических принадлежностей не только экономит место в комнате, но и является сдерживающим фактором для доступа к электричеству в ваше отсутствие.
Рассмотренный метод «скрытого» уголка хорош тем, что экологически безопасен, практически не требует вложений, красив, удобен, и нравится детям, подходит к стилю оформления комнаты.
Самым лучшим материалом для изготовления мебели для детской комнаты является дерево – натуральный, «дышащий» материал, обладающий природной энергетикой дерева. Но натуральное дерево, представленное в массиве – достаточно дорогой материал. Как наиболее бюджетный вариант рекомендую остановить выбор на мебели, покрытой шпоном натурального дерева, к примеру, дверцы шкафчика и полочки удобно сделать из ДСП. Ее удобно протирать и чистить.
Еще один безусловный плюс рекомендуемой конструкции: мебель для детского уголка должна быть нетравматичной, без острых углов, устойчивой, удобной и прочной. Родителям и самому ребенку должно быть комфортно пользоваться уголком, где «спрятаны» инструменты его увлечения и продукт его творчества – готовые радиолюбительские конструкции.
С таким оформлением можно приступать к изучению конструкций, изложенных в книге.
Глава 1
Введение в «фокусы»: что это такое, и «с чем его едят»?
1.1. Что такое ультразвук?
Человек слышит звуки в ограниченном спектре, поэтому отличия такие понятий, как «звук», «ультразвук» (колебания очень высокой частоты), «инфразвук» (колебания очень низкой частоты) «слышу», «не слышу, но он есть – значит, вредно» и т. п. существуют лишь с точки зрения человека. Обычный человек (есть среди нас индивидуумы, которые слышат чуть больший спектр) слышит воздушные колебания звуковых волн с частотой до 18–20 кГц (килогерц). Колебания более высокой частоты человеческое ухо обычно уже не воспринимает. Косвенно – для простоты понимания – это подтверждает даже то, что все акустические системы-динамики (радиотехника) и усилители к ним – посмотрите в паспортных данных – рассчитаны на частоты до 20 кГц. Это не спроста и связано с тем, что более высокую частоту (писк) нет смысла рассматривать – мы ее не слышим из-за ограниченных природой возможностей человеческого уха.
А вот кошки слышат, собаки тоже, мыши и комары (и др.).
И этот более высокий диапазон звука называют ультразвуком, то есть находящимся за пределами нашей слышимости. Давайте промоделируем ситуацию и ненадолго представим себе, что кто-то из нас крыса. С точки зрения пушистой и хвостатой (кто знает, может быть кто-то в прошлой жизни был крысой – не стоит уж так сильно их изводить и ненавидеть) нет никакого разделения звуков на звук и ультразвук.
Она совершенно нормально слышит звуки с частотой аж до 60–70 кГц (почти в 4(!) раза – чем человек.
Итак, отпугиватели вредителей могут быть разными – излучающие ультразвук с разной частотой: для комаров – одной, кошек, другой, собак – ранжирую ближе к человеческому уху – третьей. Для крыс всё, что выше по частоте чем 30…50 кГц, является невыносимым и раздражающим звуком. Человек же к именно этому раздражающему мышь и крысу звуку «совершенно глух», и, что важно – сей звук не влияет (нет доказанных результатов научных исследований) на жизнедеятельность, обмен веществ и др., как к примеру, влияет на него инфразвук (дискомфортное состояние, рвотные инстинкты, головные боли или – из другой оперы – радиация, которую мы, к слову, тоже не слышим и не видим). О каком вреде тут вообще можно говорить? Если пытаться раздражать глухонемого фальшивой игрой на ненастроенной скрипке, «вредный» для человека эффект будет примерно тем же. Поэтому, смею утверждать по эмпирическим основаниям, что такие приборы являются эффективными.
Плохо лишь то, что они действительно имеют ограниченный радиус действия (иногда на территории 20–30 соток приходится ставить по 3…5 в разных углах дома-усадьбы дома – чтобы отвадить от жилья человека) и, к слову – очень важно – через некоторое время вызывают эффект привыкания крысы к одной частоте. То есть желательно на относительно большой территории использовать антикрысиные отпугиватели все же с разной настройкой частоты (какой-то на 40 кГц, а какой-то на 65… и один раз в месяц менять их местами). А лучше всего сделать самим с автоматически перестраиваемой частотой (в продаже таких не видел); это будет поистине панацея.
Еще один минус в том, что питание компактного прибора осуществляется из автономных источников – с помощью батареек, которые надо периодически заменять (на практике одного комплекта хватает – летом на месяц, зимой – из-за отрицательной температуры воздуха и земли в верхнем слое эпидермиса – на 10–12 дней. Все это нужно учитывать в практической работе.
Что касается УЗИ, то там совсем другой ультразвук. Частота такого ультразвука измеряется уже не в килогерцах, а в мегагерцах. В УЗИ частота ультразвука в тысячу раз выше, чем частотный диапазон у отпугивателей грызунов. В этом главное отличие.
