Важную роль в обеспечении атакующих и защитных действий играет возможность свободно перемещаться по татами, свободно двигать туловищем.
   Для этого необходимо знать некоторые закономерности, связанные с расположением стоп и плечевой оси борца.
   Так, если одна стопа борца будет развернута относительно другой на 90 градусов, то его плечевая ось для сохранения равновесия должна развернуться в эту сторону на 45 градусов (рис. 3.1б). Если одна стопа развернется внутрь на 45 градусов, то для сохранения равновесия необходимо развернуть плечевую ось в эту же сторону на 22,5 градуса (рис. 3.1в).
   3.1а – стопы размещены симметрично
   3.1б – одна стопа развернута на 90 градусов наружу
   3.1в – одна стопа развернута на 45 градусов внутрь
   Рис. 3.1. Влияние направления стоп на смещение плечевой оси борца
   Однако не только расположением ОЦМ определяется степень устойчивости тела борца. Не менее важным критерием устойчивости является величина площади опоры тела. Степень устойчивости тела прямо пропорциональна площади его опоры. Следовательно, борец должен стремиться к увеличению площади опоры (до определенной степени) и снижению высоты расположения над ней ОЦМ.
   На рис. 3.2а показано расположение общего центра тяжести и его проекции на горизонтальную плоскость, а также линия плеч и ее проекция на площадь опоры (ОЦТ).
   Согнутые ноги или расширение площади опоры уменьшают высоту (h) расположения ОЦТ и увеличивают устойчивость. Однако следует иметь в виду, что избыточное расширение точек опоры может привести к эффекту их скольжения и потере равновесия.
   При перемещении проекции ОЦТ в пределах площади опоры сохраняется лабильное равновесие (рис. 3.2б). Чем ближе проекция ОЦТ будет расположена к центру площади опоры, тем устойчивее будет равновесие.
   В случае потери устойчивого статического равновесия (рис. 3.3а), его можно сохранить динамически. Для этого опора борца, расположенная ближе к проекции ОЦТ, выставляется в сторону предполагаемого падения. Так, на рис. 3.3б показано перемещение опоры в случае выведения борца из равновесия вперед и вправо.
   Рис. 3.2. Условия для сохранения устойчивого равновесия
   Рис. 3.3. Нарушение равновесия и его динамическое восстановление
   Сохранить равновесие можно за счет повисания на противнике и перераспределения части своего веса на площадь его опоры. В этом случае формируется общий центр тяжести борющейся пары и проекция общего центра тяжести борющейся пары.
   Для более объективной оценки степени устойчивости тела необходимо учитывать величину угла устойчивости – угла, заключенного между линией действия силы тяжести и наклонной линией, проведенной из ОЦМ к любой точке границы площади опоры. Величина угла устойчивости зависит не только от величины площади опоры, но и от высоты расположения ОЦМ над ней. Так, при одной и той же площади опоры угол устойчивости тела борца будет тем больше, чем ближе к площади опоры располагается ОЦМ. Быстрота смены угла устойчивости зависит от конкретных условий и позволяет опытному борцу своевременно принять наиболее устойчивое положение и тем самым обеспечить проведение приема.
   Определение так называемого момента устойчивости (Муст) помогает получить интегральную оценку степени устойчивости борца, принявшего конкретную позу. Муст равен произведению силы тяжести тела на плечо в области площади опоры и определяется произведением массы тела борца на длину перпендикуляра, проведенного от границы площади опоры к линии тяжести. Муст зависит от двух величин: массы борца и площади опоры. Площадь опоры тела борца редко принимает очертания фигуры правильной формы, и, естественно, линия тяжести почти никогда не пересекает ее по центру. Регулируя относительную подвижность сегментов тела мощной мускулатурой, можно оказывать значительное влияние на степень устойчивости тела. Сила борца, стремящегося вывести соперника из равновесия, действует на его тело и образует так называемый опрокидывающий момент (Мопр) – момент силы относительно оси вращения. Для сохранения равновесия необходимо, чтобы Муст был больше Мопр Этого можно достичь, приняв соответствующую позу, увеличив площадь опоры, приблизив к ней ОЦМ тела и напрягая большие группы мышц (рис. 3.4).
