Дро не подозревал, что на его творчество можно взглянуть с такой точки зрения. Но это, конечно, не означает, что он не имел на этот счет своей собственной точки зрения, весьма прогрессивной для своего времени.
   Ведь не зря первый из знаменитых андроидов - "писец" - писал: "Je ne pense pas, ne serais je donepas?" - "Я не мыслю - значит, меня нет?", как бы вступая в спор с выдающимся французским математиком, физиком, физиологом и философом XVII века Рене Декартом, которому принадлежат слова: "Cogito, ergo sum" - "Я мыслю - значит, существую".
   Когда на парижской выставке демонстрировалась "фотоэлектрическая собака", идея обратной связи, как и многие другие идеи современной теории управления, учеными еще не были сформулированы, машиностроение еще не очень нуждалось в слове "автомат", а производство не было знакомо с понятием "автоматизация".
   Но зато быстрыми темпами развивались радио, электроника, фотоэлектрические устройства, разрабатывались телевизионные системы, системы пневмо-, гидро- и электропривода - одним словом, многое из того, что сегодня называется средствами и системами автоматики и автоматизации. Возможности этих новых средств использовались при создании самых разнообразных автоматических устройств, полуавтоматов и автоматов различного назначения. И одновременно эти системы и средства "примерялись" не только на "фотоэлектрической собаке", но и на очередной серии андроидов - "Телевокс", "Эрик", "Альфа" и др., которые двигали руками, отвечали на вопросы, садились и вставали, стреляли из пистолета, восхищали и пугали зрителей, но по-прежнему были только игрушками.
   Так прошел третий "тур" попыток создать "по образу и подобию". В этом туре, как и в двух предыдущих, использовались самые совершенные тогда научные методы и технические средства. Наши предки тренировались изо всех сил.
   ЧЕТВЕРТЫЙ ТУР
   Вся эта глава - совсем краткий "этюд" из истории технического прогресса. Только поэтому нам удалось, начав "от Адама", так быстро добраться почти до середины XX века. В сколько-нибудь полном виде такая история составила бы, вероятно, не одну сотню толстых томов. Она бы содержала бесчисленное количество удивительных фактов и событий трагических и смешных, невероятных и неправдоподобных, но вместе с тем абсолютно верных и документально подтвержденных Вся от начала до конца она представляла бы своеобразный свод биографий - биографий ученых и инженеров, техников и рабочих, людей образованных и са моучек, изобретателей по призванию, по необходимости и по "случаю". И конечно, значительное место в этих биографиях должны были бы занять рассказы об общественном, политическом и экономическом устройстве, об уровне науки и техники, культуры и образования в тех странах и в те времена, где и когда ,эти люди жили и работали. Это была бы в конечном счете история человечества, ибо историю технического прогресса невозможно отделить от истории человеческого общества.
   А то, о чем мы рассказали в этой главе, - всего лишь нечто вроде "технического фона", на котором пунктиром намечена совсем краткая история давней мечты и многочисленных попыток человека, уподобившись библейскому богу, воспроизвести нечто "по образу и подобию своему". Проводя такой пунктир, мы хотели еще раз подчеркнуть, что идея робота не нова, что попытки реализовать эту идею люди делали неоднократно, что идея робота, может быть, ничуть не хуже и ничуть не лучше идей "ковра-самолета" и "скатерти-самобранки" и что по мере прогресса человеческого общества, расширения технических возможностей понятия "желаемое" и "достижимое" непрерывно сближаются. Все лучше удается предсказать реальность этого сближения, все быстрее и точнее рассчитать его скорость, все весомее и драгоценнее становятся "плоды просвещения".
   Итак, технический "этюд", охватывающий период времени от "сотворения мира" почти до середины XX века, занял у нас меньше одной главы.
   Вторую половину XX века, время, в котором мы живем, наши потомки также запомнят как важнейший этап в истории науки и техники. "Цепная реакция" в области робототехники есть прямое следствие взрывоподобного процесса развития науки и техники, начавшегося круглым счетом 30 лет назад.