К тому же, не забывайте, что в медицинской технике излучатель ультразвука приходится прижимать непосредственно к телу человека, да ещё использовать специальную смазку, улучшающую прохождение ультразвука.
Но даже при этом высокочастотный ультразвук проходит в тело человека на глубину всего 5–6 см.
По воздуху же ультразвук мегагерцового диапазона вообще распространяться не может из-за малой плотности воздуха. Такой ультразвук может распространяться только в очень плотных материалах, например в металле. Поэтому он ещё используется для выявления внутренних дефектов в металлических конструкциях и сварных швах.
А вот кошки слышат, собаки тоже, мыши и комары (и др.).
И этот более высокий диапазон звука называют ультразвуком, то есть находящимся за пределами нашей слышимости. Давайте промоделируем ситуацию и ненадолго представим себе, что кто-то из нас крыса. С точки зрения пушистой и хвостатой (кто знает, может быть кто-то в прошлой жизни был крысой – не стоит уж так сильно их изводить и ненавидеть) нет никакого разделения звуков на звук и ультразвук.
Она совершенно нормально слышит звуки с частотой аж до 60–70 кГц (почти в 4(!) раза – чем человек.
Итак, отпугиватели вредителей могут быть разными – излучающие ультразвук с разной частотой: для комаров – одной, кошек, другой, собак – ранжирую ближе к человеческому уху – третьей. Для крыс всё, что выше по частоте чем 30…50 кГц, является невыносимым и раздражающим звуком. Человек же к именно этому раздражающему мышь и крысу звуку «совершенно глух», и, что важно – сей звук не влияет (нет доказанных результатов научных исследований) на жизнедеятельность, обмен веществ и др., как к примеру, влияет на него инфразвук (дискомфортное состояние, рвотные инстинкты, головные боли или – из другой оперы – радиация, которую мы, к слову, тоже не слышим и не видим). О каком вреде тут вообще можно говорить? Если пытаться раздражать глухонемого фальшивой игрой на ненастроенной скрипке, «вредный» для человека эффект будет примерно тем же. Поэтому, смею утверждать по эмпирическим основаниям, что такие приборы являются эффективными.
Плохо лишь то, что они действительно имеют ограниченный радиус действия (иногда на территории 20–30 соток приходится ставить по 3…5 в разных углах дома-усадьбы дома – чтобы отвадить от жилья человека) и, к слову – очень важно – через некоторое время вызывают эффект привыкания крысы к одной частоте. То есть желательно на относительно большой территории использовать антикрысиные отпугиватели все же с разной настройкой частоты (какой-то на 40 кГц, а какой-то на 65… и один раз в месяц менять их местами). А лучше всего сделать самим с автоматически перестраиваемой частотой (в продаже таких не видел); это будет поистине панацея.
Еще один минус в том, что питание компактного прибора осуществляется из автономных источников – с помощью батареек, которые надо периодически заменять (на практике одного комплекта хватает – летом на месяц, зимой – из-за отрицательной температуры воздуха и земли в верхнем слое эпидермиса – на 10–12 дней. Все это нужно учитывать в практической работе.
Что касается УЗИ, то там совсем другой ультразвук. Частота такого ультразвука измеряется уже не в килогерцах, а в мегагерцах. В УЗИ частота ультразвука в тысячу раз выше, чем частотный диапазон у отпугивателей грызунов. В этом главное отличие.
К тому же, не забывайте, что в медицинской технике излучатель ультразвука приходится прижимать непосредственно к телу человека, да ещё использовать специальную смазку, улучшающую прохождение ультразвука.
Но даже при этом высокочастотный ультразвук проходит в тело человека на глубину всего 5–6 см.
По воздуху же ультразвук мегагерцового диапазона вообще распространяться не может из-за малой плотности воздуха. Такой ультразвук может распространяться только в очень плотных материалах, например в металле. Поэтому он ещё используется для выявления внутренних дефектов в металлических конструкциях и сварных швах.
1.2. Что такое инфразвук?
Наверное, самые популярные ассоциации с предметом моей статьи читатель свяжет с так называемым «инфразвуковым ружьем». Ведь о нем говорят уже два десятилетия. Низкочастотные звуковые волны планируется использовать в качестве «генератора паники».
Действительно, в этом случае инфразвук намного удобнее высокочастотных волн, так как он сам по себе представляет угрозу для здоровья человека. Частоты нашей нервной системы и сердца лежат в диапазоне инфразвука – и составляют примерно 6 Гц. Эмулирование этих частот приводит к плохому самочувствию, беспричинному страху, панике, сумасшествию, и, наконец, к летальному исходу.
Что же мешает сегодня создать подобный аппарат, а может, он уже создан? Известно, что еще в последнем десятилетии XX века этой проблемой занимался французский ученый Гавро, и причины того, что «инфразвуковое ружье» еще не получило широкого применения, таковы: очень большие размеры, малая дальность, и опасность для пользователя.
