Страница:
Кашкаров Андрей Петрович
Современная электроника в практических схемах и конструкциях
http://www.ed.gov.ru/ntp/fp/patr/). Такие же программы принимают все субъекты РФ. Это важные шаги для популяризации радио, ведь радиолюбители, в частности, имеющие позывной, общаются со всем миром. «Не гоже нам ударять в грязь лицом…»
Хотелось бы видеть практические итоги этих программ.
Андрей Петрович Кашкаров
RA1AGS
Глава 1. Электронные устройства автоматики и охраны
1.1. Полив цветов – на автомате
Тем из читателей, кто выращивает цветы на своих участках или в домашних условиях, не надо рассказывать о пользе этого увлечения. Большинство людей делает это по велению души. В последнее время даже стали проводить конкурсы и выявлять победителей в минисоревнованиях «Чей балкон краше?». Некоторые цветоводы имеют много свободного времени и с удовольствием наблюдают за ростками часами, другие ограничены во времени и могут посвятить любимому занятию только несколько минут в день. Самым главным при взращивании растений и поддержании уже взрослых декоративных цветов является создание соответствующего микроклимата – поддержание и постоянный контроль влажности почвы, окружающего воздуха и солнечных ванн. И если создать благоприятный климат окружающей температуры воздуха и дозировать солнечную энергию относительно просто – установив горшок с цветком в соответствующее место в интерьере квартиры, то поддержание влажности почвы требует ежедневного и тщательного внимания. А между тем, процесс полива можно автоматизировать, собрав и включив простое в повторении электронное устройство, схемы которого представлены на рис. 1.1 и 1.2.
Рис. 1.1. Электрическая схема дозатора и контроля влажности почвы устройства автоматического полива
Рис. 1.2. Электрическая схема таймера на 1 ч
Устройство состоит из трех частей, электрически взаимосвязанных между собой. Части устройства и их функциональная взаимосвязь отражены на рис. 1.3.
Рис. 1.3. Блок схема устройства автоматического полива растений
Контроллер влажности почвы в постоянном режиме измеряет сопротивление почвы между контактами датчика влажности R и выдает на выходе управляющий сигнал – низкий уровень напряжения, если почва засушлива и требует увлажнения.
Таймер – устройство выдержки времени – выдает на выходе положительный управляющий импульс с периодичностью один раз в час.
Дозатор полива вместе со схемой совпадений сравнивает сигналы управления от предыдущих блоков и включает исполнительное устройство – электродвигатель, нагнетающий воду из резервуара в том случае, когда оба этих сигналы имеют низкий логический уровень.
Электродвигателем управляет исполнительное реле К1, рассчитанное на напряжение 12 В и коммутирующее ток до 3 А.
Рис. 1.1. Электрическая схема дозатора и контроля влажности почвы устройства автоматического полива
Рис. 1.2. Электрическая схема таймера на 1 ч
Устройство состоит из трех частей, электрически взаимосвязанных между собой. Части устройства и их функциональная взаимосвязь отражены на рис. 1.3.
Рис. 1.3. Блок схема устройства автоматического полива растений
Контроллер влажности почвы в постоянном режиме измеряет сопротивление почвы между контактами датчика влажности R и выдает на выходе управляющий сигнал – низкий уровень напряжения, если почва засушлива и требует увлажнения.
Таймер – устройство выдержки времени – выдает на выходе положительный управляющий импульс с периодичностью один раз в час.
Дозатор полива вместе со схемой совпадений сравнивает сигналы управления от предыдущих блоков и включает исполнительное устройство – электродвигатель, нагнетающий воду из резервуара в том случае, когда оба этих сигналы имеют низкий логический уровень.
Электродвигателем управляет исполнительное реле К1, рассчитанное на напряжение 12 В и коммутирующее ток до 3 А.
1.1.1. Принцип работы устройства
На логических элементах микросхемы DD1.1, DD1.2 К561ЛА7 собран сигнализатор влажности. Перед этим узлом стоит важная задача – сигнализировать о сухой почве и не допустить ее переувлажнения, так как в последнем случае это может погубить цветы. Поэтому система полива должна включаться на короткие промежутки времени, с постоянным контролем состояния влажности почвы.
Контакты Х1 изготовлены из металлических спиц (применяемых также для вязания) длиной 30 см каждая. Контактные проводники припаиваются к спицам с помощью припоя ПОС-61 (или аналогичного) и флюса. Проводники от датчиков – спиц выполнены гибким монтажным проводом МГТФ-0,8 и имеют длину не более 50 см каждый. Большая длина проводников к датчику приведет к ложным срабатываниям логических элементов микросхемы DD1.1 и DD1.2. Переменный резистор R1 необходим для регулировки чувствительности влажности почвы. Перед первым включением движок R1 устанавливают в среднее (по схеме) положение. Датчики – спицы помещаются в почву цветочного горшка на глубину до 20 см.