   Отношение Муст. к Мопр. называется коэффициентом устойчивости (К): К = Мустопр При К > 1 тело сохраняет равновесие; если К = 1, оно принимает крайнее положение; когда К < 1, тело теряет равновесие.
   Рис. 3.4. Коэффициент устойчивости, равный соотношению момента устойчивости (Муст) защищающегося борца и опрокидывающего момента (Мопр) атакующего борца (Q – сила действия атакующего)
   При выполнении движений без изменения места на ковре ОЦМ тела может перемещаться в горизонтальной и вертикальной плоскостях. В первом случае одновременно перемещается проекция ОЦМ на площадь опоры, что создает угрозу потери равновесия тела. Избегая этого, борец вынужден совершать так называемые компенсаторные движения (дополнительные или сопутствующие основному движению). Обычно они выполняются при малой площади опоры, удержании соперника, защитных действиях и отрыве соперника от ковра. Часто эти движения требуют значительного напряжения многих групп мышц. В основе механики компенсаторных движений лежат закономерности проявления третьего закона динамики, в соответствии с которым при взаимодействии тела борца с опорой (ковром), соперником и частями его тела действие силы всегда вызывает одинаковое по величине и противоположное по направлению противодействие. Благодаря компенсаторным движениям создается своеобразный баланс сил взаимодействия (действия и противодействия), и спортсмену удается сохранить равновесие. При выполнении компенсаторных движений наибольшая нагрузка приходится на суставы и группы мышц, ближе других расположенных к опоре. Например, при борьбе в стойке наибольшая нагрузка приходится на суставы и мышцы стоп и коленных суставов.
   Если борец находится в относительно неподвижном положении (в любой стойке), давление тела на опору равно его весу. Когда он начнет резко перемещать ОЦМ тела вниз, двигаясь с ускорением (при некоторых атакующих действиях), силы инерции масс отдельных звеньев тела будут направлены вверх. В этом случае давление тела (сила тяжести) на опору меньше, чем его вес (на величину, равную силе инерции звеньев тела). При перемещении ОЦМ тела вверх (например, при ускоренном разгибании в коленных, тазобедренных и других суставах во время резкого вставания, подпрыгивания вверх, поднимания соперника и т. д.) давление тела борца на опору складывается из веса тела и силы инерции частей тела, направленных вниз, т. е. в сторону, противоположную движению всего тела.
   При равномерном движении ОЦМ тела (без ускорения) в вертикальной плоскости давление на опору равно весу тела. Практически такое движение ОЦМ тела в борьбе не встречается, так как почти все действия выполняются с ускорением звеньев тела, что можно проверить на обычных пружинных весах (в положении стоя весы будут показывать массу борца; во время резкого вставания показатель на весах увеличится за счет силы тяжести).
   Выполняя технические действия, связанные с активными широкоамплитудными перемещениями, каждый борец должен руководствоваться биомеханическими закономерностями, позволяющими ему наиболее эффективно использовать индивидуальные возможности и другие факторы, к которым относятся прежде всего внешние силы тяжести, реакции опоры, инерции, сопротивления соперника и др. Активная борьба возможна только в том случае, если спортсмен способен при помощи внутренних сил (силы собственных мышц) активно преодолевать внешние силы.
   Особенности техники борьбы определяются способностью спортсмена освоить биомеханические закономерности движений.