Зато и преимущества велики: управляя мощностью волны, можно избирательно оглушать или убивать, не подвергаясь опасности, таким аппаратом можно управлять дистанционно, из изолированного от звуковых волн помещения. Так что вскоре, вполне возможно, толпа разбушевавшихся демонстрантов получит не струю ледяной воды, а порцию низкочастотного звука.
Инфразвук давно открыт. Органистам он известен уже более 250 лет. Во многих соборах и храмах есть длинные органные трубы, они издают звук частотой менее 20 Гц, не воспринимаемый человеческим ухом. Такой инфразвук может вселить в аудиторию разнообразные и не слишком приятные чувства – в частности тоску, ощущение холода, беспокойство, дрожь в позвоночнике.
Люди, подвергшиеся воздействию инфразвука, испытывают примерно те же ощущения, что и при посещении мест, где происходили встречи с призраками. Некоторые «подопытные» чувствуют внезапный упадок настроения, печаль, у некоторых по коже бегут мурашки, возникает беспричинный страх. Самовнушением это можно объяснить лишь отчасти.
Радиолюбителям инфразвуковые колебания знакомы на практике, их можно зафиксировать в устройствах автогенераторов (одновибраторах) и других электронных устройствах.
Итак, инфразвук – это колебание в воздухе, в жидкой или твердой средах, с частотой менее 16 Гц.
Почему человек не может долго находится вблизи работающих электродвигателей, вентиляторов, агрегатов? Не только из-за шума. Во многом некомфортное состояние «царя зверей» предопределяют низкочастотные колебания, которые невозможно «пощупать».
Инфразвук человек не слышит, однако ощущает. Высокий уровень инфразвука вызывает нарушение функции вестибулярного аппарата, предопределяя головокружение, головную боль. Снижается внимание, работоспособность, возникает чувство страха, общее недомогание.
Существует мнение, что инфразвук сильно влияет на психику людей.
Оказывается, все механизмы, работающие с частотами вращения меньше 20 об/с, излучают инфразвук. При движении автомобиля со скоростью более 100 км/час он является источником инфразвука, который возникает за счет срыва воздушного потока с его, казалось бы, отпекаемой поверхности.
А те любители, которые устанавливают на крышу своего «железного коня» дополнительные устройства – штанги и багажники подвергают свой организм еще большему воздействию инфразвука при движении. Благодаря большой длине волны, инфразвук распространяется в атмосфере на большие расстояния.
В меньшей мере инфразвук возникает при работе двигателей внутреннего сгорания и дизельных двигателей.
Согласно действующим нормативным документам уровни звукового давления в октавных полосах со среднегеометрическими частотами 2,4, 8,16, Гц должен быть не больше 105 дБ, а для полос с частотой 32 Гц – не более 102 дБ.
Действительно, в этом случае инфразвук намного удобнее высокочастотных волн, так как он сам по себе представляет угрозу для здоровья человека. Частоты нашей нервной системы и сердца лежат в диапазоне инфразвука – и составляют примерно 6 Гц. Эмулирование этих частот приводит к плохому самочувствию, беспричинному страху, панике, сумасшествию, и, наконец, к летальному исходу.
Что же мешает сегодня создать подобный аппарат, а может, он уже создан? Известно, что еще в последнем десятилетии XX века этой проблемой занимался французский ученый Гавро, и причины того, что «инфразвуковое ружье» еще не получило широкого применения, таковы: очень большие размеры, малая дальность, и опасность для пользователя.
Зато и преимущества велики: управляя мощностью волны, можно избирательно оглушать или убивать, не подвергаясь опасности, таким аппаратом можно управлять дистанционно, из изолированного от звуковых волн помещения. Так что вскоре, вполне возможно, толпа разбушевавшихся демонстрантов получит не струю ледяной воды, а порцию низкочастотного звука.
Инфразвук давно открыт. Органистам он известен уже более 250 лет. Во многих соборах и храмах есть длинные органные трубы, они издают звук частотой менее 20 Гц, не воспринимаемый человеческим ухом. Такой инфразвук может вселить в аудиторию разнообразные и не слишком приятные чувства – в частности тоску, ощущение холода, беспокойство, дрожь в позвоночнике.
Люди, подвергшиеся воздействию инфразвука, испытывают примерно те же ощущения, что и при посещении мест, где происходили встречи с призраками. Некоторые «подопытные» чувствуют внезапный упадок настроения, печаль, у некоторых по коже бегут мурашки, возникает беспричинный страх. Самовнушением это можно объяснить лишь отчасти.
Радиолюбителям инфразвуковые колебания знакомы на практике, их можно зафиксировать в устройствах автогенераторов (одновибраторах) и других электронных устройствах.
Итак, инфразвук – это колебание в воздухе, в жидкой или твердой средах, с частотой менее 16 Гц.
