Пристли пытался объяснить это явление, используя теорию флогистона. Поскольку горючие вещества горели в этом газе весьма ярко, то они должны были очень легко выделять флогистон. Чем объяснить это? Как следует из теории флогистона, воздух легко поглощает флогистон, но до определенного предела, после чего горение прекращается. В открытом Пристли газе горение шло лучше, чем в воздухе, и он решил, что этот газ совсем не содержит флогистона. Пристли назвал открытый им газ "дефлогистированным воздухом". (Однако через несколько лет его переименовали в кислород, этим названием мы пользуемся и сегодня.)
   "Дефлогистированный воздух" Пристли казался своего рода антиподом "флогистированного воздуха" Резерфорда. В последнем газе мыши умирали, тогда как в первом были весьма деятельными.
   Пристли сам попробовал подышать "дефлогистированным воздухом" и почувствовал при этом себя "легко и свободно".
   Однако в открытии кислорода и Резерфорда и Пристли опередил шведский химик Карл Вильгельм Шееле (1742-1786) - представитель той плеяды химиков, которые вывели Швецию в XVIII в. на передовые позиции науки.
   Приблизительно в 1735 г. шведский химик Георг Брандт (1694-1768) начал изучать голубоватый минерал, напоминавший медную руду. Несмотря на такое сходство, получить из этого минерала медь при обычной обработке не удавалось. Рудокопы полагали, что эта руда заколдована земными духами "кобольдами". В 1742-1744 гг. Брандт сумел показать, что голубоватый минерал содержит не медь, а совершенно иной металл, напоминающий по своим химическим свойствам железо. Этот металл получил название кобальт.
   В 1751 г. Аксель Фредрик Кронстедт (1722-1765) открыл новый металл никель, очень похожий на кобальт; Иоганн Готлиб Ган (1745-1818) выделил в 1774 г. марганец, а Петер Якоб Гьельм (1746-1813) получил в 1782 г. молибден.
   Рис. 6. Паяльная трубка, введенная в лабораторную практику шведским химиком Кронстедтом (1722-1765), более века была ключевым инструментом химического анализа; этот метод используется до сих пор. Струя воздуха повышает температуру пламени и может менять его направление.
   Кронстедт при изучении минералов впервые применил паяльную трубку (рис. 6). Это была длинная, постепенно сужающаяся трубка, из узкого конца которой выходила струя сжатого воздуха.
   Когда такую струю направляли в пламя, температура его повышалась. Минералы, нагреваемые в пламени паяльной трубки, окрашивали его в различные цвета, поэтому по цвету пламени можно было судить о природе и составе минерала, о природе образовавшихся паров и твердого остатка. На протяжении столетия паяльная трубка оставалась основным инструментом химического анализа.
   Благодаря использованию новых технических приемов, подобных анализу в пламени паяльной трубки, химикам удалось накопить достаточно много данных о минералах. Исходя из этих данных Кронстедт вполне справедливо полагал, что минералы следует классифицировать не только в соответствии с их внешним видом, но и в соответствии с их химической структурой. В 1758 г. он выпустил книгу "Система минералогии", в которой детально описал новую систему классификации.
   Эта работа была продолжена другим шведским минералогом Торберном Улафом Бергманом (1735-1784). Бергман развил теорию, объясняющую, почему одно вещество реагирует с другим веществом, но не реагирует с третьим. Он же предположил, что между веществами существует "сродство" (affinities), и составил тщательно выверенные таблицы различных величин сродства. Эти таблицы пользовались широкой известностью при жизни их создателя и пережили его на несколько десятилетий.
   Шееле, еще будучи помощником аптекаря, обратил на себя внимание Бергмана, который помогал ему и поддерживал его. Шееле открыл ряд кислот растительного и животного происхождения, в том числе винную, лимонную, бензойную, яблочную, щавелевую, галловую, молочную, мочевую, а также такие минеральные кислоты, как молибденовая и мышьяковая.
   Шееле получил и изучил три сильно ядовитых газа: фторид водорода, сульфид водорода и цианид водорода. (Предполагают, что его ранняя смерть явилась результатом медленного отравления химикалиями, так как он имел обыкновение пробовать на вкус те вещества, с которыми работал.)
