Страница:
Николай Николаевич решил сам заняться проклятым фосфором и ради этого даже бросить на время все другие дела.
Сначала надо было продумать во всех деталях будущий эксперимент. Было ясно, что установку следует изменить так, чтобы из нее выпало уязвимое место — ловушка фосфора, которая оказалась ловушкой для них самих.
Зачем нужна была она? Чтобы не допустить попадания фосфора в ртутный манометр. Значит, надо заменить манометр, поставить такой, чтобы он не боялся соприкосновения с парами фосфора, тогда не будет необходимости городить огород с охлаждением.
Так и сделали. Новый простой сернокислотный манометр крепился непосредственно к сосуду, а кислород поступал сам по себе. После нескольких опытов стало видно, что, во-первых, Боденштейн частично прав, но, во-вторых, что правы и физтеховцы. Фосфорная пробка действительно образовывалась в прежнем опыте, но и кислород тем не менее не реагировал с фосфором ниже критического давления. Оно было, правда, не такое низкое, как раньше, но все же оно реально существовало. Оно измерялось теперь не по остановке реакции, а по возникновению свечения при медленном впускании кислорода через капилляр.
Значит, не с иллюзорными явлениями имеют ученые дело, а с чем-то существующим, хотя пока еще и непонятным.
Семенов решил продолжить работу дальше. Подключил к ней молодого помощника Александра Шальникова, теперь члена-корреспондента АН СССР. Стали менять не давление кислорода, а объем сосуда. Брали колбы разных диаметров и смотрели, меняется ли величина критического давления. Меняется. Выписали его значения, написали рядом диаметры сосудов — посмотрели, посчитали; получалось, меняется оно обратно пропорционально квадрату диаметра. Так. Значит, есть четкая зависимость.
А если плавно менять объем сосуда?
Взяли большой цилиндрический сосуд, впустили в него немного кислорода, так чтобы его давление было ниже критического. Не идет реакция. Все правильно: и не должна идти. Потом стали потихоньку наливать в сосуд ртуть. Объем плавно уменьшался, давление росло, и вдруг в какой-то момент фосфор вспыхнул. Давление? Так и есть: критическое.
Ну что ж, можно, пожалуй, садиться за статью.
Ну что описать в ней, кроме самих опытов, — опять ничего? Снова признать, что шли вслепую, не ведая, что происходит? Но это значит опять поставить себя под огонь критики. Ведь пока не будет дано объяснение происходящему в рамках какой-нибудь новой теории, судить опыт будут по законам старой теории. А по ней то, что происходит сейчас, быть не может.
Но как понять, почему молекулы фосфора не желают соединяться с молекулами кислорода до какого-то давления, а потом начинают это делать весьма бурно, словно наверстывая упущенное?
Семенов, подводя итог первым экспериментам, набросал эмпирическую формулу, которая как-то описывала происходящие странности, учитывала влияние всех факторов на величину предельного давления кислорода. Но она не давала ответа на вопрос, почему это происходит. Почему?
Конечно, это самый интересный для нас момент, когда ученого вдруг осеняет догадка, когда секунду назад еще ничего не было, кроме страстного желания понять, досады оттого, что ничего не понимаешь, и кучи фактов, которые не знаешь, как расставить в уме, а потом, в следующее мгновение, в этом хаосе неожиданно забрезжит какой-то еще неясный порядок, и вот уже факты выстраиваются в ряды и держат равнение направо, откуда несется им навстречу блестящая идея. Она, словно доспехами, блещет выводами, которые делают ее неуязвимой для критики, над ней развевается белый кивер удачи, и она потрясает острым копьем, легко целя им в разбегающиеся сомнения.
Но как остановить это сладостное мгновение? Далеко не всем счастливцам в науке посчастливилось дважды — чтобы не только встретиться с озарением, но еще и запомнить все детали встречи.
Николай Николаевич честно признал: «Я уж сейчас не помню хорошо, когда у меня мелькнула догадка…» Жаль, конечно. Жаль, что не уловил этот миг, когда мелькнула счастливая догадка о том, что на свете, кроме неразветвленных цепных реакций, кроме боденштейновских цепей, есть еще и разветвленные цепи и что окисление фосфора идет именно по такому механизму.
Единственное, что известно, — такая идея озарила его вдруг, и случилось это где-то в конце 1926 или в самом начале 1927 года, а что сделал в сей миг Николай Николаевич, запрыгал ли по лаборатории, как Дэви, или остановился как вкопанный, подобно Лауэ, или закричал «Эврика!», как Архимед, или заперся в лаборатории, как Рентген, можно только гадать; автор открытия не помнит, а автор книги не хочет брать грех на душу и выдумывать то, чего не было.
Так что придется пропустить нам минуту, час или день, когда происходило таинство рождения новой идеи, и продолжить рассказ уже со следующего события, которое в силу своей реальности оставило зримый след. Этим событием, неизбежно следующим за догадкой, была попытка зафиксировать ее в виде расчета.
Вспомнив механизм боденштейновских неразветвленных цепных реакций, Николай Николаевич ясно увидел, что окисление фосфора вроде бы похоже на боденштейновские цепи, длиной хотя бы, но идет совсем по-иному, с разветвлением. Реакция расползается в разные стороны, как ветви дерева, множась и нарастая ежесекундно, как горная лавина, которая начинается с одного невинного камешка. Потому-то и выгорает с такой скоростью фосфор, когда давление кислорода выше критического.
Да, но почему тогда реакция вовсе не идет, когда оно ниже?
Если записать формулу, связывающую критическое давление с размером сосуда, то в знаменателе дроби стоит квадрат диаметра сосуда: чем он больше, тем значительно меньше давление.
Если диаметр безгранично велик, давление выражается нулем; это значит, что если у сосуда нет стенок, то никакого критического давления не существует — реакция может идти сколько ей влезет, пока разветвленная цепь не истощит запасы фосфора или кислорода.