Почему человек не может долго находится вблизи работающих электродвигателей, вентиляторов, агрегатов? Не только из-за шума. Во многом некомфортное состояние «царя зверей» предопределяют низкочастотные колебания, которые невозможно «пощупать».
Инфразвук человек не слышит, однако ощущает. Высокий уровень инфразвука вызывает нарушение функции вестибулярного аппарата, предопределяя головокружение, головную боль. Снижается внимание, работоспособность, возникает чувство страха, общее недомогание.
Существует мнение, что инфразвук сильно влияет на психику людей.
Оказывается, все механизмы, работающие с частотами вращения меньше 20 об/с, излучают инфразвук. При движении автомобиля со скоростью более 100 км/час он является источником инфразвука, который возникает за счет срыва воздушного потока с его, казалось бы, отпекаемой поверхности.
А те любители, которые устанавливают на крышу своего «железного коня» дополнительные устройства – штанги и багажники подвергают свой организм еще большему воздействию инфразвука при движении. Благодаря большой длине волны, инфразвук распространяется в атмосфере на большие расстояния.
В меньшей мере инфразвук возникает при работе двигателей внутреннего сгорания и дизельных двигателей.
Согласно действующим нормативным документам уровни звукового давления в октавных полосах со среднегеометрическими частотами 2,4, 8,16, Гц должен быть не больше 105 дБ, а для полос с частотой 32 Гц – не более 102 дБ.
1.2.1. Инфразвуковые аномалии
В мире полно необъяснимых явлений. В частности береговая линия Северной Америки в районе мыса Гаттерас, полуостров Флорида и остров Куба образуют гигантский рефлектор.
Шторм, происходящий в Атлантическом океане, генерирует инфразвуковые волны, которые, отразившись от рефлектора, фокусируются в районе «Бермудского треугольника». Колоссальные размеры фокусирующей структуры позволяют предположить наличие областей, где инфразвуковые колебания могут достигать значительной величины, что и является причиной происходящих здесь аномальных явлений.
Сильные инфразвуковые колебания вызывают у человека панический страх вместе с желанием вырваться из замкнутого пространства. Очевидно, такое поведение является следствием выработанной в прошлом «инстинктивной» реакции на инфразвук как предвестник землетрясения. Именно эта реакция заставляет экипаж и пассажиров в панике покидать свой корабль. Они могут сесть в шлюпки и уплыть от своего судна или выбежать на палубу и броситься за борт.
При большой интенсивности инфразвука, колебания действуют в резонансе с биоритмами человека, такой инфразвук может вызвать мгновенный летальный исход.
Инфразвук может быть причиной резонансного колебания корабельных мачт, приводящих к их поломке (к аналогичным последствиям может привести воздействие инфразвука на элементы конструкции летательных аппаратов, в частности и самолетов). Низкочастотные звуковые колебания могут быть причиной появления над океаном быстро возникающего и также быстро исчезающего густого (как молоко) тумана – атмосферная влага, сконденсировавшиеся за время фазы разряжения, не успевает растворяться в воздухе за время последующей фазы сжатия, но в тоже время мгновенно исчезает, в течение несколько периодов отсутствия инфразвуковых колебаний.
И, наконец, инфразвук частотой 5–7 Гц попадает в резонанс с маятником механических, ручных часов, имеющих тот же период колебаний.
Инфразвук может распространяться под водой, а фокусирующая (усиливающая его) структура – образовываться рельефом дна. Источником инфразвуковых колебаний могут быть подводные вулканы и землетрясения. Форма ландшафтных отражателей весьма оригинальна. Влияние инфразвука на человека не ограничивается прямым воздействием на его организм, в частности на нервную систему.
Человек утратил высокую чувствительность к инфразвуковым колебаниям, но при большой интенсивности защитная реакция пробуждается, блокируя возможности сознательного поведения. Страх не вызван внешними образами, а исходит «изнутри». Под воздействием инфразвука у человека создается чувство «нечто ужасного». Видимо этим объясняются зафиксированные в радиопереговорах последние слова погибших летчиков и моряков: «Небо какое-то не такое», «море выглядит странно», «происходит нечто ужасное».
Если бы страх вызывался внешними образами, то мужественные люди, привыкшие к опасностям, смогли бы передать конкретные сообщения. В зависимости от интенсивности инфразвуковых колебаний, люди испытывают различные степени паники. Сознание человека подсознательно подыскивает причину подобных явлений, – пытается их интерпретировать. И, если это сознание воспитано на легендах и мифах, то и интерпретация будет соответствующей, например, миф о зовущих «сиренах» («Одиссея» Гомера).
Шторм, происходящий в Атлантическом океане, генерирует инфразвуковые волны, которые, отразившись от рефлектора, фокусируются в районе «Бермудского треугольника». Колоссальные размеры фокусирующей структуры позволяют предположить наличие областей, где инфразвуковые колебания могут достигать значительной величины, что и является причиной происходящих здесь аномальных явлений.
