В его системе Солнце - центр мира. Вокруг него вращаются планеты. Среди них и Земля, которая за двадцать четыре часа совершает оборот вокруг своей оси, а за год - вокруг Солнца. Вселенная ограничена сферой неподвижных звезд.
   Астрономическая ценность труда Коперника велика, но его значение этим далеко не
   чивается. Главная его заслуга в том, что он вновь поставил все под вопрос. Рухнул геоцентризм средних веков. Рухнули порядок и стабильность, которые средневековье предписывало разуму во всех областях. Если Земля круглая, если она движется, причем двояким образом, если она вовсе не находится в центре мироздания, если она -всего лишь второстепенное светило в бесконечном пространстве, значит, все существенные проблемы поставлены заново. Сотрясены пятнадцать столетий умственного застоя. Вот почему шестьдесят лет спустя труд простого польского каноника произвел величайший переворот в человеческой мысли. Книга "Об обращениях небесных сфер" (De revolutionibus orbium celestium) появилась в год смерти Коперника (1543), но в "Индекс запрещенных книг" внесена лишь в 1616, когда Церковь поняла, какие опасные "еретические" идеи она распространяет. Но заданное книгой движение уже нельзя было остановить.
   4 февраля 1600 года в замке Бенатек состоялась одна из тех встреч, которые меняют ход истории. В этот день молодой, двадцатидевятилетний немец Иоганн Кеплер поступил в ученики к величайшему астроному того времени датчанину Тихо Браге. Их сотрудничество продолжалось всего полтора года. Оно сопровождалось постоянны-" ми стычками и размолвками, поскольку оба астронома обладали прескверным характером, и прервалось со смертью Браге. Но совместная работа этих двух неистовых умов дала астрономии невероятный толчок. Тихо Браге привил порывистому, романтичному Кецлеру математическую дисциплину, без которой знаменитые "законы Кеплера" вряд ли появились бы. Не имея цифр и расчетов, собранных датским ученым, Кеплер не смог бы вычислить орбиты планет и вывести прославившие его фундаментальные законы:
   1. Планеты движутся по эллипсам, в одном из фокусов которых находится Солнце.
   2. Площадь, описываемая радиусом-вектором, проведенным от планеты к Солнцу, изменяется пропорционально времени.
   3. Квадраты периода обращения двух планет вокруг Солнца соотносятся между собой как кубы среднего расстояния их до Солнца.
   Чудо? Случай? Судьба? Семью годами раньше - а в масштабе тысячелетий практически одновременно с Кеплером - в Пизе явился на свет другой гигант мысли - Галилей. Астроном, неутомимый изобретатель, гениальный универсал, он первый понял, чем может быть полезен любопытный инструмент, о котором ходило уже много слухов. Этот инструмент изобрели в Голландии за год или два до того; он позволял смотреть на отдаленные предметы с увеличением. Галилей добыл его описание. Инструмент состоял из двух линз: выпуклой - объектива и вогнутой окуляра. Честолюбивому умельцу этого было достаточно. Он принялся за работу. Через несколько недель Галилей осторожно посмотрел в свою первую трубку: она давала трехкратное увеличение. Тогда глаза этого рыжеволосого угрюмого человека загорелись радостью. Он понял: добиться гораздо большего увеличения ничего не стоит.
   Галилей продолжил работу, и 21 августа 1609 года представил инструмент, дающий тридцатикратное увеличение, дожу и Большому совету Венеции. Галилей понимал, что подобное изобретение может принести ему всемирную славу, а он к этому был неравнодушен. Телескоп, тотчас установленный на колокольне Святого Марка, произвел сенсацию. Со всех сторон сбегался народ поглазеть в него. Знатные люди расталкивали друг друга локтями. Каждый хотел хоть на миг увидеть неразличимые простым глазом
   детали кораблей, еле заметных на горизонте, или рассмотреть в упор зевак на площади. Это был не просто успех, а триумф Галилея. Но на этом он не остановился.
   Ученый направил телескоп на небо - и не поверил своим глазам! Луна оказалась не гладким шаром, как писал Аристотель, поверхность ее была шершавой, изрытой, усеянной множеством кратеров, покрытой горами и долинами. Млечный Путь - не белесым облаком, а собранием звезд. За несколько часов Галилей увидел на небе больше, чем все люди до него! Никогда, без сомнения, не доводилось никакому ученому сделать столько открытий за столь короткое время. В лихорадочном возбуждении исследователь за несколько дней открыл не только много новых звезд, но и четыре крупнейших спутника Юпитера, поныне называемых "галилеевыми", пятна на Солнце, фазы Венеры.
   Изобретение телескопа наделало громадного шуму, вскоре появилось немалое число астрономов-любителей. Каждый хотел открыть собственную звезду. Ревниво относясь к своим открытиям, Галилей решил защитить их посредством анаграмм. Так, думал ученый, останется материальное свидетельство открытия, и в то же время оно останется секретным. В первый раз он применил эту хитроумную систему в августе 1610 года, вручив тосканскому посланнику для передачи Иоганну Кеплеру - близкому другу, но чересчур талантливому коллеге - записку следующего содержания:
   SVAISMRMILMEPOETALEUMIBUNENUGTTAURIAS.