   Шееле был в числе тех химиков, исследования которых привели к открытию многих элементов, и пользовался большим уважением шведских коллег. Наиболее важные его открытия - получение кислорода и азота (соответственно в 1771 и 1772 гг.). Шееле получал кислород, нагревая вещества, непрочно его удерживающие. В частности, он нагревал тот самый красный оксид ртути, которым несколько лет спустя воспользовался Пристли. Шееле подробно описал свои опыты по получению и столь же подробно описал свойства "огненного воздуха" (так он называл кислород), но из-за небрежности его издателя эти описания не появлялись в печати до 1777 г. К этому времени вышли труды Резерфорда и Пристли, которые и завоевали честь первооткрывателей.
   ТРИУМФ ИЗМЕРЕНИЯ
   К концу XVIII в. был накоплен большой экспериментальный материал, который необходимо было систематизировать в рамках единой теории. Создателем такой теории стал французский химик Антуан-Лоран Лавуазье (1743-1794). С самого начала своей деятельности на поприще химии Лавуазье понял важность точного измерения. Его первая значительная работа (1764 г.) была посвящена изучению состава минерального гипса. Нагревая этот минерал, Лавуазье удалял из него воду и определял количество полученной таким образом воды. Лавуазье принял сторону тех химиков, которые, подобно Блэку и Кавендишу, применяли измерение при изучении химических реакций. Однако Лавуазье использовал более систематический подход, что позволило ему доказать несостоятельность старых теорий, уже не только бесполезных, но и мешавших развитию химии. Даже в 1770 г. ряд ученых придерживались старого определения элементов и утверждали, что трансмутация возможна, поскольку воду, например, при длительном нагревании можно превратить в землю. Предположение о возможности превращения воды в землю считалось справедливым (вначале даже самим Лавуазье), так как при длительном нагревании воды (в течение нескольких дней) в стеклянном сосуде образовывался твердый осадок. Лавуазье решил проверить возможность превращения воды экспериментальным путем. С этой целью он в течение 101 дня кипятил воду в сосуде, в котором водяной пар конденсировался и возвращался обратно в колбу, так что возможность какой-либо потери вещества в процессе опыта была исключена. И разумеется, Лавуазье не забывал о точности эксперимента. Он взвешивал и сосуд и воду до и после нагревания.
   Осадок при этом действительно появился, но вес воды не изменился. Следовательно, вода не могла образовать осадок. Однако вес самого сосуда, как выяснилось, уменьшился как раз на столько, сколько весил осадок. Другими словами, осадок появился не в результате превращения воды в землю, а в результате медленного разъедания стеклянных стенок сосуда горячей водой. Осадок образовывало выщелоченное стекло, осаждавшееся в виде твердых пластинок. Этот пример наглядно показывает, что простое наблюдение может привести к ошибочным выводам, тогда как количественное измерение позволяет установить истинные причины явления.
   Вопрос о том, что такое процесс горения, интересовал всех химиков XVIII в., и Лавуазье также не мог не заинтересоваться им. В 60-х годах XVIII в. он получил золотую медаль за исследование, посвященное улучшению способов уличного освещения. В 1772 г. Лавуазье в складчину с другими химиками приобрел алмаз. Он поместил этот алмаз в закрытый сосуд и нагревал до тех пор, пока алмаз не исчез. При этом образовался углекислый газ. Таким образом было убедительно доказано, что алмаз состоит из углерода и, следовательно, алмаз ближе всех других веществ к углю.
   Продолжая свои опыты, Лавуазье нагревал в закрытых сосудах с ограниченным объемом воздуха такие металлы, как олово и свинец. Сначала на поверхности обоих металлов образовывался слой окалины, но в определенный момент ржавление прекращалось. Сторонники теории флогистона сказали бы, что воздух поглотил из металла весь содержащийся в нем флогистон. В то время уже доподлинно было известно, что окалина весит больше, чем сам металл, однако, когда после нагревания Лавуазье взвесил сосуд вместе со всем содержимым (металлом, окалиной, воздухом и пр.), оказалось, что он весит ровно столько же, сколько и до нагревания.
   Из этих данных следовало, что если, частично превратившись в окалину, металл увеличил свой вес, то что-то еще из содержащегося в сосуде потеряло эквивалентное количество веса. Это "что-то еще" могло быть и воздухом. Однако в этом случае в сосуде должен был образоваться вакуум. Действительно, когда Лавуазье открыл сосуд, туда устремился воздух, и вес сосуда и его содержимого увеличился.