Получается, что бурному развитию цепной лавины мешают стенки сосуда. Этот вывод неумолимо следовал из формулы, поэтому его нужно принять, а приняв, объяснить. Это сделать оказалось уже значительно легче. По словам Семенова, от анализа формулы до объяснения был всего один шаг. Небольшой шаг: нужно было лишь предположить, что активные частицы, скажем, атомы кислорода, ударившись о стенку колбы, захватываются ею. После этого у них уже, что называется, связаны руки, и они не способны принять участие в цепной реакции. Каждый такой прилипший атом сидит на стенке, смотрит, как другие его товарищи активно участвуют в превращениях, и ждет, когда подойдет к нему другой атом, чтобы, соединившись и образовав нейтральную молекулу кислорода, соскользнуть внутрь сосуда. Следовательно, цепь живет и разветвляется на участке от места ее зарождения до стенки. Чем уже сосуд, тем короче этот путь; при каком-то малом диаметре большая часть цепей вообще не успеет разветвиться. И получится, что количество выбывающих из игры атомов кислорода превысит число вновь рождающихся. Так объяснял поначалу сам себе Николай Николаевич явление критического размера.
Убедившись, что новая гипотеза пока прекрасно все объясняла, он попытался уразуметь следующий непонятный казус — критическое давление. Его существование также логично вытекало из гипотезы. Поскольку размер сосуда в опытах Харитона и Вальта был неизменным, число гибнущих активных частиц на стенке также было постоянным, а количество новых активных атомов зависело от давления кислорода. Когда его становилось так мало, что смертность атомов превышала их рождаемость, реакция замирала и дремала до тех пор, пока давление кислорода не повышалось выше критического.
Оставалось объяснить себе последний опыт — с аргоном. Это оказалось совсем просто, достаточно было представить, как инертные молекулы толкутся на дороге, по которой мчатся к стенке атомы кислорода, мешают им превышать скорость, охлаждают их пыл — вроде как орудовцы на скоростных магистралях, и сразу становилось понятным, почему уменьшается при этом критическое давление: атомы кислорода реже бьются о стенки, реже гибнут, и для поддержания реакции достаточно меньшего их количества.
Я рассказываю о том, как мыслил себе Николай Николаевич Семенов события, происходившие в экспериментах с окислением фосфора, ко я не могу здесь воспользоваться способом, каким ученый выражал свои представления, — это не только и не столько слова, это формулы и расчеты. Как ни логичны образные построения, если их не подкрепить математическими выкладками, вряд ли можно выходить на суд коллег; так, во всяком случае, принято в физике. Поэтому физик Семенов, неожиданно для себя оказавшийся втянутым в химическое изыскание, попытался прежде всего описать свою идею математически.
Когда была построена математическая теория разветвленных цепных реакций, автору открытия стало ясно, как он писал, «что полученные в опытах закономерности поразительно хорошо описываются теоретическими формулами». В тот момент, правда, ему еще не было ясно до конца, сколь значительно его открытие, как далеко оно простирает свое слияние среди химических процессов; понимание обширности пришло позже; но и тогда было достаточно причин, чтобы почувствовать радость и гордость за то, что сделано, и законное желание поделиться своей радостью с другими.
На ближайшем же заседании ученого совета Физико-технического института Семенов решил доложить о своих работах. С момента полемики с Боденштейном прошел почти год. За это время многие сотрудники института прочно уверовали в ошибку Вальта и Харитона; длительное молчание их руководителя только укрепляло эту уверенность. Следовательно, предстояло не просто сообщить новость собравшимся, надо было еще и преодолеть психологический барьер, существовавший между учеными, однажды уверовавшими в легкомысленность, свойственную сотрудникам лаборатории электронных явлений, и докладчиком, возглавляющим эту самую лабораторию.
Начал свой доклад Семенов торжественно, как человек, сознающий значимость момента. Но вскоре сник. Он явственно ощущал скепсис слушателей — они не верили ни одному его слову. О, как было обидно видеть, как столь уважаемые люди, прозорливые ученые не желали замечать того нового, что содержало сообщение их коллеги! И, главное, что и учитель — среди фом неверующих. Иоффе тоже кривит ус, вертит головой, не понимает того, что старается втолковать им вконец измучившийся от напряжения и обиды докладчик. Нет, не понимают ничего, это же ясно — вопросы такие задают, что даже отвечать не хочется; а уж возражают против самых очевидных предположений. Не поняли, не поняли — не захотели понять, не заставили себя вдуматься в новые данные, не дали себе труда отстраниться от старых представлений о механизме реакций, не усомнились в ошибочности боденштейновских возражений.
Легко можно понять состояние Николая Николаевича, который, по его собственным словам, «совершенно измучился, но так и не смог убедить их в своей правоте». Обида и злость должны были остаться у него на душе после ученого совета, на который он возлагал столько надежд. И еще изумление по поводу очевидной слепоты, вернее ослепленности учителя. Провожая его после совета домой, Семенов не утерпел и высказал многое из того, что у него накипело на душе, а в заключение прямо заявил: «Не пройдет и года, как все переменят свою точку зрения, согласятся со мной, поймут важное значение нашей теории…»
Семенов хоть и в запале говорил это, но оказался прав: даже меньше чем через год открытие цепных разветвленных реакций обрело право научного гражданства. И первым признал его Боденштейн — да, да, тот самый, который выступал против, разгромил эксперимент Харитона и Вальта, не оставив от него, казалось, камня на камне. Но Семенов собрал уцелевшие факты, реставрировал их, потом пристроил к ним новый эксперимент и на таком прочном фундаменте возвел новую теорию. И Боденштейн, прочитав статью Семенова, опубликованную в том же немецком журнале, где год назад появилась робкая заметка Харитона и Вальта, теперь признал свою слепоту и недоверчивость. И, как бы в компенсацию за прошлый инцидент, предложил впредь печатать статьи в редактируемом им «Журнале физической химии». Но, наверное, и после этого еще долго чувствовал неприятный осадок на душе оттого, что так оконфузился, и пользовался каждым случаем, чтобы оповестить ученых об открытии, которое по его милости чуть не закрылось.
В конце 1927 года Семенов вырвался ненадолго из круговорота многочисленных обязанностей и уехал на озеро Селигер, чтобы там, на природе, в тиши, обобщить прежние наблюдения, прибавить к ним новые, появившиеся в последние недели, и попытаться создать более обширную теорию разветвленных цепных реакций. Конечно, прохаживаясь по берегу озера, думать легче, чем бегая между кабинетом и лабораторией — не звонит телефон, не заходят десять раз на день коллеги, не надо сидеть на совещаниях. И работа потому была написана очень быстро.