   Одной из важнейших примет нашего времени является все более сильный упор на использование человеческого ума, таланта, знаний. Наука уже стала непосредственной производительной силой - это означает, что в развитии каждой из ее бесчисленных отраслей и ветвей заинтересованы не отдельные группы и группки "кабинетных" ученых, а целые отрасли промышленности, подчас целые государства.
   Научно-техническая революция - это в первую очередь качественные изменения во взглядах на науку, на то, что она может и что она должна. Такой качественный скачок накапливался исподволь, развивался вместе с развитием общества, его производительных сил, научных и технических возможностей.
   Сто и даже еще тридцать лет назад главной задачей техники была замена мускульной силы человека "механическими силами" машины.
   Научно-техническая революция началась с капитальных шагов в направлении автоматизации процессов умственного труда с целью повышения его производительности, избавления человека от утомительных, однообразных интеллектуальных операций. Человечество вступило в один из самых перспективных и увлекательных периодов своей истории; уже сегодня наука и техника стократно и тысячекратно увеличивают не только наши физические, но и умственные, интеллектуальные возможности. Стало это реальным с появлением электронной техники и технологии, созданием армии электронных цифровых вычислительных машин (ЭЦВМ или просто ЭВМ), которые служат человеку числом и уменьем.
   Свыше десяти лет назад экономисты, оценивая влияние технического прогресса и темпов, характеризующих изменения в технике, рассмотрели историю внедрения в течение последних десятилетий 20 крупнейших техническкх нововведений, имевших значительные социальные и экономические последствия. В течение последнего десятилетия XIX века и первой половины XX века человечеству достались: алюминий, пластмассы, витамины, искусственные каучук и волокна, антибиотики, автомобильный и воздушный транспорт (чем не ковер-самолет?), электронные лампы и радиовещание, замороженные продукты (чем не скатерть-самобранка?). С началом второй половины XX века, а фактически за 15 лет, широкое внедрение получили электронно-вычислительная техника, телевидение и станки с цифровым, или, как часто говорят, с программным, управлением, полупроводники, интегральные схемы и производство ядерной энергии, титан и синтетическая кожа.
   Масштабы и темпы технических нововведений непрерывно расширяются и растут. В своих исследованиях ученым уже приходится изучать технические, социальные и экономические последствия внедрения глобального и цветного телевидения, мазеров и лазеров, освоения трансплантации (пересадки) живых органов, развития так называемой инженерной генетики, глубоководной и космической техники, атомоходов, роботов, все новых и новых поколений ЭВМ, новой и новейшей техники, машин, автоматов, аппаратов, появление которых становилось возможным и целесообразным только с появлением каждого следующего поколения ЭВМ.
   Для того чтобы жить, работать, изобретать, развлекаться, нужна энергия, которую мы получаем вместе с хлебом, овощами, фруктами от растений, вместе с мясом и молочными продуктами от животных. Животные, в свою очередь, также питаются растениями. Энергия, заключенная в стакане молока, перешла туда от растений, скормленных корове. Значит, в конечном счете всю энергию мы получаем от растений. Откуда она там появилась?
   Поставщиком этой энергии служит Солнце. В живой природе все тесно взаимосвязано и взаимозависимо.
   Сеть этих связей настолько сложна, цепочки зависимостей могут быть такими длинными и запутанными, что, потянув без разбору за одну из ниточек, рискуешь порвать сеть в совершенно неожиданном и крайне опасном месте.
   Удивительная вещь - картина равновесия в природе! Асфальт, бетон и стекло, транспорт, водопровод и центральное отопление, шляпы, пальто и зонтики уже давно загораживают современному человеку эту картину, и постепенно она стала казаться ему совершенно нерушимой, вечной. А потом все вдруг заговорили о так называемом экологическом равновесии!
   В технике дело с "равновесием" обстоит примерно так же, как и в природе. В ней все так же взаимосвязано и взаимообусловлено. Прежде чем, повернув выключатель, зажечь свет, нужно в патрон ввернуть лампочку, чтобы изготовить лампочку, нужна колба, цоколь и вся "начинка", чтобы их изготовить, нужно... Цепочка обрастает самыми различными материалами, машинами, автоматами, технологиями.