   Использовать их – значит добиться большого преимущества над соперником при проведении различных бросков и других основных и вспомогательных технических действий. В обманных действиях спортсмен ложным движением вызывает ответное действие соперника, масса тела которого начинает движение в определенном направлении с такой скоростью, что для изменения направления движения требуются время и чрезмерные, иногда недоступные спортсмену усилия. Быстрым и ловким движением, правильным выбором места приложения к телу соперника собственных сил атакующий спортсмен увеличивает скорость уже не управляемого движения обманутого соперника, чем и выводит его из равновесия. Иногда инерцию движения соперника атакующий борец выгодно использует при борьбе в стойке, выполняя разнообразные заведения, осаживания, толчки, рывки. Когда соперник вольно или невольно перемещается по ковру, атакующий борец резким движением сковывает движения его ног. Туловище соперника продолжает двигаться по инерции, компенсаторные движения он выполнить не может, в результате чего, теряя равновесие, падает.
   Количественная связь между силами, приложенными к телу спортсмена, и изменением скорости его движения определяется вторым законом динамики: изменение скорости движения (ускорение) прямо пропорционально приложенной силе и обратно пропорционально массе тела. Чтобы придать ускорение движению своего тела или телу соперника, борец должен развить большую силу. Конечный эффект движения будет зависеть от массы того тела, к которому приложена сила.
   В качестве примера эффективности использования знаний законов биомеханики при прогнозировании возможностей противника можно привести анализ возможностей сохранения противником статического (противонаправленного) равновесия. Если у противника длина стопы относительно длиннее обычного, то он обладает повышенным качеством статической устойчивости при перемещении его вперед, и для его опрокидывания следует использовать броски с вертикальным отрывом от ковра.
   Если у противника пяточная кость слишком выдается назад, то он устойчив к выведению из равновесия назад, и в этом случае необходимо прикладывать усилие к нижним конечностям как можно ниже.
   Если у противника при относительно небольшой двуглавой мышце, сухожилие прикреплено к кости предплечья на сантиметр ниже обычного, то ее сила может быть на порядок выше обычной и т. д.

3.4. Двигательные задачи и способы их решения

   Все движения борцов выполняются:
   • в условиях непосредственного контакта на различных дистанциях;
   • с постоянной сменой взаиморасположений, взаимозахватов, взаимоупоров;
   • с варьирующими по ритму и величине взаимными усилиями.
   Вследствие многообразия техники и тактики борьбы прогнозировать условия противоборства трудно. В любом временном отрезке схватки соперники могут иметь различные целевые установки, предопределяющие выбор и применение конкретных технических элементов, технических и тактических действий и т. п. Основной целью поединка борцов с позиций биомеханики являются:
   • перемещение сопротивляющегося соперника из одного какого-либо положения в другое, поощряемое правилами соревнований;
   • удержание соперника в определенном оцениваемом судьями положении.
   Если учтены все биомеханические закономерности спортивной борьбы, эти целевые установки схватки осуществляются экономично и эффективно. Борцы решают определенные задачи с помощью чрезвычайно сложных движений. Сложность приемов борьбы во многом зависит от особенностей кинематических цепей, образованных обоюдным захватом, и помех со стороны соперника. Атакующий борец, если рассматривать его движения в сагиттальной плоскости (сбоку), может бросить соперника вперед на грудь (рис. 3.5) и назад на спину (рис. 3.6), повернув его тело вокруг поперечной оси на 90°. В первом случае (см. рис. 3.5) бросок оценивается невысокими баллами, во втором (см. рис. 3.6) – высокими. Чтобы соперник упал вперед на спину, необходимо повернуть его тело вокруг поперечной оси на 270° (рис. 3.7).
   Рис. 3.5. Опрокидывание вперед на грудь.
   Рис. 3.6. Опрокидывание назад на спину
   Рис. 3.7. Опрокидывание вперед на спину
   Для этого атакующий в случае расположения грудью к груди соперника должен в броске назад, прогибаясь, описать дугу в 180° (рис. 3.8). В этом случае он перебросит соперника через мост, а соперник, описав вокруг поперечной оси дугу в 270°, окажется на спине или на мосту. Этого же можно добиться, если предварительно повернуться к сопернику спиной и, сгибаясь вперед и падая, увлечь его за собой (рис. 3.9).