Вернувшись, Семенов доложил ее на ученом совете. Совсем недавно он стоял здесь же, на этом самом месте, у этой самой доски, перед этими же самыми людьми, и рассказывал им о том же самом открытии. Но тогда они были глухи к тому, что посчастливилось найти ему с помощью двух своих молодых сотрудников и умудренного в науках Боденштейна; теперь все было по-иному. Радостью соучастия светилось лицо Абрама Федоровича Иоффе, внимательны были члены ученого совета; они поняли наконец, что присутствуют при рождении нового открытия, прославившего молодую советскую науку. Поздравления после доклада были совершенно искренни; кто-то, наверное, признал, что был неправ тогда, другие сочли за благо промолчать — что поминать старое.
Вскоре, в 1928 году, стало известно, что открытие Семенова подтверждается опытами молодого английского ученого из Оксфордского университета Хиншелвуда. За ним и другие исследователи стали изучать новый механизм реакции.
Вместе с тем скептики еще не сложили оружия, еще не перестали раздаваться голоса отдельных ученых, часто весьма крупных, твердивших, что то одно неверно, то другое. Поэтому Семенов не счел возможным почить на лаврах и ждать, пока другие ученые за него осветят все неясные места в его теории; он еще интенсивнее взялся за продолжение работ, ставя их в больших масштабах, дабы теперь уже можно было подключить к ним многих сотрудников.
Один из важнейших опытов был поставлен самим Николаем Николаевичем. Он решил доказать себе и оппонентам, что зарождение разветвленной цепной реакции можно вызвать буквально несколькими активными частицами; по теории, правда, так и следовало, но одно дело, когда это происходит на бумаге, а другое — в колбе. Этим изящным и предельно простым опытом Семенов доказал, что он превосходный экспериментатор, словно бы видящий, как клубятся в сосуде молекулы, ожидая только внешнего толчка, чтобы взорваться химической реакцией. Он придумал, как надо подтолкнуть с горы камешек, чтобы он увлек за собой лавину.
К трубке, через которую поступал в сосуд кислород, подвели ток от катушки Румкорфа — слабенький ток, ничтожный, едва способный расщепить на атомы мизерное количество молекул. Но, по теории, для начала окисления много и не нужно — достаточно нескольких осколков. И, следовательно, в момент включения рубильника должна произойти вспышка.
Должна… Но произойдет ли? Такая постановка опыта, когда в одну секунду решается судьба нескольких предшествующих лет и многих лет будущих, требует огромного нервного напряжения. Не удивительно, что Семенов ужасно волновался и смотрел на рубильник, поворот которого должен был все решить, словно кролик на удава. Представляете, что должен был пережить в душе ученый в такой момент, если и через тридцать два года помнил «…тот трепет, с каким… в первый раз протягивал руку к щитку с рубильником». «Я долго не решался начать опыт, — вспоминает Николай Николаевич тот знобящий миг. — Мне казалось, что в эту минуту решится судьба всей теории».
И она и впрямь решилась: одновременно с поворотом рубильника в сосуде вспыхнула — действительно вспыхнула — реакция. Горсть атомов кислорода вовлекла в цепной процесс миллиарды молекул. Вновь и вновь повторял Семенов этот опыт, чтобы исключить возможность малейшей ошибки, и каждый раз, когда переставшая уж дрожать рука включала рубильник, в сосуде происходила вспышка.
Ну, вот и все, собственно. Дальше открытие начало самостоятельную жизнь. Теория Семенова о разветвленных цепных процессах прочно обосновалась в химической науке. Она привлекла к себе внимание химиков всего мира, ибо очень скоро стало ясно, что цепные процессы весьма многочисленны, они диктуют свои законы таким распространенным реакциям, как полимеризация, хлорирование, сгорание топлива в двигателях.
В 1930 году Советское правительство организовало специальный Институт химической физики, где можно было по-настоящему широко развернуть работы в столь важной для науки области. Во главе института встал Н.Н. Семенов.
В 1934 году Семенов, избранный только что академиком, подвел итог своего почти десятилетнего труда в монографии «Цепные реакции»; в следующем году книга была переведена на английский и вышла в Англии, где продолжал успешно работать Хиншелвуд.
В 1941 году основатель нового раздела химической кинетики был удостоен Государственной премии, а в 1956 году, через тридцать лет после открытия, вместе с Хиншелвудом получил Нобелевскую премию по химии. То была вдвойне радостная для нас победа: премию получил первый советский ученый. До этого два русских исследователя удостоились столь высокой чести — Мечников и Павлов, но было это еще до революции. Теперь же в Стокгольм отправлялся полпред советской науки. После еще шесть наших физиков получат право именоваться лауреатами Нобелевской премии, но Семенов был первым.
В этой книге нам уже не раз приходилось сопровождать выдающихся ученых в Стокгольм, где им вручались диплом лауреата, золотая медаль, денежный чек, где в их честь оркестр играл отрывки из лучших симфоний, где награжденных осаждали фото — и кинокорреспонденты, где смущенные непривычным общественным вниманием лучшие физики, химики, биологи читали традиционные Нобелевские лекции. И, вероятно, каждый из нас задавал себе вопрос: о чем, интересно, думает ученый в те минуты, когда перед его награждением играет музыка, а шведский король готовится вручить ему символы международной славы и признания? К сожалению, далеко не всегда это становилось известным широкой публике, ученые редко вспоминают о личных переживаниях; но вот в этой главе представляется редкий случай узнать совершенно точно, какие мысли проносились в голове шестидесятилетнего прославленного академика, когда он сидел на сцене переполненного зала, взволнованный и счастливый, и, пока играл оркестр, имел десять минут на то, чтобы перевести дух, расслабиться немного после начала и перед концом торжественной церемонии и подумать о чем-то своем. О чем же?