   Научно-техническая революция - процесс развития, чрезвычайно сжатый во времени Он не меньше любого другого процесса в природе и технике требует гармонии и равновесия, особого равновесия - динамического, равновесия в движении!
   Научно-технический прогресс - все его "пути-дороги": автоматизация производства, движение в глубь атома, океана, космоса - потянул сразу за множество нитей, привел в движение всю техническую сеть. И он же породил одно из наиболее могучих средств поддержания ее равновесия в этом движении - вычислительную технику, ЭВМ. Вот в каких новых условиях сегодня совершается уже четвертая попытка создать нечто "по образу и подобию", идет четвертый и, видимо, решающий тур. На фоне сказанного должно стать особенно ясно, что робот, такой, какой он есть сегодня или будет завтра, представляет собой не единственный и не исключительный продукт современной науки и техники, а одно из многих ее порождений, вызванных к жизни острой необходимостью.
   Не приходит ли иногда вам в голову, дорогой читатель, что, может быть, они и не нужны совсем, эти новые "порождения", что, может быть, без промышленных революций и научно-технических прогрессов было бы лучше?
   Нет, не было бы лучше. Останавливаться в своем развитии человеческое общество не может. Его научнотехнический уровень растет и будет расти, плоды просвещения становятся все более весомыми, а их урожай все более обильным Общественное устройство должно и будет становиться все более совершенным, приближаясь к коммунизму. Только при этих условиях каждый человек может получить равное с другими право и возможность работать и пользоваться плодами коллективного труда. Только такое общество может справиться с будущим "энергетическим кризисом", обеспечить экологическое равновесие, сделать будущие поколения еще более здоровыми и счастливыми.
   Мы в книге подробно не останавливаемся на социальных последствиях, связанных с грядущим широким внедрением систем робототехнлки.
   В социальном плане было бы совершенно неправильно выделять роботы в какой-то особый класс систем автоматизации человеческого труда, отличающийся от машин и автоматов всех других классов. Их технические, технологические и конструктивные особенности и окружающий их до сих пор ореол "чапековоких роботов" не дают на это никакого права. Они в этом плане не изменяют и не могут изменить соотношения сил в системе "общество - человек - машина" и не дают никаких оснований снова возвращаться к щекочущим нервы дискуссиям на тему "Кто - кого?": кто умнее - человек или машина? Не придется ли нам быть на побегушках у роботов?
   Не придется! Ни при роботах второго, ни двадцатого, ни сотого поколения, какую бы часть человеческого труда они на себя ни взяли. А ожидаемые социальные последствия от их широкого внедрения те же самые, что и от других плодов науки и техники. Последствия, которые целиком базируются на возможности повысить производительность и качество нашего труда, избавить человека от таких видов тяжелого, однообразного и подчас вредного труда, какими он вынужден заниматься до сих пор, освободить его труд для других дел и занятий, более полезных обществу и доставляющих ему большее личное удовлетворение, - для дел творческих.
   Иначе разве стали бы уделять проблемам робототехники такое внимание в нашей стране, разве они упоминались бы в важнейших партийных и правительственных документах и на решение этих проблем тратились бы время и силы советских людей, целых коллективов ученых, инженеров, рабочих?
   МОЖНО ВСЕ ПЕРЕСЧИТАТЬ
   Когда авторы еще только обдумывали план и содержание этой книжки, они собирались подробно рассказать о том, как устроены и как работают, считают, управляют ЭВМ, без которых роботы не могут быть роботами.
   Они знали, что этот рассказ должен начаться с событий 30-летней давности, когда на электротехническом факультете Пенсильванского университета США к весне 1946 года была запущена первая ЭВМ, названная ЭНИАК. Построенная на 18 тысячах электронных ламп, она занимала большое помещение площадью около 200 квадратных метров, весила около 30 тонн и требовала 175 киловатт энергии.
   Напишите на листке бумаги два десятизначных числа и попробуйте их перемножить. Вы увидите, что это отнимет несколько минут, если вам приходится обходиться одним только карандашом, без помощи других технических средств. Если вы умеете пользоваться арифмометром, это умножение займет 10-15 секунд.