Сильные инфразвуковые колебания вызывают у человека панический страх вместе с желанием вырваться из замкнутого пространства. Очевидно, такое поведение является следствием выработанной в прошлом «инстинктивной» реакции на инфразвук как предвестник землетрясения. Именно эта реакция заставляет экипаж и пассажиров в панике покидать свой корабль. Они могут сесть в шлюпки и уплыть от своего судна или выбежать на палубу и броситься за борт.
При большой интенсивности инфразвука, колебания действуют в резонансе с биоритмами человека, такой инфразвук может вызвать мгновенный летальный исход.
Инфразвук может быть причиной резонансного колебания корабельных мачт, приводящих к их поломке (к аналогичным последствиям может привести воздействие инфразвука на элементы конструкции летательных аппаратов, в частности и самолетов). Низкочастотные звуковые колебания могут быть причиной появления над океаном быстро возникающего и также быстро исчезающего густого (как молоко) тумана – атмосферная влага, сконденсировавшиеся за время фазы разряжения, не успевает растворяться в воздухе за время последующей фазы сжатия, но в тоже время мгновенно исчезает, в течение несколько периодов отсутствия инфразвуковых колебаний.
И, наконец, инфразвук частотой 5–7 Гц попадает в резонанс с маятником механических, ручных часов, имеющих тот же период колебаний.
Инфразвук может распространяться под водой, а фокусирующая (усиливающая его) структура – образовываться рельефом дна. Источником инфразвуковых колебаний могут быть подводные вулканы и землетрясения. Форма ландшафтных отражателей весьма оригинальна. Влияние инфразвука на человека не ограничивается прямым воздействием на его организм, в частности на нервную систему.
Человек утратил высокую чувствительность к инфразвуковым колебаниям, но при большой интенсивности защитная реакция пробуждается, блокируя возможности сознательного поведения. Страх не вызван внешними образами, а исходит «изнутри». Под воздействием инфразвука у человека создается чувство «нечто ужасного». Видимо этим объясняются зафиксированные в радиопереговорах последние слова погибших летчиков и моряков: «Небо какое-то не такое», «море выглядит странно», «происходит нечто ужасное».
Если бы страх вызывался внешними образами, то мужественные люди, привыкшие к опасностям, смогли бы передать конкретные сообщения. В зависимости от интенсивности инфразвуковых колебаний, люди испытывают различные степени паники. Сознание человека подсознательно подыскивает причину подобных явлений, – пытается их интерпретировать. И, если это сознание воспитано на легендах и мифах, то и интерпретация будет соответствующей, например, миф о зовущих «сиренах» («Одиссея» Гомера).
1.2.2. Животные, использующие инфразвук
Американские ученые обнаружили, что тигры и слоны используют для коммуникации друг с другом не только рычание, мурлыкание или рев и трубные позывы, но также и инфразвук, то есть звуковые сигналы очень низкой частоты, неслышные для человеческого уха.
В научных исследованиях проанализировали частотные спектры рычания представителей 3 подвидов тигра – уссурийского, бенгальского и суматранского, и обнаружили в каждом из них мощную низкочастотную компоненту. Таким образом, инфразвук позволяет животным поддерживать связь на расстоянии до 8 км, поскольку распространение инфразвуковых сигналов почти не чувствительно к помехам, вызванным рельефом местности, и мало зависит от погодных и климатических факторов (в частности, влажности воздуха).
Таким образом, звуки низкой частоты животные используют для связи друг с другом на расстоянии в несколько километров. То же позволяет объяснить некоторые загадки поведения слонов. Например, раньше не могли объяснить, почему стада слонов, значительно удаленные друг от друга, узнавали об опасности в одно и то же время. Инфразвуковой язык, вероятно, помогает слонам уберечься от браконьеров, угрожающих животным, как в Африке, так и в Азии. Если определить значение инфразвуковых сигналов, нетрудно будет перейти к самой увлекательной стадии экспериментов – установлению с их помощью контакта со слонами.
В научных исследованиях проанализировали частотные спектры рычания представителей 3 подвидов тигра – уссурийского, бенгальского и суматранского, и обнаружили в каждом из них мощную низкочастотную компоненту. Таким образом, инфразвук позволяет животным поддерживать связь на расстоянии до 8 км, поскольку распространение инфразвуковых сигналов почти не чувствительно к помехам, вызванным рельефом местности, и мало зависит от погодных и климатических факторов (в частности, влажности воздуха).
Таким образом, звуки низкой частоты животные используют для связи друг с другом на расстоянии в несколько километров. То же позволяет объяснить некоторые загадки поведения слонов. Например, раньше не могли объяснить, почему стада слонов, значительно удаленные друг от друга, узнавали об опасности в одно и то же время. Инфразвуковой язык, вероятно, помогает слонам уберечься от браконьеров, угрожающих животным, как в Африке, так и в Азии. Если определить значение инфразвуковых сигналов, нетрудно будет перейти к самой увлекательной стадии экспериментов – установлению с их помощью контакта со слонами.