Вот его воспоминания: «Когда я слушал музыку, передо мной проносилось то незабываемое время 20-х — начала 30-х годов, когда я, еще молодой человек, и мои дорогие товарищи, тогда еще совсем юные сотрудники лаборатории, в институте за экспериментальными установками и дома за письменным столом переживали самые яркие радости творчества, когда каждый день приносил нам новые загадки и когда эти загадки мы в конце концов с успехом решали и сквозь, казалось бы, непроходимые дебри пробивали новые пути».
Согласитесь, история открытия такова, что здесь есть что вспомнить. Дело не только в обстоятельствах открытия, хотя и они, конечно, невольно должны запасть в душу, — а ведь память сердца, как вы помните, сильней рассудка памяти печальной, — дело еще и в последствиях, какие имело открытие для науки; не только для химии — для физики. И это должно было быть особенно значимо для его автора, ведь он, не забудьте, был физик. Физике обучался в университете, физикой шел заниматься к Иоффе после окончания, о физических открытиях мечтал, вероятно, холодными голодными ночами в Петрограде.
И когда через двенадцать лет оказалось, что идея разветвленной цепной реакции применима не только к химическим процессам, но и к процессам ядерным, Николай Николаевич, как мне кажется, непременно должен был почувствовать радость и удовлетворение: удовлетворение тем, что идея, высказанная физиком, вернулась на круги своя — в физику же.
Речь идет о ядерной цепной реакции деления урана. Она была предсказана в 1938 году Фредериком Жолио-Кюри и Ф. Перреном и осуществлена впервые 2 декабря 1942 года в Чикагском университете итальянским физиком Энрико Ферми. Конечно, ядерная цепная реакция отличается от химической — иные частицы участвуют в ней, на ином уровне идет процесс и с иными последствиями, но формальные закономерности здесь те же и те же критические условия включают и выключают цепь. И если нельзя сказать, что физики просто позаимствовали теорию своего бывшего коллеги, то высказать предположение, что они воспользовались ее основами и тем самым значительно сократили время поисков, можно и нужно.
Наверное, и об этом думал Николай Николаевич декабрьским днем 1956 года. А может, еще и о будущем своего открытия, и в этой связи — о биологии, где цепные процессы могут оказаться столь же важными, как и в ее сестрах — химии и физике.
Конечно, когда смотришь назад, всё представляется простым и понятным, кажется даже странным, как это можно было сомневаться в чем-то, долго не решаться что-то сделать; но те, кто пробивается вперед «сквозь, казалось бы, непроходимые дебри», всегда вынужден сомневаться, ибо дороги впереди нет и ее приходится строить, как говорил немецкий физик Макс Борн, позади себя. Семенов проложил широкую дорогу; по ней уже сорок лет идут многие ученые мира, и еще долго останется она оживленной магистралью науки; но как бы далеко от начала ни ушли мы, следует помнить, что когда-то ее вовсе не было на карте естествознания и один из наших современников первым вошел в дремучий лес неизвестности.
Глава одиннадцатая
Сначала надо было продумать во всех деталях будущий эксперимент. Было ясно, что установку следует изменить так, чтобы из нее выпало уязвимое место — ловушка фосфора, которая оказалась ловушкой для них самих.
Зачем нужна была она? Чтобы не допустить попадания фосфора в ртутный манометр. Значит, надо заменить манометр, поставить такой, чтобы он не боялся соприкосновения с парами фосфора, тогда не будет необходимости городить огород с охлаждением.
Так и сделали. Новый простой сернокислотный манометр крепился непосредственно к сосуду, а кислород поступал сам по себе. После нескольких опытов стало видно, что, во-первых, Боденштейн частично прав, но, во-вторых, что правы и физтеховцы. Фосфорная пробка действительно образовывалась в прежнем опыте, но и кислород тем не менее не реагировал с фосфором ниже критического давления. Оно было, правда, не такое низкое, как раньше, но все же оно реально существовало. Оно измерялось теперь не по остановке реакции, а по возникновению свечения при медленном впускании кислорода через капилляр.
Значит, не с иллюзорными явлениями имеют ученые дело, а с чем-то существующим, хотя пока еще и непонятным.
Семенов решил продолжить работу дальше. Подключил к ней молодого помощника Александра Шальникова, теперь члена-корреспондента АН СССР. Стали менять не давление кислорода, а объем сосуда. Брали колбы разных диаметров и смотрели, меняется ли величина критического давления. Меняется. Выписали его значения, написали рядом диаметры сосудов — посмотрели, посчитали; получалось, меняется оно обратно пропорционально квадрату диаметра. Так. Значит, есть четкая зависимость.
А если плавно менять объем сосуда?
Взяли большой цилиндрический сосуд, впустили в него немного кислорода, так чтобы его давление было ниже критического. Не идет реакция. Все правильно: и не должна идти. Потом стали потихоньку наливать в сосуд ртуть. Объем плавно уменьшался, давление росло, и вдруг в какой-то момент фосфор вспыхнул. Давление? Так и есть: критическое.
Ну что ж, можно, пожалуй, садиться за статью.
Ну что описать в ней, кроме самих опытов, — опять ничего? Снова признать, что шли вслепую, не ведая, что происходит? Но это значит опять поставить себя под огонь критики. Ведь пока не будет дано объяснение происходящему в рамках какой-нибудь новой теории, судить опыт будут по законам старой теории. А по ней то, что происходит сейчас, быть не может.
Но как понять, почему молекулы фосфора не желают соединяться с молекулами кислорода до какого-то давления, а потом начинают это делать весьма бурно, словно наверстывая упущенное?
Семенов, подводя итог первым экспериментам, набросал эмпирическую формулу, которая как-то описывала происходящие странности, учитывала влияние всех факторов на величину предельного давления кислорода. Но она не давала ответа на вопрос, почему это происходит. Почему?
Конечно, это самый интересный для нас момент, когда ученого вдруг осеняет догадка, когда секунду назад еще ничего не было, кроме страстного желания понять, досады оттого, что ничего не понимаешь, и кучи фактов, которые не знаешь, как расставить в уме, а потом, в следующее мгновение, в этом хаосе неожиданно забрезжит какой-то еще неясный порядок, и вот уже факты выстраиваются в ряды и держат равнение направо, откуда несется им навстречу блестящая идея. Она, словно доспехами, блещет выводами, которые делают ее неуязвимой для критики, над ней развевается белый кивер удачи, и она потрясает острым копьем, легко целя им в разбегающиеся сомнения.