   Таким образом Лавуазье показал, что металл превращается в окалину не в результате потери мистического флогистона, а вследствие присоединения порции самого обычного воздуха.
   Это открытие позволило выдвинуть новую теорию образования металлов и руд. Согласно этой теории, в руде металл соединен с газом. Когда руду нагревают на древесном угле, уголь адсорбирует газ из руды; при этом образуются углекислый газ и свободный металл.
   Таким образом, в отличие от Шталя, который считал, что плавка металла включает переход флогистона из древесного угля в руду, Лавуазье представлял себе этот процесс как переход газа из руды в уголь. Однако имело ли смысл толкование Лавуазье предпочесть толкованию Шталя? Да, имело, поскольку предположение Лавуазье о переходе газа позволяло объяснить причины изменения веса веществ в результате горения.
   Окалина тяжелее металла, из которого она образовалась, ровно на столько, сколько весит соединившееся с металлом количество воздуха. Горение дерева также сопровождается присоединением воздуха, но увеличения веса в этом случае не наблюдается, так как образовавшееся новое вещество углекислый газ улетучивается в атмосферу. Оставшаяся зола легче сгоревшего дерева. Если бы горение дерева проходило в закрытом сосуде и образующиеся при этом газы оставались бы в сосуде, тогда можно было бы показать, что вес золы плюс вес образовавшихся газов плюс вес того, что осталось от воздуха, равняется начальному весу дерева и воздуха.
   Обдумывая результаты проведенных им опытов, Лавуазье пришел к мысли, что если учитывать все вещества, участвующие в химической реакции, и все образующиеся продукты, то изменения в весе никогда наблюдаться не будет8. (Говоря более точным языком физиков, не произойдет изменения массы.) Другими словами, Лавуазье пришел к выводу, что масса никогда не создается и не уничтожается, а лишь переходит от одного вещества к другому. Это положение, известное как закон сохранения массы, стало краеугольным камнем химии XIX в.9
   Успехи, достигнутые Лавуазье благодаря использованию метода количественных измерений, были настолько велики и очевидны, что этот метод был безоговорочно принят всеми химиками.
   ГОРЕНИЕ
   Однако сам Лавуазье был не вполне доволен полученными результатами. При соединении воздуха с металлом образовывалась окалина, а при соединении с деревом - газы. Но почему в таком взаимодействии участвовал не весь воздух, а только примерно пятая часть его?
   В октябре 1774 г. Париж посетил Пристли и рассказал Лавуазье о своем открытии "дефлогистированного воздуха". Лавуазье сразу же оценил значение этого открытия. В 1775 г. он выступил с докладом в Академии наук, а вскоре подготовил и статью, в которой утверждал, что воздух является не простым веществом, а смесью двух газов. Одну пятую воздуха, по мнению Лавуазье, составляет "дефлогистированный воздух" Пристли (Лавуазье, к сожалению, оспаривал у Пристли честь открытия кислорода). И именно эта часть воздуха соединяется с горящими или ржавеющими предметами, переходит из руд в древесный уголь и необходима для жизни.
   Рис. 7. Схемы опытов, проведенных Лавуазье, показанные в его книге "Элементарный курс химии" (рисунки сделаны женой Лавуазье).
   Лавуазье назвал этот газ кислородом, т. е. порождающим кислоты, так как полагал, что кислород - необходимый компонент всех кислот. В этом, как в дальнейшем выяснилось, он ошибался.
   Второй газ, составляющий четыре пятых воздуха ("флогистированный воздух" Резерфорда), был признан совершенно самостоятельным веществом. Этот газ не поддерживал горения, мыши в нем гибли. Лавуазье назвал его азотом безжизненным. Позднее азот был переименован в нитроген10, что в переводе с латинского означает селитрообраэующий, поскольку выяснилось, что азот является составной частью распространенного минерала селитры.
   Лавуазье был убежден (и, надо сказать, совершенно справедливо), что жизнь поддерживается процессом, сходным с процессом горения: ибо мы вдыхаем воздух, богатый кислородом и бедный углекислым газом, а выдыхаем воздух, бедный кислородом и значительно обогащенный углекислым газом. Он и его коллега Пьер Симон де Лаплас (1749-1827), впоследствии известный астроном, попытались измерить количество вдыхаемого животным кислорода и выдыхаемого им углекислого газа. Результаты оказались озадачивающими - часть вдыхаемого кислорода не превратилась в выдыхаемый углекислый газ.