1.2.3. Как «остановить» инфразвук?
Практически невозможно остановить инфразвук при помощи строительных (или иных искусственных) конструкций на пути его распространения. Не всегда эффективны и средства индивидуальной зашиты. Действенным средством защиты является снижение уровня инфразвука в источнике его образования. Среди таких мероприятий можно выделить следующие:
• увеличение частот вращения валов механических и электродвигателей до 20 (и более) об/ с;
• повышение жесткости колеблющихся конструкций больших размеров;
• устранение низкочастотных вибраций;
• внесение конструктивных изменений в строение источников, что позволяет перейти из области инфразвуковых колебаний в область звуковых (снижение уровня инфразвука достигают применением звукоизоляции и звукопоглощения).
При выборе конструкций предпочтительнее малогабаритные механизмы большой жесткости, так как в конструкциях с плоскими поверхностями большой площади и малой жесткости создаются условия для генерации инфразвука. Борьбу с инфразвуком в источнике возникновения ведут в направлении изменения режима работы технологического оборудования – увеличения его быстроходности (например, увеличение числа рабочих ходов машин, чтобы основная частота следования силовых импульсов лежала за пределами инфразвукового диапазона).
В качестве индивидуальных средств защиты рекомендуется применение наушников, вкладышей, защищающих ухо от неблагоприятного действия сопутствующего шума.
К мерам профилактики организационного плана следует отнести соблюдение режима труда и отдыха, запрещение сверхурочных работ.
• увеличение частот вращения валов механических и электродвигателей до 20 (и более) об/ с;
• повышение жесткости колеблющихся конструкций больших размеров;
• устранение низкочастотных вибраций;
• внесение конструктивных изменений в строение источников, что позволяет перейти из области инфразвуковых колебаний в область звуковых (снижение уровня инфразвука достигают применением звукоизоляции и звукопоглощения).
При выборе конструкций предпочтительнее малогабаритные механизмы большой жесткости, так как в конструкциях с плоскими поверхностями большой площади и малой жесткости создаются условия для генерации инфразвука. Борьбу с инфразвуком в источнике возникновения ведут в направлении изменения режима работы технологического оборудования – увеличения его быстроходности (например, увеличение числа рабочих ходов машин, чтобы основная частота следования силовых импульсов лежала за пределами инфразвукового диапазона).
В качестве индивидуальных средств защиты рекомендуется применение наушников, вкладышей, защищающих ухо от неблагоприятного действия сопутствующего шума.
К мерам профилактики организационного плана следует отнести соблюдение режима труда и отдыха, запрещение сверхурочных работ.
1.3. Подземная радиосвязь невозможна? Возможна!
Поверхность Земли определяющим образом влияет на распространение радиоволн, причем сказываются как физические свойства поверхности (различия между морем и сушей), так и ее геометрическая форма (кривизна участков поверхности и отдельные неровности рельефа – горы, ущелья). Влияние это различно для волн разной длины, для условий относительно передачи радиосигнала над грунтом и под ним, и для разных расстояний между передатчиком и приемником. Поэтому способы распространения радиоволн над землей и тем более под ней существенно зависят от множества факторов, в том числе – от длины волны и даже от освещенности земной атмосферы Солнцем.
Меня издавна интересовал вопрос: а возможна ли подземная радиосвязь с помощью непрофессиональных, портативных радиостанций?
В 2012 году в своем фермерском хозяйстве в Верховажском районе Вологодской области мною проведен ряд экспериментов, о которых поведаю далее. Был поставлен вопрос: возможна ли радиосвязь под землей, и какие факторы влияют на ее качество.
Для подготовки условий эксперимента углублены подземные катакомбы (глубина 1,6 метра под землей) в районе д. Боровичиха в месте естественного кратера, который в здешних краях носит название «Коробовая яма». Длина прямолинейного подземелья (подземного тоннеля) после подготовительных работ достигла 22 м.
Меня издавна интересовал вопрос: а возможна ли подземная радиосвязь с помощью непрофессиональных, портативных радиостанций?
В 2012 году в своем фермерском хозяйстве в Верховажском районе Вологодской области мною проведен ряд экспериментов, о которых поведаю далее. Был поставлен вопрос: возможна ли радиосвязь под землей, и какие факторы влияют на ее качество.
Для подготовки условий эксперимента углублены подземные катакомбы (глубина 1,6 метра под землей) в районе д. Боровичиха в месте естественного кратера, который в здешних краях носит название «Коробовая яма». Длина прямолинейного подземелья (подземного тоннеля) после подготовительных работ достигла 22 м.
1.3.1. Обязательные условия
Основным и обязательным условием подземной радиосвязи является то, что радиосвязь должна осуществляться между корреспондентами, находящимися в прямой видимости (на прямолинейном участке дистанции). Тогда она возможна практически без ограничений – в соответствии с мощностью радиостанции.