Но как остановить это сладостное мгновение? Далеко не всем счастливцам в науке посчастливилось дважды — чтобы не только встретиться с озарением, но еще и запомнить все детали встречи.
Николай Николаевич честно признал: «Я уж сейчас не помню хорошо, когда у меня мелькнула догадка…» Жаль, конечно. Жаль, что не уловил этот миг, когда мелькнула счастливая догадка о том, что на свете, кроме неразветвленных цепных реакций, кроме боденштейновских цепей, есть еще и разветвленные цепи и что окисление фосфора идет именно по такому механизму.
Единственное, что известно, — такая идея озарила его вдруг, и случилось это где-то в конце 1926 или в самом начале 1927 года, а что сделал в сей миг Николай Николаевич, запрыгал ли по лаборатории, как Дэви, или остановился как вкопанный, подобно Лауэ, или закричал «Эврика!», как Архимед, или заперся в лаборатории, как Рентген, можно только гадать; автор открытия не помнит, а автор книги не хочет брать грех на душу и выдумывать то, чего не было.
Так что придется пропустить нам минуту, час или день, когда происходило таинство рождения новой идеи, и продолжить рассказ уже со следующего события, которое в силу своей реальности оставило зримый след. Этим событием, неизбежно следующим за догадкой, была попытка зафиксировать ее в виде расчета.
Вспомнив механизм боденштейновских неразветвленных цепных реакций, Николай Николаевич ясно увидел, что окисление фосфора вроде бы похоже на боденштейновские цепи, длиной хотя бы, но идет совсем по-иному, с разветвлением. Реакция расползается в разные стороны, как ветви дерева, множась и нарастая ежесекундно, как горная лавина, которая начинается с одного невинного камешка. Потому-то и выгорает с такой скоростью фосфор, когда давление кислорода выше критического.
Да, но почему тогда реакция вовсе не идет, когда оно ниже?
Если записать формулу, связывающую критическое давление с размером сосуда, то в знаменателе дроби стоит квадрат диаметра сосуда: чем он больше, тем значительно меньше давление.
Если диаметр безгранично велик, давление выражается нулем; это значит, что если у сосуда нет стенок, то никакого критического давления не существует — реакция может идти сколько ей влезет, пока разветвленная цепь не истощит запасы фосфора или кислорода.
Получается, что бурному развитию цепной лавины мешают стенки сосуда. Этот вывод неумолимо следовал из формулы, поэтому его нужно принять, а приняв, объяснить. Это сделать оказалось уже значительно легче. По словам Семенова, от анализа формулы до объяснения был всего один шаг. Небольшой шаг: нужно было лишь предположить, что активные частицы, скажем, атомы кислорода, ударившись о стенку колбы, захватываются ею. После этого у них уже, что называется, связаны руки, и они не способны принять участие в цепной реакции. Каждый такой прилипший атом сидит на стенке, смотрит, как другие его товарищи активно участвуют в превращениях, и ждет, когда подойдет к нему другой атом, чтобы, соединившись и образовав нейтральную молекулу кислорода, соскользнуть внутрь сосуда. Следовательно, цепь живет и разветвляется на участке от места ее зарождения до стенки. Чем уже сосуд, тем короче этот путь; при каком-то малом диаметре большая часть цепей вообще не успеет разветвиться. И получится, что количество выбывающих из игры атомов кислорода превысит число вновь рождающихся. Так объяснял поначалу сам себе Николай Николаевич явление критического размера.
Убедившись, что новая гипотеза пока прекрасно все объясняла, он попытался уразуметь следующий непонятный казус — критическое давление. Его существование также логично вытекало из гипотезы. Поскольку размер сосуда в опытах Харитона и Вальта был неизменным, число гибнущих активных частиц на стенке также было постоянным, а количество новых активных атомов зависело от давления кислорода. Когда его становилось так мало, что смертность атомов превышала их рождаемость, реакция замирала и дремала до тех пор, пока давление кислорода не повышалось выше критического.
Оставалось объяснить себе последний опыт — с аргоном. Это оказалось совсем просто, достаточно было представить, как инертные молекулы толкутся на дороге, по которой мчатся к стенке атомы кислорода, мешают им превышать скорость, охлаждают их пыл — вроде как орудовцы на скоростных магистралях, и сразу становилось понятным, почему уменьшается при этом критическое давление: атомы кислорода реже бьются о стенки, реже гибнут, и для поддержания реакции достаточно меньшего их количества.
Я рассказываю о том, как мыслил себе Николай Николаевич Семенов события, происходившие в экспериментах с окислением фосфора, ко я не могу здесь воспользоваться способом, каким ученый выражал свои представления, — это не только и не столько слова, это формулы и расчеты. Как ни логичны образные построения, если их не подкрепить математическими выкладками, вряд ли можно выходить на суд коллег; так, во всяком случае, принято в физике. Поэтому физик Семенов, неожиданно для себя оказавшийся втянутым в химическое изыскание, попытался прежде всего описать свою идею математически.
Когда была построена математическая теория разветвленных цепных реакций, автору открытия стало ясно, как он писал, «что полученные в опытах закономерности поразительно хорошо описываются теоретическими формулами». В тот момент, правда, ему еще не было ясно до конца, сколь значительно его открытие, как далеко оно простирает свое слияние среди химических процессов; понимание обширности пришло позже; но и тогда было достаточно причин, чтобы почувствовать радость и гордость за то, что сделано, и законное желание поделиться своей радостью с другими.
На ближайшем же заседании ученого совета Физико-технического института Семенов решил доложить о своих работах. С момента полемики с Боденштейном прошел почти год. За это время многие сотрудники института прочно уверовали в ошибку Вальта и Харитона; длительное молчание их руководителя только укрепляло эту уверенность. Следовательно, предстояло не просто сообщить новость собравшимся, надо было еще и преодолеть психологический барьер, существовавший между учеными, однажды уверовавшими в легкомысленность, свойственную сотрудникам лаборатории электронных явлений, и докладчиком, возглавляющим эту самую лабораторию.