Пока почва сухая, она имеет большое сопротивление электрическому току (несколько десятков МОм). Сопротивление переменного резистора R1 меньше этого значения, поэтому на выводах 1 и 2 логического элемента DD1.1 присутствует сигнал высокого логического уровня. На выводе 3 DD1.1 будет низкий уровень (так как элемент включен как инвертор), а на выводе 4 элемента DD1.2 присутствует вновь высокий уровень. Благодаря этому напряжению заряжается оксидный конденсатор С3, который необходим для инерции срабатывания узла контроля влажности.
Когда С3 зарядится до напряжения 4–6 В (несколько сек) на выходе элемента DD1.3 окажется низкий уровень напряжения – он поступит на узел сравнения напряжений, собранный на элементе DD2.1. Элемент DD2.1 (ИЛИ с инверсией) согласно таблице истинности выдаст на выходе (вывод 11) управляющий сигнал высокого логического уровня, если на входах (выводы 12 и 13 DD2.1) будет сочетания двух низких уровней (в любом другом случае сигнал на выводе 11 будет иметь низкий уровень, транзистор заперт, электродвигатель М1 не работает).
Таким образом, при появлении на выходе логического элемента DD2.1 высокого уровня, откроется транзистор VT1, который подаст питание на исполнительное реле К1. Реле К1 своими коммутирующими контактами К1.1 замкнет цепь питания электромотора М1 с номинальным напряжением 12 В. В качестве электромотора М1 используется промышленный электродвигатель омывателя лобового стекла для автомобилей семейства ВАЗ-2101 – 2107. Резервуар для воды (жидкости) емкостью 1,3 л также используется промышленный – бачок омывателя лобового стекла автомобилей указанного типа. Диод VD1 препятствует броскам обратного тока через реле К1 и защищает переход транзистора VT1.
Соответственно, если почва в цветочном горшке влажная, то на выводе 12 элемента DD2.1 окажется высокий уровень напряжения. При этом на выводе 4 элемента DD2.2 также постоянно присутствует высокий уровень напряжения, кроме тех периодов, когда от таймера (рис. 1.2) поступает управляющий импульс низкого уровня с периодичностью один раз в час.
На элементах DD1.4 и DD2.2 собран электронный дозатор, формирующий временные интервалы, в течении которых в системе нагнетается вода для полива. Таймер на микросхеме DD3 К561ИЕ16 (рис. 1.2) необходим для циклической подачи управляющих импульсов с периодичностью примерно один раз в час. Управляющие импульсы положительной полярности снимаются с вывода 3 микросхемы К561ИЕ16 (точка А), инвертируются элементом DD2.3 и подаются на вход узла электронного дозатора через конденсатор С1, который не пропускает постоянную составляющую напряжения.
Время работы электродвигателя М1 (нагнетания воды из резервуара) определяется значениями элементов времязадающей цепи С2R6. При указанных на схеме значениях этих элементов электродвигатель будет работать в течении 20 с.
Рассмотрим подробнее работу таймера, схема которого показана на рис. 1.2.
Таймер собран на одной микросхеме К561ИЕ16. Задающим генератором импульсов служит мигающий светодиод HL1. На выводе 10 (тактовый вход микросхемы DD3) присутствуют импульсы с частотой примерно 2 Гц. При вспышке светодиода, на выводе 10 оказывается высокий уровень напряжения, а при погасании светодиода этот уровень сменяется на низкий. Счетчик реагирует на отрицательный фронт импульса и начинает внутренний счет. Высокий уровень напряжения появляется последовательно на каждом выходе Q0 – Q13 счетчика.
Максимальная выдержка времени, которую может обеспечить счетчик К561ИЕ16 в данной схеме, при условии применения в качестве генератора импульсов мигающего светодиода, составит около 1 ч. Сигнал на выключение устройства нагрузки произойдет на выводе 3 (выход Q13) после того, как счетчик досчитает до 8192.
Почему для этого устройства выбрана именно микросхема К561ИЕ16? Для этого подробнее рассмотрим ее функциональные характеристики.