   В основном броски вперед проводятся не в одной, а в трех плоскостях. Так, можно повернуться не на 180°, а на 90° и в то же время вместе с соперником совершить поворот вокруг своей продольной оси на 180° (рис. 3.10). Чтобы опрокинуть соперника назад на спину, атакующему в одном случае достаточно наклониться вместе с ним вперед, в другом – зайдя за соперника, прогнуться назад вместе с ним.
   Рис. 3.8. Опрокидывание вперед на спину, прогибаясь
   Рис. 3.9. Опрокидывание вперед на спину, повернувшись спиной к противнику и наклоняясь вперед
   При переворотах соперника в партере решают те же двигательные задачи, но используя с меньшей длиной плеч рычаги, следовательно, прилагая большие усилия.
   При дожимании соперника на мосту, удержании и болевых приемах необходимо приложить усилие к телу соперника в таком месте и таким образом, чтобы максимально использовать возможности рычагов.
   При бросках часто бывает необходимо выполнить предварительный вертикальный отрыв соперника от ковра, что возможно при условии подведения своего центра тяжести под центр тяжести соперника. Чтобы переместить соперника (после отрыва) в горизонтальное положение, к его телу должна быть приложена пара разнонаправленных сил, что создаст момент вращения.
   Рис. 3.10. Ортогональная проекция опрокидывания, прогибаясь, с одновременным поворотом вокруг продольной оси (А – атакующий, С – противник)
   При выведении соперника из равновесия (без предварительного отрыва от ковра) необходимо приложить к верхней точке его тела силу, которая окажется верхней составляющей пары сил. В этот момент ОЦМ тела станет осью вращения. Если предположить, что опрокидываемое тело жесткое, возникает нижняя, направленная противоположно составляющая пары сил. Поэтому ОЦМ будет приобретать определенное ускорение и окажется в месте соприкосновения с опорой (рис. 3.11).
   Рис. 3.11. Условия, обеспечивающие выведение тела из равновесия без отрыва от опоры
   Рис. 3.12. Условия, определяющие возможность опрокидывания (R – плечо силы тяги, h – плечо силы тяжести)
   Если соперник не успеет переставить ноги в сторону опрокидывания и сохранить равновесие, то появится возможность уменьшить его момент устойчивости и этим вывести проекцию ОЦМ за край площади опоры. Это возможно в том случае, если удастся создать больший опрокидывающий момент, чем момент устойчивости (рис. 3.12), для чего необходимо увеличить силу рывка (толчка) или приложить усилие в наиболее высокой точке.
   При отрыве соперника от опоры создается усилие, направленное вертикально вверх. В соответствии с третьим законом Ньютона силе тяжести обоих борцов будет противодействовать противонаправленная и равная по величине сила реакции опоры. Твердая опора обеспечивает мгновенную и полную передачу усилия (например, на относительно жестком татами в дзюдо). При мягкой опоре часть отталкивающей силы уходит на деформацию опоры, что замедляет скорость отрыва (рис. 3.13). Для того, чтобы сохранить равновесие (при создании горизонтального усилия для опрокидывания соперника), необходимо увеличить угол устойчивости выставлением ноги вперед и в сторону, противоположную броску.
   Рис. 3.13. Кривые тензограмм при отталкивании борца от твердой (А) и мягкой (Б) опоры
   Как уже отмечалось, другим фактором для создания усилия при проведении приемов является энергия свободно падающего тела. Для этого атакующий может уменьшать площадь своей опоры. Выход проекции ОЦТ за край собственной площади опоры позволяет приложить к сопернику силу, направленную вертикально вниз. Поскольку обоюдный захват создает определенную кинематическую цепь и соответственно ОЦТ, то при использовании энергии падения собственного тела следует ориентироваться на выведение проекции ОЦТ за общую площадь опоры (рис. 3.14). При этом большего эффекта можно достичь, подбивая одну из опор соперника. Если этого делать нельзя по правилам соревнований или по тактическим соображениям, необходимо одновременно создать горизонтальное усилие по отношению к телу соперника.