Начал свой доклад Семенов торжественно, как человек, сознающий значимость момента. Но вскоре сник. Он явственно ощущал скепсис слушателей — они не верили ни одному его слову. О, как было обидно видеть, как столь уважаемые люди, прозорливые ученые не желали замечать того нового, что содержало сообщение их коллеги! И, главное, что и учитель — среди фом неверующих. Иоффе тоже кривит ус, вертит головой, не понимает того, что старается втолковать им вконец измучившийся от напряжения и обиды докладчик. Нет, не понимают ничего, это же ясно — вопросы такие задают, что даже отвечать не хочется; а уж возражают против самых очевидных предположений. Не поняли, не поняли — не захотели понять, не заставили себя вдуматься в новые данные, не дали себе труда отстраниться от старых представлений о механизме реакций, не усомнились в ошибочности боденштейновских возражений.
Легко можно понять состояние Николая Николаевича, который, по его собственным словам, «совершенно измучился, но так и не смог убедить их в своей правоте». Обида и злость должны были остаться у него на душе после ученого совета, на который он возлагал столько надежд. И еще изумление по поводу очевидной слепоты, вернее ослепленности учителя. Провожая его после совета домой, Семенов не утерпел и высказал многое из того, что у него накипело на душе, а в заключение прямо заявил: «Не пройдет и года, как все переменят свою точку зрения, согласятся со мной, поймут важное значение нашей теории…»
Семенов хоть и в запале говорил это, но оказался прав: даже меньше чем через год открытие цепных разветвленных реакций обрело право научного гражданства. И первым признал его Боденштейн — да, да, тот самый, который выступал против, разгромил эксперимент Харитона и Вальта, не оставив от него, казалось, камня на камне. Но Семенов собрал уцелевшие факты, реставрировал их, потом пристроил к ним новый эксперимент и на таком прочном фундаменте возвел новую теорию. И Боденштейн, прочитав статью Семенова, опубликованную в том же немецком журнале, где год назад появилась робкая заметка Харитона и Вальта, теперь признал свою слепоту и недоверчивость. И, как бы в компенсацию за прошлый инцидент, предложил впредь печатать статьи в редактируемом им «Журнале физической химии». Но, наверное, и после этого еще долго чувствовал неприятный осадок на душе оттого, что так оконфузился, и пользовался каждым случаем, чтобы оповестить ученых об открытии, которое по его милости чуть не закрылось.
В конце 1927 года Семенов вырвался ненадолго из круговорота многочисленных обязанностей и уехал на озеро Селигер, чтобы там, на природе, в тиши, обобщить прежние наблюдения, прибавить к ним новые, появившиеся в последние недели, и попытаться создать более обширную теорию разветвленных цепных реакций. Конечно, прохаживаясь по берегу озера, думать легче, чем бегая между кабинетом и лабораторией — не звонит телефон, не заходят десять раз на день коллеги, не надо сидеть на совещаниях. И работа потому была написана очень быстро.
Вернувшись, Семенов доложил ее на ученом совете. Совсем недавно он стоял здесь же, на этом самом месте, у этой самой доски, перед этими же самыми людьми, и рассказывал им о том же самом открытии. Но тогда они были глухи к тому, что посчастливилось найти ему с помощью двух своих молодых сотрудников и умудренного в науках Боденштейна; теперь все было по-иному. Радостью соучастия светилось лицо Абрама Федоровича Иоффе, внимательны были члены ученого совета; они поняли наконец, что присутствуют при рождении нового открытия, прославившего молодую советскую науку. Поздравления после доклада были совершенно искренни; кто-то, наверное, признал, что был неправ тогда, другие сочли за благо промолчать — что поминать старое.
Вскоре, в 1928 году, стало известно, что открытие Семенова подтверждается опытами молодого английского ученого из Оксфордского университета Хиншелвуда. За ним и другие исследователи стали изучать новый механизм реакции.
Вместе с тем скептики еще не сложили оружия, еще не перестали раздаваться голоса отдельных ученых, часто весьма крупных, твердивших, что то одно неверно, то другое. Поэтому Семенов не счел возможным почить на лаврах и ждать, пока другие ученые за него осветят все неясные места в его теории; он еще интенсивнее взялся за продолжение работ, ставя их в больших масштабах, дабы теперь уже можно было подключить к ним многих сотрудников.
Один из важнейших опытов был поставлен самим Николаем Николаевичем. Он решил доказать себе и оппонентам, что зарождение разветвленной цепной реакции можно вызвать буквально несколькими активными частицами; по теории, правда, так и следовало, но одно дело, когда это происходит на бумаге, а другое — в колбе. Этим изящным и предельно простым опытом Семенов доказал, что он превосходный экспериментатор, словно бы видящий, как клубятся в сосуде молекулы, ожидая только внешнего толчка, чтобы взорваться химической реакцией. Он придумал, как надо подтолкнуть с горы камешек, чтобы он увлек за собой лавину.
К трубке, через которую поступал в сосуд кислород, подвели ток от катушки Румкорфа — слабенький ток, ничтожный, едва способный расщепить на атомы мизерное количество молекул. Но, по теории, для начала окисления много и не нужно — достаточно нескольких осколков. И, следовательно, в момент включения рубильника должна произойти вспышка.
Должна… Но произойдет ли? Такая постановка опыта, когда в одну секунду решается судьба нескольких предшествующих лет и многих лет будущих, требует огромного нервного напряжения. Не удивительно, что Семенов ужасно волновался и смотрел на рубильник, поворот которого должен был все решить, словно кролик на удава. Представляете, что должен был пережить в душе ученый в такой момент, если и через тридцать два года помнил «…тот трепет, с каким… в первый раз протягивал руку к щитку с рубильником». «Я долго не решался начать опыт, — вспоминает Николай Николаевич тот знобящий миг. — Мне казалось, что в эту минуту решится судьба всей теории».
И она и впрямь решилась: одновременно с поворотом рубильника в сосуде вспыхнула — действительно вспыхнула — реакция. Горсть атомов кислорода вовлекла в цепной процесс миллиарды молекул. Вновь и вновь повторял Семенов этот опыт, чтобы исключить возможность малейшей ошибки, и каждый раз, когда переставшая уж дрожать рука включала рубильник, в сосуде происходила вспышка.