   Электромеханическая счетная машина на этот процесс затратит 2-3 секунды. ЭНИАК выполнял 300 таких умножений в секунду, сразу увеличив доступную человеку скорость вычислений круглым счетом в тысячу раз.
   Показав с помощью этого простого и наглядного примера, как делала первые шаги научно-техническая революция и почему ЭВМ служит одним из ее основных орудий, дальше следовало бы рассказать, каким образом был достигнут такой гигантский скачок, объяснить, как считала первая ЭВМ, как она была устроена, для чего ЭНИАКу были нужны 18 тысяч ламп, 200 квадратных метров площади, 175 киловатт энергии? Но это можно и нужно было бы сделать, если бы следующие за ЭНИАКом ЭВМ были бы похожи на него. Но они не были похожи. ЭНИАК проработал всего около десяти лет, после чего был поставлен на вечное хранение в Национальном музее США в Вашингтоне.
   Его техническое состояние позволяло ему работать еще и еще, но он уже морально устарел, стал музейным экспонатом, только начав свою жизнь. Уже тогда разрабатывались и строились несколько более совершенных конструкций ЭВМ, и сегодня рассказ об ЭНИАКе представлял бы интерес лишь с точки зрения истории науки и техники.
   Новые машины были легче ЭНИАКа, занимали меньше места, были надежнее, а главное, они считали гораздо быстрее. В конце 50-х годов быстродействие ЭВМ достигало 100-150 тысяч операций в секунду. Они напоминали ЭНИАК только по своему названию, их конструкция, устройство были совершенно другими.
   Наверное, и о них можно было бы рассказать много интересного, не меньше, чем об их предшественниках.
   Но и эти машины, еле успев появиться на свет и проработать несколько лет, становились музейными экспонатами. Процесс развития и совершенствования ЭВМ продолжался такими темпами, за которыми не только научно-популярная, но и научно-фантастическая литература не могла угнаться. Быстродействие машин, создававшихся в 60-х годах, стало доходить уже до миллиона (!) операций в секунду, их вес и габариты буквально "таяли" на глазах.
   Кубик со стороной в четверть метра, весом меньше 30 килограммов бортовая ЭВМ - выполняет все бесчисленные подсчеты, связанные с маневрированием корабля в космосе, навигацией, входом в плотные слои атмосферы. И другие "кубики" - мини-ЭВМ, производящие вычисления с бешеной скоростью, - продукт множества изобретений, разработки множества новых материалов и технологий.
   Много интересного можно было бы рассказать и о мини-ЭВМ, об устройстве, конструкции, принципах действия таких "кубиков". О том, как на смену вакуумной электронной лампе пришел транзистор. О том, как сам транзистор проложил дорогу к так называемым интегральным схемам, в которых на кристалле кремния размером в пару сантиметров размещаются тысячи микроминиатюрных транзисторов. Лампа, транзистор, интегральная схема - три поколения электронных компонентов превратили 30-тонный ЭНИАК в 30-килограммовый кубик, работающий в тысячи раз быстрее своего "предка". А научно-техническая революция в области ЭВМ стала перманентной, она непрерывно продолжается.
   Несколько лет идет работа над созданием уже не мини-, а микро-ЭВМ, "сердце" которой целиком умещается на кристалле того же кремния, имеющем примерно такие же размеры, как три напечатанные здесь буквы: ЭВМ. Считают, что такой средний по своим возможностям микрокомпьютер способен выполнять 100 тысяч вычислений в секунду. На одном кристалле не одна, а целый комплекс электронных схем - это новый электронный компонент, новое, четвертое поколение ЭВМ. Такую, можно сказать, целую ЭВМ можно разместить в уголочке пишущей машинки, кассового аппарата, в светофоре, в детской погремушке, где угодно!
   Нет, не главка и не глава, а целые книги нужны, чтобы понятно и интересно рассказать об ЭВМ. Такие книги уже написаны, они пишутся сегодня и будут писаться завтра, поскольку "ЭВМ-революция" продолжается, новые идеи, новые решения и применения появляются и растут как грибы после дождя. В нашей же книге ЭВМ занимает важное, но не центральное место. И мы здесь расскажем о них только го, что сделает наглядным их широкие возможности и применения и что нам понадобится, когда речь пойдет о роботах.