   Рис. 3.14. Использование энергии падения собственного тела за счет выведения проекции ОЦТ за общую площадь опоры (ЦТА – проекция центра тяжести атакующего, ЦТС – проекция центра тяжести соперника, ОЦТ – проекция общего центра тяжести борющейся пары).

3.5. Особенности биомеханической структуры приемов

   Прием представляет собой единое (целостное) двигательное действие и состоит из отдельных простых (элементарных) движений руками, ногами и туловищем, сопряженных между собой во времени и пространстве. В борьбе различают:
   • движения руками: хват, захват, обхват, прижимание, отталкивание, рывок (вверх, вниз, в сторону, комбинированный), толчок (вверх, вниз), тяга, упор, нажимание и т. д.;
   • движения ногами: подставление, переставление, отставление, зашагивание, подталкивание, упор и т. д.;
   • движения туловищем: наклон, выпрямление, прогиб, поворот, вращение, сгибание.
   Часть движений выполняется одновременно, часть – в определенной последовательности. Чтобы понять логику взаимосвязи элементарных движений, всю структуру приема делят на фазы. Наиболее удобно разделение приема на три фазы. Первая фаза – вход атакующего из исходного положения в стартовое. Вход может быть выполнен одноактно или в два акта (I и II полуфазы) (рис. 3.15). Вторая фаза – отрыв соперника от ковра или окончательное выведение его из равновесия. Отрыв может фиксироваться визуально, по кинограмме или более точно регистрироваться тензометрическими приборами (на динамографической платформе и др.). Если регистрация производится синхронно с киносъемкой, на кинокадре можно точно определить момент отрыва соперника от ковра. Момент окончательного выведения соперника из равновесия определить трудней, поскольку показания частичного снятия массы тела с опоры должны быть подкреплены уверенностью в том, что соперник не изменит положения своего тела, не переступит в сторону падения и не сохранит благодаря этому равновесие. Третья фаза – полет и приземление (регистрируется визуально).
   Рис. 3.15. Пофазные позы при опрокидывании через спину проворотом синхронно с реакцией опоры на датчики тензоплатформы, на которой расположен противник (А – в проекции на сагиттальную плоскость, Б – реакция опоры противника на тензоплатформу: 1 – значение веса тела противника, 2 – снятие веса тела, 3 – падение противника
   В ряде работ предлагалось считать II фазу (отрыв от ковра) основной. Экспериментально доказано, что I фаза продолжительнее II фазы, что в ней совершаются наиболее ответственные действия, а время нахождения атакующего на двух опорах незначительно, что ослабляет его стабильность. Также установлено, что неправильный вход в стартовую позицию влечет за собой срыв броска. Поэтому I фазу следует считать определяющей с точки зрения наиболее рационального построения методики обучения броскам. Некоторые специалисты, разбивая прием на фазы, называют I фазой вход в захват. Но поскольку из одного и того же захвата может быть проведен не один прием, включать захват в пофазную структуру конкретного приема нецелесообразно.
   В технике любого броска необходимо выделять основу биомеханической структуры как наиболее важную часть, вокруг которой формируются остальные детали приема. Такую основу можно назвать профилирующей (по движениям туловища). В сагиттальной плоскости это наклоны и прогибы, сгибания и выпрямления; в горизонтальной плоскости – вращения вокруг продольной оси. Эти специфические движения туловища в сочетании с перестановкой ног, атакующими движениями ног и рук составляют целостную структуру приемов. Структура приемов вариативна. Один и тот же прием по форме движения и числу элементарных движений может иметь несколько вариантов, которые различаются пространственно-временной и динамической структурой. Такая вариативность неизбежна в силу индивидуальных различий борцов, но общие требования к усредненной структуре отдельного приема должны быть соблюдены. Иначе будет нарушена логика движения и прием (в лучшем случае) будет проведен с чрезмерными энергозатратами. Приведем два примера, подтверждающих эту мысль.