Ну, вот и все, собственно. Дальше открытие начало самостоятельную жизнь. Теория Семенова о разветвленных цепных процессах прочно обосновалась в химической науке. Она привлекла к себе внимание химиков всего мира, ибо очень скоро стало ясно, что цепные процессы весьма многочисленны, они диктуют свои законы таким распространенным реакциям, как полимеризация, хлорирование, сгорание топлива в двигателях.
В 1930 году Советское правительство организовало специальный Институт химической физики, где можно было по-настоящему широко развернуть работы в столь важной для науки области. Во главе института встал Н.Н. Семенов.
В 1934 году Семенов, избранный только что академиком, подвел итог своего почти десятилетнего труда в монографии «Цепные реакции»; в следующем году книга была переведена на английский и вышла в Англии, где продолжал успешно работать Хиншелвуд.
В 1941 году основатель нового раздела химической кинетики был удостоен Государственной премии, а в 1956 году, через тридцать лет после открытия, вместе с Хиншелвудом получил Нобелевскую премию по химии. То была вдвойне радостная для нас победа: премию получил первый советский ученый. До этого два русских исследователя удостоились столь высокой чести — Мечников и Павлов, но было это еще до революции. Теперь же в Стокгольм отправлялся полпред советской науки. После еще шесть наших физиков получат право именоваться лауреатами Нобелевской премии, но Семенов был первым.
В этой книге нам уже не раз приходилось сопровождать выдающихся ученых в Стокгольм, где им вручались диплом лауреата, золотая медаль, денежный чек, где в их честь оркестр играл отрывки из лучших симфоний, где награжденных осаждали фото — и кинокорреспонденты, где смущенные непривычным общественным вниманием лучшие физики, химики, биологи читали традиционные Нобелевские лекции. И, вероятно, каждый из нас задавал себе вопрос: о чем, интересно, думает ученый в те минуты, когда перед его награждением играет музыка, а шведский король готовится вручить ему символы международной славы и признания? К сожалению, далеко не всегда это становилось известным широкой публике, ученые редко вспоминают о личных переживаниях; но вот в этой главе представляется редкий случай узнать совершенно точно, какие мысли проносились в голове шестидесятилетнего прославленного академика, когда он сидел на сцене переполненного зала, взволнованный и счастливый, и, пока играл оркестр, имел десять минут на то, чтобы перевести дух, расслабиться немного после начала и перед концом торжественной церемонии и подумать о чем-то своем. О чем же?
Вот его воспоминания: «Когда я слушал музыку, передо мной проносилось то незабываемое время 20-х — начала 30-х годов, когда я, еще молодой человек, и мои дорогие товарищи, тогда еще совсем юные сотрудники лаборатории, в институте за экспериментальными установками и дома за письменным столом переживали самые яркие радости творчества, когда каждый день приносил нам новые загадки и когда эти загадки мы в конце концов с успехом решали и сквозь, казалось бы, непроходимые дебри пробивали новые пути».
Согласитесь, история открытия такова, что здесь есть что вспомнить. Дело не только в обстоятельствах открытия, хотя и они, конечно, невольно должны запасть в душу, — а ведь память сердца, как вы помните, сильней рассудка памяти печальной, — дело еще и в последствиях, какие имело открытие для науки; не только для химии — для физики. И это должно было быть особенно значимо для его автора, ведь он, не забудьте, был физик. Физике обучался в университете, физикой шел заниматься к Иоффе после окончания, о физических открытиях мечтал, вероятно, холодными голодными ночами в Петрограде.
И когда через двенадцать лет оказалось, что идея разветвленной цепной реакции применима не только к химическим процессам, но и к процессам ядерным, Николай Николаевич, как мне кажется, непременно должен был почувствовать радость и удовлетворение: удовлетворение тем, что идея, высказанная физиком, вернулась на круги своя — в физику же.
Речь идет о ядерной цепной реакции деления урана. Она была предсказана в 1938 году Фредериком Жолио-Кюри и Ф. Перреном и осуществлена впервые 2 декабря 1942 года в Чикагском университете итальянским физиком Энрико Ферми. Конечно, ядерная цепная реакция отличается от химической — иные частицы участвуют в ней, на ином уровне идет процесс и с иными последствиями, но формальные закономерности здесь те же и те же критические условия включают и выключают цепь. И если нельзя сказать, что физики просто позаимствовали теорию своего бывшего коллеги, то высказать предположение, что они воспользовались ее основами и тем самым значительно сократили время поисков, можно и нужно.
Наверное, и об этом думал Николай Николаевич декабрьским днем 1956 года. А может, еще и о будущем своего открытия, и в этой связи — о биологии, где цепные процессы могут оказаться столь же важными, как и в ее сестрах — химии и физике.
Конечно, когда смотришь назад, всё представляется простым и понятным, кажется даже странным, как это можно было сомневаться в чем-то, долго не решаться что-то сделать; но те, кто пробивается вперед «сквозь, казалось бы, непроходимые дебри», всегда вынужден сомневаться, ибо дороги впереди нет и ее приходится строить, как говорил немецкий физик Макс Борн, позади себя. Семенов проложил широкую дорогу; по ней уже сорок лет идут многие ученые мира, и еще долго останется она оживленной магистралью науки; но как бы далеко от начала ни ушли мы, следует помнить, что когда-то ее вовсе не было на карте естествознания и один из наших современников первым вошел в дремучий лес неизвестности.
Глава одиннадцатая
Ну что ж, вот и подходят к концу наши странствия. Мне осталось поведать одну лишь еще историю — последнюю.
Правда, по хронологии ока самая древняя в этой книге: она восходит к тем далеким временам, когда Цейлон назывался еще санскритским словом «Серендипа», образованным в еще более далекие времена соединением двух слов: «Симхала» — истинное название Цейлона, и «Двипа» — остров. Открыт Симхала Двипа был бенгальским принцем Виджая, который отправился в плавание по Индийскому океану из Калькутты и неожиданно около самой Бенгалии обнаружил большой остров. Принц поселился на острове, стал править им; его потомки звались принцами Симхала Двипа. Со временем это длинное прозвище сократилось до принцев Серендипа. И вот с того момента и берет свое начало предание, о котором я хочу рассказать.