Микросхема К561ИЕ16 содержит 14–ти разрядный асинхронный счетчик с входным каскадом, обостряющим тактовые импульсы. На входе микросхемы установлен формирователь импульсов и триггер. Выходной сигнал поступает на вывод Q0 – Q13 от однотипных внутренних буферных усилителей. Счетчик сбрасывает выходные сигналы (переводя их в низкий логический уровень) при напряжении высокого уровня на входе сброса R (вывод 11). Содержимое счетчика увеличивается откликом на каждый отрицательный перепад на тактовом входе с (вывод 10). Максимальная тактовая частота может достигать 3 МГц, а длительность импульса сброса должна превышать 550 нс. Микросхема К561ИЕ16 широко распространена и имеет небольшую стоимость, что является дополнительным стимулом для разработки различных электронных устройств на ее основе.
В первый момент времени после подачи на микросхему питания начинает заряжаться оксидный конденсатор С5 через резистор R8, на входе сброса R микросхемы DD3 устанавливается высокий уровень, благодаря которому на всех выходах Q будет присутствовать низкий уровень.
По прошествии 60 мин (выдержка времени, обусловленная счетом до 8192 микросхемы DD3) на выводе 3 DD3 возникает напряжение высокого уровня. Оно инвертируется элементом DD2.3 и поступает через разделительный конденсатор С1 на узел дозатора полива. Принудительно сбросить счетчик в нуль можно кратковременным отключением питания или замыканием накоротко постоянного резистора R8 (подачей низкого уровня на вход сброса R микросхемы К561ИЕ16).
Контакты Х1 изготовлены из металлических спиц (применяемых также для вязания) длиной 30 см каждая. Контактные проводники припаиваются к спицам с помощью припоя ПОС-61 (или аналогичного) и флюса. Проводники от датчиков – спиц выполнены гибким монтажным проводом МГТФ-0,8 и имеют длину не более 50 см каждый. Большая длина проводников к датчику приведет к ложным срабатываниям логических элементов микросхемы DD1.1 и DD1.2. Переменный резистор R1 необходим для регулировки чувствительности влажности почвы. Перед первым включением движок R1 устанавливают в среднее (по схеме) положение. Датчики – спицы помещаются в почву цветочного горшка на глубину до 20 см.
Пока почва сухая, она имеет большое сопротивление электрическому току (несколько десятков МОм). Сопротивление переменного резистора R1 меньше этого значения, поэтому на выводах 1 и 2 логического элемента DD1.1 присутствует сигнал высокого логического уровня. На выводе 3 DD1.1 будет низкий уровень (так как элемент включен как инвертор), а на выводе 4 элемента DD1.2 присутствует вновь высокий уровень. Благодаря этому напряжению заряжается оксидный конденсатор С3, который необходим для инерции срабатывания узла контроля влажности.
Когда С3 зарядится до напряжения 4–6 В (несколько сек) на выходе элемента DD1.3 окажется низкий уровень напряжения – он поступит на узел сравнения напряжений, собранный на элементе DD2.1. Элемент DD2.1 (ИЛИ с инверсией) согласно таблице истинности выдаст на выходе (вывод 11) управляющий сигнал высокого логического уровня, если на входах (выводы 12 и 13 DD2.1) будет сочетания двух низких уровней (в любом другом случае сигнал на выводе 11 будет иметь низкий уровень, транзистор заперт, электродвигатель М1 не работает).
Таким образом, при появлении на выходе логического элемента DD2.1 высокого уровня, откроется транзистор VT1, который подаст питание на исполнительное реле К1. Реле К1 своими коммутирующими контактами К1.1 замкнет цепь питания электромотора М1 с номинальным напряжением 12 В. В качестве электромотора М1 используется промышленный электродвигатель омывателя лобового стекла для автомобилей семейства ВАЗ-2101 – 2107. Резервуар для воды (жидкости) емкостью 1,3 л также используется промышленный – бачок омывателя лобового стекла автомобилей указанного типа. Диод VD1 препятствует броскам обратного тока через реле К1 и защищает переход транзистора VT1.
Соответственно, если почва в цветочном горшке влажная, то на выводе 12 элемента DD2.1 окажется высокий уровень напряжения. При этом на выводе 4 элемента DD2.2 также постоянно присутствует высокий уровень напряжения, кроме тех периодов, когда от таймера (рис. 1.2) поступает управляющий импульс низкого уровня с периодичностью один раз в час.
На элементах DD1.4 и DD2.2 собран электронный дозатор, формирующий временные интервалы, в течении которых в системе нагнетается вода для полива. Таймер на микросхеме DD3 К561ИЕ16 (рис. 1.2) необходим для циклической подачи управляющих импульсов с периодичностью примерно один раз в час. Управляющие импульсы положительной полярности снимаются с вывода 3 микросхемы К561ИЕ16 (точка А), инвертируются элементом DD2.3 и подаются на вход узла электронного дозатора через конденсатор С1, который не пропускает постоянную составляющую напряжения.