   У доисторических "инженеров", которые только еще изобретали солнечные часы, вычислительным инструментом служила рука. Человек давным-дав"но научился считать на десяти пальцах рук, и нам не надо далеко ходить на поиски прототипа нашей обычной десятичной системы счисления. Современная цифровая ЭВМ тоже считает "на пальцах", но не на десяти, а на двух, пользуется лишь двумя символами - нолем и единицей - вместо десяти.
   О том, как устроена двоичная система счисления, как записывают двоичные числа, производят над ними все четыре действия арифметики и так далее, рассказывается во многих популярных книгах и рассказах об ЭВМ, в школьных кружках, на уроках. Наверное, скоро обычная десятичная система останется только в быту, в торговле, в предварительных инженерных прикидках, предварительных научных поисках: на десяти пальцах очень удобно.
   Человеку удобно на десяти пальцах, машине - на двух: 0 и 1, "да" и "нет", "включено" и "выключено" - всего два сигнала нужно, чтобы представить и запомнить любое число, любую команду, любую информацию.
   На 46 клавишах обычной пишущей машинки располагаются 59 символов; здесь буквы, цифры, знаки препинания, сложения, равенства, кавычки, скобки. Очень удобно человеку, но страшно неудобно ЭВМ, если мы хотим научить ее понимать и запоминать информацию, что несут все эти разнообразные символы. Ей желательно, чтобы вся информация выражалась все теми же двумя символами - нолем и единицей. Правда, при такой записи, например, всех чисел от 0 до 99, вместо двух знаков десятичной системы придется использовать семь знаков, представляющих ту или иную комбинацию нолей и единиц. С точки зрения экономичности записи очень невыгодно. Но эта проблема не беспокоит ЭВМ, она ее решает "не уменьем, а числом".
   Большая Советская Энциклопедия, издание которой закончено в 1957 году, включает 50 томов. В каждом томе в среднем насчитывается круглым счетом 4 миллиона печатных знаков. Значит, все содержание энциклопедии изложено с помощью 200 миллионов знаков.
   Пусть разнообразие этих знаков на разряд выше, чем у обычной пишущей машинки. Чтобы охватить это разнообразие двоичной системой, для каждого из знаков нужно восьмиразрядное двоичное число, комбинация восьми нулей и единиц. На всю энциклопедию, значит, понадобится 1 миллиард 600 миллионов нулей и единиц.
   Мощной ЭВМ ничего не стоит запомнить всю эту информацию, причем в случае необходимости в ее "мозгу" можно предусмотреть место еще для одной энциклопедии. Гигантская автоматическая память - вот что такое ЭВМ. Но не только это!
   Человек в процессе вычислений выполняет различные арифметические операции. Но это не все, что ему приходится делать, если он не просто учит наизусть, например, таблицу умножения. Обычно числа, над которыми надо выполнить эти операции, приходится выбирать из расчетов, инструкций, таблиц, прейскурантов, справочников. Чтобы знать, что делать с полученным результатом, нужно заглянуть куда-то, откуда видно, что, например, получив какой-то результат, нужно его теперь умножить на то или иное число из колонки 1, а умножив, занести в колонку 2. Наконец, окончательный и некоторые промежуточные результаты надо записать на бумаге.
   Информация сама по себе бесполезна. ЭВМ, как и человеку, нужно сказать, что с ней делать - сложить или вычесть, умножить или разделить хранящиеся в ее памяти сигналы, из какого "угла" их взять, куда направить результаты. Поэтому в память машины всегда вводят инструкции, подготовленные человеком, определяющие порядок операций при решении той или иной задачи. Совокупность таких инструкций называют программой. ЭВМ может видоизменить данные ей инструкции Если задача не решается одним способом, машина "по роется в памяти" и попробует другой способ, третий - до тех пор, пока не придет к решению или не исчерпает всех способов, которые она знает. Проделывает она эти операции с гигантской скоростью. Логические цепи машин включаются и выключаются за одну миллиардную долю секунды. Складывается впечатление, что с помощью ЭВМ можно действительно пересчитать все, что угодно.