   Как мы отмечали выше, в 1783 г. Кавендиш все еще изучал "горючий газ". Он сжигал часть определенного объема этого газа и тщательно изучал образующиеся при этом продукты. Кавендиш выяснил, что образующиеся при горении газы конденсируются в жидкость, которая, как показали анализы, является всего-навсего водой.
   Важность этого открытия трудно было переоценить. Теории элементов-стихий был нанесен еще один тяжелый удар, поскольку выяснилось, что вода не простое вещество, а продукт, образующийся при соединении двух газов.
   Лавуазье, узнав об этом опыте, назвал газ Кавендиша водородом ("образующим воду") и отметил, что водород горит, соединяясь с кислородом, и, следовательно, вода является соединением водорода и кислорода. Лавуазье также полагал, что пищевая субстанция и живая ткань представляют собой множество различных соединений углерода и водорода, поэтому при вдыхании воздуха кислород расходуется на образование не только углекислого газа из углерода, но и воды из водорода. Таким образом Лавуазье объяснил, куда расходуется та часть кислорода, которую он никак не мог учесть в своих первых опытах по изучению дыхания11.
   Новые теории Лавуазье повлекли за собой полную рационализацию химии. Было покончено со всеми таинственными "элементами". С того времени химики стали интересоваться только теми веществами, которые можно взвесить или измерить каким-либо другим способом.
   Заложив таким образом фундамент химической науки, Лавуазье решил заняться надстройкой. В течение 80-х годов XVIII в. Лавуазье в сотрудничестве с тремя другими французскими химиками - Луи Бернаром Гитоном де Морво (1737-1816), Клодом Луи Бертолле (1748-1822) и Антуаном Франсуа де Фуркруа (1755-1809) - разработал логическую систему химической номенклатуры. Этот труд был опубликован в 1787 г.
   Таблица простых веществ, относящихся ко всем царствам природы,
   которые можно рассматривать как элементы
   Новые названия Старые названия
   Свет Свет
   Теплота
   Составная часть
   Теплород Ранее не были известны
   Борный радикал
   Простые металлические вещества,
   способные окисляться и образовывать кислоты
   Новые названия Старые названия
   Антимоний (сурьма) Антимоний (сурьма)
   Мышьяк Мышьяк
   Висмут Висмут
   Кобальт Кобальт
   Медь Медь
   Золото Золото
   Железо Железо
   Свинец Свинец
   Марганец Марганец
   Ртуть Ртуть
   Молибден Молибден
   Никель Никель
   Платина Платина
   Серебро Серебро
   Олово Олово
   Вольфрам Вольфрам
   Цинк Цинк
   Простые солеобразующие вещества земного происхождения
   Новые названия Старые названия
   Известь кислород-17 + водород-1.
   Рис. 23. Схема опыта Резерфорда. Испускаемые альфа-частицы отклоняются при прохождении через золотую фольгу; величина отклонения фиксируется при соударении частиц с флуоресцентным экраном.
   Преобразовав один элемент в другой, он осуществил трансмутацию. Так в XX в. осуществилась самая заветная мечта алхимиков.
   В последующие пять лет Резерфорд провел серию других ядерных реакций с использованием альфа-частиц. Однако возможности его были ограничены, поскольку радиоактивные элементы давали альфа-частицы только со средней энергией. Необходимы были частицы с гораздо большими энергиями.
   Физики принялись за создание устройств, предназначенных для ускорения заряженных частиц в электрическом поле. Заставив частицы двигаться с ускорением, можно было повысить их энергию. Английский физик Джон Дуглас Кокрофт (1897-1967) совместно со своим сотрудником ирландским физиком Эрнестом Томасом Синтоном Уолтоном (род. в 1903 г.) первыми разработали идею ускорителя, позволявшего получать частицы с энергией, достаточной для осуществления ядерной реакции. В 1929 г. такой ускоритель был построен. Спустя три года эти же физики бомбардировали атомы лития ускоренными протонами и получили альфа-частицы. Эту ядерную реакцию можно записать следующим образом:
   водород-1 + литий-7 -> гелий-4 + гелий-4.