Время работы электродвигателя М1 (нагнетания воды из резервуара) определяется значениями элементов времязадающей цепи С2R6. При указанных на схеме значениях этих элементов электродвигатель будет работать в течении 20 с.
Рассмотрим подробнее работу таймера, схема которого показана на рис. 1.2.
Таймер собран на одной микросхеме К561ИЕ16. Задающим генератором импульсов служит мигающий светодиод HL1. На выводе 10 (тактовый вход микросхемы DD3) присутствуют импульсы с частотой примерно 2 Гц. При вспышке светодиода, на выводе 10 оказывается высокий уровень напряжения, а при погасании светодиода этот уровень сменяется на низкий. Счетчик реагирует на отрицательный фронт импульса и начинает внутренний счет. Высокий уровень напряжения появляется последовательно на каждом выходе Q0 – Q13 счетчика.
Максимальная выдержка времени, которую может обеспечить счетчик К561ИЕ16 в данной схеме, при условии применения в качестве генератора импульсов мигающего светодиода, составит около 1 ч. Сигнал на выключение устройства нагрузки произойдет на выводе 3 (выход Q13) после того, как счетчик досчитает до 8192.
Почему для этого устройства выбрана именно микросхема К561ИЕ16? Для этого подробнее рассмотрим ее функциональные характеристики.
Микросхема К561ИЕ16 содержит 14–ти разрядный асинхронный счетчик с входным каскадом, обостряющим тактовые импульсы. На входе микросхемы установлен формирователь импульсов и триггер. Выходной сигнал поступает на вывод Q0 – Q13 от однотипных внутренних буферных усилителей. Счетчик сбрасывает выходные сигналы (переводя их в низкий логический уровень) при напряжении высокого уровня на входе сброса R (вывод 11). Содержимое счетчика увеличивается откликом на каждый отрицательный перепад на тактовом входе с (вывод 10). Максимальная тактовая частота может достигать 3 МГц, а длительность импульса сброса должна превышать 550 нс. Микросхема К561ИЕ16 широко распространена и имеет небольшую стоимость, что является дополнительным стимулом для разработки различных электронных устройств на ее основе.
В первый момент времени после подачи на микросхему питания начинает заряжаться оксидный конденсатор С5 через резистор R8, на входе сброса R микросхемы DD3 устанавливается высокий уровень, благодаря которому на всех выходах Q будет присутствовать низкий уровень.
По прошествии 60 мин (выдержка времени, обусловленная счетом до 8192 микросхемы DD3) на выводе 3 DD3 возникает напряжение высокого уровня. Оно инвертируется элементом DD2.3 и поступает через разделительный конденсатор С1 на узел дозатора полива. Принудительно сбросить счетчик в нуль можно кратковременным отключением питания или замыканием накоротко постоянного резистора R8 (подачей низкого уровня на вход сброса R микросхемы К561ИЕ16).
1.1.2. Особенности установки устройства
Воду из бачка омывателя нагнетает автомобильный электродвигатель. Патрубок – капельница также используется штатный – его можно приобрести в магазинах автотоваров или в торговых точках товаров для аквариума. Длина патрубка составляет 3–4 м. Большую длину использовать не желательно, так как напор воды будет сокращаться. На концы патрубка – капельницы надевают распылители воздуха для аквариума, через которые свободно проникает и вода. Эти распылители и, тройник – разветвитель и миниатюрный вентиль показаны на рис. 1.4. Приобрести их можно там же (у аквариумистов).
Рис. 1.4. Вентиль, тройник и распылители
Распылители для воды закрепляют на штативе или на самом стволе цветка (если толщина позволяет) в середине ствола, так, чтобы распыляющаяся влага доставалась не только почве, но и стволу и листьям цветка. Когда требуется обслуживать несколько цветков, недалеко удаленных друг от друга, на патрубок устанавливают тройник, от которого разветвляются еще два патрубка.
Рис. 1.4. Вентиль, тройник и распылители
Распылители для воды закрепляют на штативе или на самом стволе цветка (если толщина позволяет) в середине ствола, так, чтобы распыляющаяся влага доставалась не только почве, но и стволу и листьям цветка. Когда требуется обслуживать несколько цветков, недалеко удаленных друг от друга, на патрубок устанавливают тройник, от которого разветвляются еще два патрубка.