   1. Бросок проворотом часто выполняется только за счет наклона туловища после входа в стартовую позицию (рис. 3.16), но в структуре приема может быть продолжение вращения вокруг продольной оси (рис. 3.17). Если его прекратить, то прием может не удаться.
   2. При выполнении броска прогибом раньше рекомендовалось делать подшагивание и начинать падение назад в согнутом положении. В настоящее время распространен вариант с предварительным отрывом соперника от ковра за счет разгибания в тазобедренных и коленных суставах и последующего прогибания туловища. Однако для этого необходима более плотная связь за счет обхвата туловища противника на уровне талии или груди.
   Рис. 3.16. Ортогональная проекция опрокидывания проворотом без вращения туловища атакующего вокруг своей продольной оси после выхода на стартовую позицию броска (А– атакующий, С – противник)
   Рис. 3.17. Ортогональная проекция опрокидывания проворотом с вращением туловища атакующего вокруг своей продольной оси после выхода на стартовую позицию броска (А– атакующий, С – противник)
   Опрокидывание соперника проводится в основном за счет одновременного вращения его тела в вертикальной и горизонтальной плоскостях. Туловище атакующего наклоняется вперед или назад и вращается вокруг продольной оси, если это входит в основную структуру приема. Атакующий в I фазе преследует цель войти в стартовую позицию (лицом к лицу соперника и лицами в одну сторону). Способы опрокидывания наиболее удобно рассматривать в сагиттальной плоскости, механизм опрокидываний – на векторной основе. Самое распространенное начало опрокидывания (во всех видах борьбы) – предварительный отрыв соперника от ковра. Атакующий как бы подводит свой ОЦМ под
   ОЦМ соперника, для чего при сближении сгибает ноги в тазобедренных и коленных суставах. Используя реакцию опоры, за счет разгибания ног он поднимает вверх тело соперника (рис. 3.18а) и переводит его в горизонтальное положение разнонаправленными движениями рук и ног. В этом случае ось вращения проходит через таз атакующего, причем руки тянут в сторону и вниз, а таз подбивает в сторону и вверх. Такое же действие можно выполнить, захватив одной рукой ногу соперника (рис. 3.18б). К подсаду вверх может быть добавлена сила вертикального воздействия бедром, направленная от опоры через нижние конечности вверх (рис. 3.18в).
   Рис. 3.18. Способы вертикального отрыва противника от опоры
   Другим способом опрокидывания является выведение из равновесия. Наиболее простой вариант (сваливание) – горизонтальное воздействие на верхнюю часть тела соперника. Ось вращения находится в месте соприкосновения соперника с опорой (рис. 3.19). Воздействие может быть больше, если приложить противонаправленную силу к одной из опор; роль усилителя при этом играет рука или нога атакующего (рис. 3.20).
   Кроме сваливания возможно опрокидывание через опорную преграду – ногу (рис. 3.21а), таз (рис. 3.216) или туловище (рис. 3.21в). Преграда может быть и безопорной: рука или нога находится на весу и удерживается напряжением всех мышц этой конечности.
   Рис. 3.19. Принцип сваливания выведением из равновесия без воздействия на ноги противника
   Рис. 3.20. Принцип сваливания выведением из равновесия и использованием рычага, воздействуя на свободную ногу противника рукой или ногой
   Рис. 3.21. Принцип опрокидывания через опорную преграду
   Однако проекцию ОЦМ соперника не всегда удается вывести за общую площадь опоры одномоментным усилием в направлении намечаемого броска. В таких случаях атакующий рукой или ногой фиксирует ногу соперника, после чего запрыгивает или забегает за него в направлении броска до тех пор, пока проекция ОЦМ не будет выведена за площадь опоры (рис. 3.22).
   Одним из мощных способов опрокидывания является выбивание всей опоры с одновременным противонаправленным горизонтальным рывком руками по верхней составляющей пары сил. Причем выбивание опоры может осуществляться тазом или животом, но чем ниже будет ось вращения соперника, тем эффективнее будет опрокидывание (рис. 3.23).