Суть его в том, что принцы Серендипа обладали удивительной способностью во время путешествий находить вещи, которые они и не думали искать; в этом они походили на своего предка, который и сам Цейлон открыл случайно.
Предание это существовало на Цейлоне много лет, было оно известно и в Индии, но европейцы толком о нем не слыхали до 1754 года, до тех пор, пока английский исследователь Велпоул, изучавший Цейлон и даже написавший о нем книгу, не использовал это предание для образования неологизма, то есть нового слова — «серендипити». Английский суффикс «-ти» эквивалентен нашему окончанию «-ство», поэтому по-русски это слово звучало бы как «серендипство». В нашем языке есть такие существительные, образованные от имен собственных, например — донкихотство, что означает подражание Дон-Кихоту. Следовательно, «серендипство», или давайте уж лучше придерживаться международного термина «серендипити», — качество, присущее принцам Серендипа. Так, кстати, и трактует этот термин известный английский Вебстеровский словарь: «Дар обнаружения ценных вещей там, где их не ищут».
Таким образом, с серендипити все понятно, кроме одного: зачем понадобилось Велпоулу вводить его.
Представьте себе ученого, который десять, двадцать, тридцать лет работает над какой-то проблемой и вдруг узнает, что его коллега этак небрежно, между прочим, не затратив ни времени, ни труда, наткнулся на ту драгоценную истину, которую он, старатель, добытчик, первопроходец, труженик, несколько раз буквально держал в руках, но по каким-то, как ему кажется, объективным причинам совершенно случайно не рассмотрел. Каково ему? Что должен он чувствовать в своей раскаленной обидой душе, когда его коллегу, а не его самого венчают всевозможными знаками отличия? Бешенство? Тихую злость? Детскую обиду? Равнодушие? Радость за товарища, который безусловно достоин награды? Радость за науку, которая обогатилась новым открытием? Радость за человечество, которому в конечном счете все равно, кто добыл новое знание?
Так что он должен переживать?
Любое из этих чувств — в зависимости от характера и мировоззрения. Он может возненавидеть коллегу — как было с Ленардом, или любимую науку — как было с Романьози, или вовсе все человечество — как Кавендиш; но он может и ограничиться тем, что философски усмотрит в случившемся перст судьбы, некое высшее предначертание. А с этим как бороться? Только иронией. И он придумает словечко, чтобы обозвать это непонятное везение, посещавшее не раз других, ничуть не более достойных, но упорно минующее его скромную персону. А чтобы все увидели хотя бы в этом творчестве, в словотворчестве, какой он образованный и умный, он придумает словечко не простое, а заковыристое, чтобы в нем все было: и древняя легенда, и герои королевских кровей, и заморское государство, и фонетика исчезнувшая, а не какая-нибудь английская или латинская.
Правда, по хронологии ока самая древняя в этой книге: она восходит к тем далеким временам, когда Цейлон назывался еще санскритским словом «Серендипа», образованным в еще более далекие времена соединением двух слов: «Симхала» — истинное название Цейлона, и «Двипа» — остров. Открыт Симхала Двипа был бенгальским принцем Виджая, который отправился в плавание по Индийскому океану из Калькутты и неожиданно около самой Бенгалии обнаружил большой остров. Принц поселился на острове, стал править им; его потомки звались принцами Симхала Двипа. Со временем это длинное прозвище сократилось до принцев Серендипа. И вот с того момента и берет свое начало предание, о котором я хочу рассказать.
Суть его в том, что принцы Серендипа обладали удивительной способностью во время путешествий находить вещи, которые они и не думали искать; в этом они походили на своего предка, который и сам Цейлон открыл случайно.
Предание это существовало на Цейлоне много лет, было оно известно и в Индии, но европейцы толком о нем не слыхали до 1754 года, до тех пор, пока английский исследователь Велпоул, изучавший Цейлон и даже написавший о нем книгу, не использовал это предание для образования неологизма, то есть нового слова — «серендипити». Английский суффикс «-ти» эквивалентен нашему окончанию «-ство», поэтому по-русски это слово звучало бы как «серендипство». В нашем языке есть такие существительные, образованные от имен собственных, например — донкихотство, что означает подражание Дон-Кихоту. Следовательно, «серендипство», или давайте уж лучше придерживаться международного термина «серендипити», — качество, присущее принцам Серендипа. Так, кстати, и трактует этот термин известный английский Вебстеровский словарь: «Дар обнаружения ценных вещей там, где их не ищут».
Таким образом, с серендипити все понятно, кроме одного: зачем понадобилось Велпоулу вводить его.
Представьте себе ученого, который десять, двадцать, тридцать лет работает над какой-то проблемой и вдруг узнает, что его коллега этак небрежно, между прочим, не затратив ни времени, ни труда, наткнулся на ту драгоценную истину, которую он, старатель, добытчик, первопроходец, труженик, несколько раз буквально держал в руках, но по каким-то, как ему кажется, объективным причинам совершенно случайно не рассмотрел. Каково ему? Что должен он чувствовать в своей раскаленной обидой душе, когда его коллегу, а не его самого венчают всевозможными знаками отличия? Бешенство? Тихую злость? Детскую обиду? Равнодушие? Радость за товарища, который безусловно достоин награды? Радость за науку, которая обогатилась новым открытием? Радость за человечество, которому в конечном счете все равно, кто добыл новое знание?
Так что он должен переживать?
Любое из этих чувств — в зависимости от характера и мировоззрения. Он может возненавидеть коллегу — как было с Ленардом, или любимую науку — как было с Романьози, или вовсе все человечество — как Кавендиш; но он может и ограничиться тем, что философски усмотрит в случившемся перст судьбы, некое высшее предначертание. А с этим как бороться? Только иронией. И он придумает словечко, чтобы обозвать это непонятное везение, посещавшее не раз других, ничуть не более достойных, но упорно минующее его скромную персону. А чтобы все увидели хотя бы в этом творчестве, в словотворчестве, какой он образованный и умный, он придумает словечко не простое, а заковыристое, чтобы в нем все было: и древняя легенда, и герои королевских кровей, и заморское государство, и фонетика исчезнувшая, а не какая-нибудь английская или латинская.