1.1.3. О деталях и налаживании
Кроме микросхемы К561ИЕ16 можно без изменений в схеме применить ее зарубежный аналог CD4020В. Вместо этих микросхем можно применить более дорогую по стоимости зарубежную микросхему CD4060 (у которой нет полного аналога в К561 серии). Микросхема CD4060 имеет встроенный генератор импульсов, поэтому элементы HL1 и R9, в таком случае, из схемы можно исключить.
Транзистор КТ604А заменяют любым из серий КТ815, КТ817, КТ819.
Диод VD1– любой из серий КД521, КД522, КД102, КД103, 1N4148. Постоянные резисторы типа МЛТ-0,25. Оксидные конденсаторы С2 – С5 типа К50–24, К50–29 или аналогичные. Конденсатор С1 типа КМ-6 или аналогичный. Оксидный конденсатор С4 сглаживает пульсации напряжения.
Мигающий светодиод (кроме указанного на схеме) может быть типа L-816BRSC-B, L-56DGD, ARL-5013URC-Bили аналогичным. Реле К1 – любое на напряжение срабатывания 10–12 В с током 10…50 мА, например, WJ118–1C или аналогичное.
Устройство очень экономично и непритязательно к параметрам источника питания. Ток потребления без учета тока потребления реле составляет всего 20 мА, причем большая часть расходуется мигающим светодиодом. Источник питания стабилизированный. Устройство хорошо работает при напряжении питания 9—15 В и работоспособно и при снижении напряжения питания до 5 В, однако в этом случае частота задающего генератора на мигающем светодиоде HL1 заметно увеличивается, что приводит к уменьшению времени задержки.
Устройство в налаживании не нуждается.
Время работы электродвигателя М1 (время полива) корректируется емкостью конденсатора С2. При емкости С2=1 мкФ и напряжения питания 12 В время полива составит 4 с, при С2=20 мкФ время полива увеличится до 1 мин.
Чувствительность узла контроля влажности почвы регулируют изменением сопротивления переменного резистора R1. При уменьшении сопротивления R1 чувствительность уменьшается.
Задержка включения таймера также может быть изменена путем подключения входа инвертора DD2.3 к другому выходу Q микросхемы– счетчика К561ИЕ16. Так, например, при подключении к выходу Q9 DD3 (вывод 14) управляющий импульс высокого уровня поступит на инвертор примерно через 3 мин после начала отсчета импульсов задающего генератора (микросхема сосчитает до 512).
Транзистор КТ604А заменяют любым из серий КТ815, КТ817, КТ819.
Диод VD1– любой из серий КД521, КД522, КД102, КД103, 1N4148. Постоянные резисторы типа МЛТ-0,25. Оксидные конденсаторы С2 – С5 типа К50–24, К50–29 или аналогичные. Конденсатор С1 типа КМ-6 или аналогичный. Оксидный конденсатор С4 сглаживает пульсации напряжения.
Мигающий светодиод (кроме указанного на схеме) может быть типа L-816BRSC-B, L-56DGD, ARL-5013URC-Bили аналогичным. Реле К1 – любое на напряжение срабатывания 10–12 В с током 10…50 мА, например, WJ118–1C или аналогичное.
Устройство очень экономично и непритязательно к параметрам источника питания. Ток потребления без учета тока потребления реле составляет всего 20 мА, причем большая часть расходуется мигающим светодиодом. Источник питания стабилизированный. Устройство хорошо работает при напряжении питания 9—15 В и работоспособно и при снижении напряжения питания до 5 В, однако в этом случае частота задающего генератора на мигающем светодиоде HL1 заметно увеличивается, что приводит к уменьшению времени задержки.
Устройство в налаживании не нуждается.
Время работы электродвигателя М1 (время полива) корректируется емкостью конденсатора С2. При емкости С2=1 мкФ и напряжения питания 12 В время полива составит 4 с, при С2=20 мкФ время полива увеличится до 1 мин.
Чувствительность узла контроля влажности почвы регулируют изменением сопротивления переменного резистора R1. При уменьшении сопротивления R1 чувствительность уменьшается.
Задержка включения таймера также может быть изменена путем подключения входа инвертора DD2.3 к другому выходу Q микросхемы– счетчика К561ИЕ16. Так, например, при подключении к выходу Q9 DD3 (вывод 14) управляющий импульс высокого уровня поступит на инвертор примерно через 3 мин после начала отсчета импульсов задающего генератора (микросхема сосчитает до 512).
1.1.4. Варианты практического применения
Устройство можно применять не только в соответствии с описанным выше способом – для автоматического полива растений. В жаркое время года, когда в квартире душно и уровень влажности катастрофически мал, такое устройство без изменения электрической схемы послужит для увлажнения воздуха.