Распространение радиоволн под землей подчиняется определенным общим законам:
Прямолинейное распространение в однородной среде, свойства которой во всех точках одинаковы. Встречая на своем пути непрозрачное тело, радиоволны огибают его; это явление, называемое дифракцией проявляется в зависимости от соотношения геометрических размеров препятствия и длины волны, и в нашем эксперименте под землей оказывает на качестве и дальность связи определяющее значение. С другой стороны, если радиоволна встречает препятствие, то она распространяются по криволинейным траекториям, сила сигнала при этом ослабляется (вяление рефракции). Чем резче изменяются свойства среды в виде криволинейного участка между двумя корреспондентами под землей, тем больше кривизна траектории волны и тем слабее сигнал.
Распространение радиоволн под землей подчиняется определенным общим законам:
Прямолинейное распространение в однородной среде, свойства которой во всех точках одинаковы. Встречая на своем пути непрозрачное тело, радиоволны огибают его; это явление, называемое дифракцией проявляется в зависимости от соотношения геометрических размеров препятствия и длины волны, и в нашем эксперименте под землей оказывает на качестве и дальность связи определяющее значение. С другой стороны, если радиоволна встречает препятствие, то она распространяются по криволинейным траекториям, сила сигнала при этом ослабляется (вяление рефракции). Чем резче изменяются свойства среды в виде криволинейного участка между двумя корреспондентами под землей, тем больше кривизна траектории волны и тем слабее сигнал.
1.3.2. Частоты
При проведении эксперимента в сельских условиях сигнал с портативного трансивера был получен другим корреспондентом, находящимся в 22 м от меня – принят на идентичную радиостанцию, настроенную на те же частоты.
При экспериментировании замечена интересная особенность: на частоте UNF (444.3 МГц – длина волны 70 см) слышимость лучше, распознавание сигнала отчетливее, чем при работе (при прочих равных условиях) в частотном диапазоне VNF (144.55 МГц – длина волны 2 метра).
Таким образом, по проведенному эксперименту, а также, опираясь на комплексные данные других исследователей, можно сделать простой вывод-подтверждение о том, что диапазоны радиоволн – на которых длина волны меньше, наиболее предпочтительны для радиосвязей в замкнутых помещениях, с перегородками (радиоволны огибают препятствия); радиостанции на данных диапазонах хорошо работают в зданиях.
Чем больше длина волны, тем критичнее к препятствиям (естественным и искусственным) качество радиосвязи.
Как можно заметить на практике, портативными трансиверами (рациями) часто пользуются вспомогательные и аварийные службы в помещениях (охранники, лифтеры, администраторы и др.). Итак, данная гипотеза нашла подтверждения и в моем «подземном» эксперименте 2012 года, проведенном в Верховажском районе Вологодской области в 400 м от границ н. п. Боровичиха.
Если пойти в той же логике рассуждений дальше, разумно предположить, что длина волны менее 10 см (к примеру, частоты диапазона 500–800 МГц) на практике окажутся еще более приспособлены (перспективны) – для объектов с множественными естественными препятствиями (перегородками внутри здания или изгибами рельефа местности). При этом действует и другой общепризнанный принцип распространения радиоволн: чем короче длина волны, тем короче расстояние, на котором можно осуществлять устойчивую (уверенную) радиосвязь при прочих равных – в части мощности передатчика – условиях.
Так, радиосвязь в обычных (наземных) с помощью комплекта все тех же идентичных портативных радиостанций Kenwood TH-F7 (между собой) с максимальной мощностью передатчика 5 Вт на частоте 590 МГц можно осуществить на расстояние менее 0,8 км.
А, к примеру, на частоте 146,550 МГц максимальная дальность связи (при прочих равных условиях) уже будет (зафиксирована мною) 4,8 км.
Поэтому радиолюбителям удается осуществлять радиосвязи на КВ (коротких волнах) на расстояния тысяч километров между городами и странами, к примеру, на частотах 1,8.. 3,6 МГц. К примеру, в диапазоне Си-Би (Sitizen Band – гражданский диапазон с частотным округлением 26–28 МГц) максимальная дальность связи не превысит 50 км. Конечно, все эти сведения нужно воспринимать через призму ряда условностей, как агентов влияния на ситуацию: важны и конкретные радиостанции, с помощью которых осуществляется радиосвязь, и настройка антенны, и условия местности, и даже погодные условия.
При экспериментировании замечена интересная особенность: на частоте UNF (444.3 МГц – длина волны 70 см) слышимость лучше, распознавание сигнала отчетливее, чем при работе (при прочих равных условиях) в частотном диапазоне VNF (144.55 МГц – длина волны 2 метра).
Таким образом, по проведенному эксперименту, а также, опираясь на комплексные данные других исследователей, можно сделать простой вывод-подтверждение о том, что диапазоны радиоволн – на которых длина волны меньше, наиболее предпочтительны для радиосвязей в замкнутых помещениях, с перегородками (радиоволны огибают препятствия); радиостанции на данных диапазонах хорошо работают в зданиях.