   ЭВМ уже сегодня заменяют миллионы людей умственного труда, заменяют их в конторах и учреждениях, в исследовательских институтах и торговле, на транспорте и на производстве, заменяют их там и тогда, где и когда их труд, хотя его и называют умственным, по существу, сводится к выполнению массы вычислений, является однообразным, утомительным, не требующим воображения, творчества, инициативы, всех тех качеств, которые присущи человеческому уму.
   Но автоматизация такого вычислительного труда не единственная "умственная" обязанность, которую уже сегодня возлагают на ЭВМ.
   Длительное хранение любой информации - научной, технической, торговой, медицинской, технологической; выдача ее "в мгновение ока" по первому требованию, упорядочение этой информации по тем или иным признакам, которые вы пожелаете указать: по сортам, по видам, по диагнозам, стоимостям, размерам, цветам, мало ли что вам может понадобиться для дела, - вот еще одна специальность ЭВМ.
   Хранение, упорядочение, выдача информации - все это не только и не столько вычислительные функции, сколько функции запоминания, выполнения логических действий, преобразований. И эти информационные функции, выполнением которых занята сегодня уйма людей, поддаются автоматизации, могут быть переданы и уже передаются ЭВМ. Не зря ЭВМ называют иногда роботами в белых воротничках, подчеркивая этим названием, что они заменяют людей, занимающихся "чистым", умственным трудом, работой, которую можно делать в белой рубашке.
   ЗА РУЛЕМ
   К оживленному перекрестку на большой скорости приближается такси. Водитель следит за сигналами регулировщика или светофора, наблюдает за машинами, движущимися впереди, слева, справа. Он не только следит - он действует, принимает решения, управляет машиной. Он должен предусмотреть все, что может произойти, решить, будет ли ждать вот этот пешеход, пока машина проедет, или очертя голову кинется через перекресток. Он должен рассчитать, с какой силой надо тормозить, чтобы обеспечить полную безопасность проезда перекрестка. Окружающий его внешний мир чрезвычайно сложен, стратегия и тактика этого мира слагаются из стратегий и тактик десятков машин и сотен людей. Он должен быстро ориентироваться в этом мире, безошибочно действовать в самых сложных ситуациях.
   Не кажется ли вам, читатель, что понятие "физический труд" не очень подходит для описания всех этих обязанностей, составляющих процесс управления, хотя шоферов и относят к лицам физического труда?
   Водитель, управляющий автомобилем, трактором, комбайном, - один из множества примеров, когда человек управляет машиной без вмешательства ЭВМ.
   Понятно, что до появления ЭВМ так действовала вся техника, которой было вооружено человечество.
   Прежде чем космический корабль отправится в путь, даже еще прежде, чем его начнут строить, он уже успевает много раз совершить то путешествие, для которого предназначен. Это путешествие он проделывает в формулах и расчетах. Его запускают с теоретической "стартовой площадки"; каждый этап, каждый маневр космического полета опирается на бесчисленные математические операции и выкладки, учитывающие особенности самого корабля и устройств его запуска, силы, действующие на него в полете, предусматривающие любые случайности, возможные при запуске, полете, посадке.
   Но вот корабль отправляется в настоящий полет.
   В этом полете его сопровождает специальная бортовая ЭВМ. Начинается настоящее управление кораблем, управление, в процессе которого время нельзя ни растянуть, ни сжать, ни повернуть вспять, нельзя "переиграть" заново аварийную ситуацию, нельзя ни на мгновение "оторвать руки от руля".
   Орбитальные полеты, встречи в космосе, посадка на Луну, возвращение на Землю, маневрирование в космосе, навигация, вход в плотные слои атмосферы на пути домой и сопряженные со всеми этими и другими составляющими космического полета процессы управления требуют непрерывного участия или соучастия ЭВМ, требуют мгновенных решений и расчетов, превышающих способности человека.