   В ускорителе Кокрофта - Уолтона и ряде других подобных ускорителей частицы перемещались по прямолинейной траектории. Получить в таком ускорителе частицы с высокой энергией можно было только при достаточной длине пути частиц, поэтому ускорители такого типа были чрезвычайно громоздки. В 1930 г. американский физик Эрнест Орландо Лоуренс (1901-1958) предложил ускоритель, в котором частицы двигались по слабо расходящейся спирали. Этот относительно небольшой циклотрон мог давать частицы с крайне высокой энергией.
   Первый очень маленький циклотрон Лоуренса является предшественником современных гигантских установок в полкилометра в окружности, которые используются в поисках ответов на сложнейшие вопросы, связанные со строением материи.
   В 1930 г. английский физик Пауль Адриен Моррис Дирак (1902-1984) теоретически обосновал предположение о том, что и протоны и электроны должны иметь свои античастицы. Антиэлектрон должен обладать массой электрона, но должен быть заряжен положительно, антипротон должен обладать массой протона, но быть заряжен отрицательно.
   Антиэлектрон был обнаружен в 1932 г. американским физиком Карлом Дэвидом Андерсоном (1905-1991) во время исследования космических лучей51. Когда космические лучи сталкиваются с ядрами атомов в атмосфере, то при этом образуются частицы, которые отклоняются в магнитном поле на такой же угол, что и электроны, но в противоположном направлении. Частицы такого рода Андерсон назвал позитронами.
   Антипротон не удавалось обнаружить еще в течение четверти столетия. Поскольку масса антипротона в 1836 раз больше массы антиэлектрона, то для образования антипротона требуется в 1836 раз больше энергии, и поэтому до 50-х годов XX в. это превращение было неосуществимо. В 1955 г. американским физикам Эмилио Сегре (1905-1989) и Оуэну Чемберлену (род. в 1920 г.) удалось, используя мощные ускорители, получить и обнаружить антипротон.
   Было установлено, что могут существовать такие своеобразные атомы, у которых отрицательно заряженные ядра, содержащие антипротоны, окружены положительно заряженными позитронами. Естественно, что такое антивещество не может долго существовать ни на Земле, ни, вероятно, даже в пределах нашей Галактики, поскольку при контакте вещества с антивеществом они аннигилируют (уничтожаются), высвобождая огромное количество энергии. И все-таки астрономы задаются вопросом, не могут ли существовать Галактики, построенные из антивещества? Если такое возможно, то обнаружить такие Галактики будет очень трудно.
   ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ
   В результате успешного проведения первых ядерных реакций были получены уже известные, встречающиеся в природе изотопы. Однако полученные таким образом нейтронно-протонные комбинации могли отличаться от комбинаций, характерных для природных изотопов. Ведь первые органические молекулы, синтезированные химиками, отличались от молекул природных соединений (см. гл. 6). Нейтронно-протонные комбинации нового типа были получены в 1934 г. французскими физиками супругами Фредериком Жолио-Кюри (1900-1958) и Ирен Жолио-Кюри (1897-1956) (дочь известных физиков супругов Кюри, прославившихся открытием радия, см. гл. 13).
   Супруги Жолио-Кюри бомбардировали алюминий альфа-частицами и при этом выяснили, что алюминий продолжает испускать частицы и после окончания бомбардировки. В результате проведенных исследований были открыты алюминий-27 (13 протонов плюс 14 нейтронов) и фосфор-30 (15 протонов плюс 15 нейтронов).
   Но фосфор, встречающийся в природе, имеет только одну разновидность атомов - фосфор-31 (15 протонов плюс 16 нейтронов), следовательно, фосфор-30 - искусственный изотоп. Причина, по которой этот изотоп не встречается в природе, очевидна: период полураспада фосфора-31 составляет всего 14 дней. Излучение именно этого изотопа и наблюдали супруги Жолио-Кюри.
   Супруги Жолио-Кюри первыми открыли явление искусственной радиоактивности. К настоящему времени получено более тысячи радиоактивных изотопов, не встречающихся в природе. У каждого элемента имеется один или несколько радиоактивных изотопов. Один радиоактивный изотоп имеется даже у водорода; период полураспада водорода-3, называемого также тритием, составляет 12 лет.