Чем больше длина волны, тем критичнее к препятствиям (естественным и искусственным) качество радиосвязи.
Как можно заметить на практике, портативными трансиверами (рациями) часто пользуются вспомогательные и аварийные службы в помещениях (охранники, лифтеры, администраторы и др.). Итак, данная гипотеза нашла подтверждения и в моем «подземном» эксперименте 2012 года, проведенном в Верховажском районе Вологодской области в 400 м от границ н. п. Боровичиха.
Если пойти в той же логике рассуждений дальше, разумно предположить, что длина волны менее 10 см (к примеру, частоты диапазона 500–800 МГц) на практике окажутся еще более приспособлены (перспективны) – для объектов с множественными естественными препятствиями (перегородками внутри здания или изгибами рельефа местности). При этом действует и другой общепризнанный принцип распространения радиоволн: чем короче длина волны, тем короче расстояние, на котором можно осуществлять устойчивую (уверенную) радиосвязь при прочих равных – в части мощности передатчика – условиях.
Так, радиосвязь в обычных (наземных) с помощью комплекта все тех же идентичных портативных радиостанций Kenwood TH-F7 (между собой) с максимальной мощностью передатчика 5 Вт на частоте 590 МГц можно осуществить на расстояние менее 0,8 км.
А, к примеру, на частоте 146,550 МГц максимальная дальность связи (при прочих равных условиях) уже будет (зафиксирована мною) 4,8 км.
Поэтому радиолюбителям удается осуществлять радиосвязи на КВ (коротких волнах) на расстояния тысяч километров между городами и странами, к примеру, на частотах 1,8.. 3,6 МГц. К примеру, в диапазоне Си-Би (Sitizen Band – гражданский диапазон с частотным округлением 26–28 МГц) максимальная дальность связи не превысит 50 км. Конечно, все эти сведения нужно воспринимать через призму ряда условностей, как агентов влияния на ситуацию: важны и конкретные радиостанции, с помощью которых осуществляется радиосвязь, и настройка антенны, и условия местности, и даже погодные условия.
1.3.3. Глубина погружения
Еще одну особенность хотел бы изложить здесь же. Связь под землей возможна и при более глубоком погружении под землю: радиосвязь под землей почти в равном качестве будет осуществляться как при помещении обоих корреспондентов на глубину 2 метра (в прямой видимости друг от друга), так и при помещении на глубину 10 метров. Однако, если канал (тоннель) будет иметь хотя бы незначительные изменения в своей траектории (условие прямой видимости перестанет соблюдаться) связь под землей прекратится на любых волнах. Тем не менее, это знание все же можно использовать на практике и работать – при необходимости – в пещерах. Примеры таких (прямолинейных) пещер имеются (приведу те, в которые спускался сам): это старые, времен финской войны 1939–1940 гг.
ДОТы на Карельском перешейке, Саблинские пещеры недалеко от Санкт-Петербурга и огромные – по своей дине (более 3 км) пещеры (на глубине до 20 метров) в Новом Афоне, что в Абхазии. Разумеется, это не полный список пещер.
Радиосвязь под землей невозможна, если будет естественное препятствие. По той же логике – и это доказано проведенным экспериментом радиосвязь через толщу земли – даже если корреспонденты с участвующими в эксперименте радиостанциями будут находиться всего в одном метре друг от друга, разделенные земляным валом (поверхностью земли) уже невозможна.
Но если сквозь толщу земли пропустить даже металлическую трубу (по определению законов физики экранирующую радиоволны) и расположить антенны портативных радиостанций вдоль ее траектории (ориентировать трансиверы так, чтобы излучающая и приемная антенна находились в одной траектории – в прямой видимости через трубу) можно осуществить радиопереговоры между корреспондентами – один на поверхности земли, другой – под ее толщей.
ДОТы на Карельском перешейке, Саблинские пещеры недалеко от Санкт-Петербурга и огромные – по своей дине (более 3 км) пещеры (на глубине до 20 метров) в Новом Афоне, что в Абхазии. Разумеется, это не полный список пещер.
Радиосвязь под землей невозможна, если будет естественное препятствие. По той же логике – и это доказано проведенным экспериментом радиосвязь через толщу земли – даже если корреспонденты с участвующими в эксперименте радиостанциями будут находиться всего в одном метре друг от друга, разделенные земляным валом (поверхностью земли) уже невозможна.
Но если сквозь толщу земли пропустить даже металлическую трубу (по определению законов физики экранирующую радиоволны) и расположить антенны портативных радиостанций вдоль ее траектории (ориентировать трансиверы так, чтобы излучающая и приемная антенна находились в одной траектории – в прямой видимости через трубу) можно осуществить радиопереговоры между корреспондентами – один на поверхности земли, другой – под ее толщей.