   В 1940 г. американский химик Мартин Д. Камен (род. в 1913 г.) открыл необычный радиоактивный изотоп углерода - углерод-14. Некоторое количество этого изотопа образуется в атмосфере в результате бомбардировки азота космическими лучами. Это означает, что все живые существа, в том числе и мы, постоянно вдыхаем некоторое количество углерода-14, который потом попадает в ткани. Американский химик Уиллард Фрэнк Либби (1908-1980) предложил определять возраст археологических находок исходя из содержания углерода-14. Аналогичный метод используется при определении возраста земной коры: его определяют исходя из содержания урана и свинца. Таким образом, химия пришла на помощь историкам и археологам.
   Осуществляя синтез химических веществ, можно часть обычных изотопов заменить на редкие стабильные изотопы. Например, водород-1 можно заменить на водо-род-2, углерод-12 - на углерод-13, азот-14 - на азот-15, а кислород-16 - на кислород-18. С помощью таких меченых соединений можно изучать механизмы реакций, происходящих в живых тканях. Новатором в такого рода работе был американский биохимик Рудольф Шонхеймер (1898-1941), который, используя водород-2 и азот-15, провел важные исследования жиров и белков. После окончания Второй мировой войны такие изотопы стали более доступны, что позволило провести более тщательное изучение механизмов реакций. Примером того, какую роль могут сыграть изотопы, служит работа американского биохимика Малвина Келвина (род. в 1911 г.). В 50-х годах XX в. он применил углерод-14 для изучения механизма реакций фотосинтеза. Работу эту Келвин проделал с такой обстоятельностью, которая всего лишь двадцать лет назад считалась совершенно невозможной.
   Вслед за искусственными изотопами физикам удалось получить и искусственные элементы. В 1937 г. изобретатель циклотрона Лоуренс провел бомбардировку образца молибдена (порядковый номер 42) дейтронами (ядра водорода-2), после чего отправил этот образец Сегре в Рим. (Позднее Сегре переехал в США и уже там открыл антипротон.) Сегре тщательно изучил образец и обнаружил, что он содержит следы нового радиоактивного вещества - как впоследствии выяснилось, элемента с порядковым номером 43. К этому времени элемент еще не был открыт в природе (несмотря на несколько неподтвердившихся известий), и поэтому его назвали технецием (от греческого - искусственный).
   Со временем были заполнены три оставшихся в периодической таблице пробела (см. гл. 8). В 1939 и 1940 гг. были открыты элементы номер 87 (франций) и номер 85 (астат), а в 1947 г.- элемент номер 61 (прометий). Все эти элементы радиоактивны.
   Астат и франций образуются из урана в очень малых количествах; по-видимому, именно по этой причине их не удалось открыть раньше. Технеций и прометий образуются в еще меньших количествах. Это единственные элементы с порядковыми номерами меньше 84, не имеющие стабильных изотопов.
   ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ
   Вначале бомбардировка атомных ядер велась положительно заряженными частицами: протонами, дейтронами и альфа-частицами. Поскольку одноименно заряженные частицы отталкиваются, то положительно заряженные ядра атомов отталкивают положительно заряженные частицы, и заставить движущиеся с большей скоростью частицы преодолеть отталкивание и столкнуться с ядром весьма сложно, так что ядерные реакции трудно осуществимы.
   С открытием нейтрона (см. гл. 12) у химиков появились новые возможности. Нейтроны представляют собой незаряженные частицы, и атомные ядра их не отталкивают. Направив нейтрон в нужном направлении, его легко можно заставить столкнуться с ядром.
   Итальянский физик Энрике Ферми (1901-1954) первым обстоятельно изучил бомбардировку нейтронами. Свою работу он начал почти сразу же, как только узнал об открытии нейтрона Он обнаружил, что пучок нейтронов инициирует ядерные реакции особенно эффективно, если он проходит через воду или парафин. Легкие атомы этих веществ при каждом столкновении поглощают некоторое количество энергии нейтронов, но самих нейтронов при этом не поглощают. Следовательно, нейтроны замедляются настолько, что в конечном счете движутся со скоростью обычных молекул, находящихся при комнатной температуре. Такие тепловые нейтроны находятся вблизи отдельных ядер в течение секунды или немногим более, следовательно, вероятность того, что ядро поглотит нейтрон, в этом случае выше, чем при бомбардировке быстрыми нейтронами.