   История умалчивает о лукавом прищуре в глазах Галилея, когда он передавал свое послание, но нам известно, с каким нетерпением бросился порывистый Кеплер решать головоломку, чтобы
   узнать о последнем открытии приятеля. Несколько недель он бился напрасно. Наконец, у него получилась такая фраза на очень дурной латыни: "Salve umbistineum geminatum Martia proles", не имевшая ничего общего с настоящим смыслом: "Altissirnam planetam tergeminum observavi". Кеплер перевел свою фразу так: "Приветствую тебя, блестящий близнец, Марсов отпрыск" и решил, что Галилей увидел спутники около Марса. На самом деле надо было читать: "Я наблюдал высочайшую планету в тройственной форме". Галилей увидел кольца Сатурна и принял их за два выступа самой планеты.
   Месяц спустя Галилей отправил Кеплеру и Джулиано Медичи другую анаграмму. Этого Кеплер уже не выдержал. Он послал Галилею довольно сердитое письмо, где, напомнив, что он "честный немец", просил не мучить его загадками. "Мать любви (Венера) видом подобна Цинтии (Луне)", - ответил ему Галилей. Для него это открытие - Венера имеет фазы, подобные лунным, .- имело принципиальное значение и служило неопровержимым доказательством того, что планеты обращаются вокруг Солнца. Значит, гелиоцентрическая система Коперника единственно верна.
   Впрочем, Галилей сделал замечательные открытия еще до изобретения телескопа. Любознательность рано проснулась в нем. Галилею не было еще двадцати лет, когда во время службы, в Пизанском соборе он обратил внимание на качание люстры под потолком. Галилей начал многочисленные опыты и вывел первые законы земной меха-. ники: тело сохраняет состояние движения или покоя, пока на него не действует внешняя сила; естественным направлением движения является прямолинейное; брошенное тело движется по параболе.
   Итак, Кеплер и Галилей жили в одно время, состояли в переписке, вместе боролись за Коперниковы идеи, но никогда не встречались. Один открыл первые законы, управляющие движеним небесных тел, другой - законы движения тел земных, но ни тому, ни другому не пришло в голову сопоставить эти законы. Это сделал Исаак Ньютон - величайший из всех, если на этом уровне мысли еще существует какаято иерархия. Ньютон родился в 1643 году - году смерти Галилея. Спустя сорок четыре года увидел свет его труд "Математические основы естественной философии". Отрывочные механические законы Кеплера и Галилея соединились - явилась механика. "Европейское чудо", длившееся меньше двухсот лет, сравнялось с греческим, продолжавшимся восемьсот. Коренной поворот в представлении о Вселенной совершился на четырех рычагах фундаментальных законах Ньютона:
   1. Всякое тело удерживается в состоянии покоя или равномерного прямолинейного движения, если к нему не приложена никакая внешняя сила (закон инерции).
   2. Изменение скорости тела прямо пропорционально приложенной силе, обратно пропорционально массе тела и происходит по направлению прямой, по которой действует сила (F = mg, закон ускорения).
   3. Действию всегда соответствует равное ему и противоположное противодействие.
   4. Два любых тела притягиваются друг к другу с силой, прямо пропорциональной их массе и обратно пропорциональной квадрату расстояния между ними (закон всемирного тяготения).
   Так закончилась первая часть этой чудесной истории. Земля теперь предстала просто большим твердым шаром, который неизвестно кто,
   неизвестно когда и зачем запустил вместе с подобными телами (одни из них больше, другие - меньше) в вечный круговой путь вокруг Солнца. Любые судьи любых Галилеев стали отныне бессильны.
   ВСЕ ВЕЛИКИЕ ВЕРИЛИ В ИНОПЛАНЕТЯН
   Однако начались новые битвы. Их затевали потомки этих судей - тех людей, которые из поколения в поколение встают на защиту старого против самых новых и плодотворных идей, содействующих расцвету науки и прогресса. Время, конечно, работает против них. Мы уверены: когда-нибудь они будут вынуждены признать, что и жизнь существует не только на Земле, и разум - не привилегия лишь одних землян.
   Во все эпохи умные и образованные люди - философы, ученые, писатели имели предчувствие, что в космосе обретаются другие живые существа. Их поражало созерцание природы, не отпускало невыразимое чувство, с ним связанное, мысль их возносилась, и они начинали верить во множественность обитаемых миров.
   В "Ведах" - древнейшей из известных нам книг, соответствующей у индусов нашей Книге Бытия, - сказано, что душа после воплощения на Земле переносится к другим мирам. Индейцы, китайцы, арабы убеждены, что планеты играют в человеческой жизни важную роль, но их верования не доходят до представления о существовании там жизни, подобной нашей.
   Среди же греческих философов о внеземном существовании размышляли очень многие. Такая возможность признавалась и всерьез рассматривалась еще со времен фалеса и ионийской школы. Анаксимандр и Анаксимен верили в существование иных обитаемых миров; после них так
   же думали Эмпедокл, Аристарх, Левкипп. Что до Пифагора, то публично он преподавал расхожие теории того времени, но в частных беседах не скрывал от близких учеников передовых мыслей о внеземной жизни. Можно долго перечислять имена философов, державшихся тех же взглядов.
   Тех же верований придерживались египтяне, а кельты вернулись к древнему представлению о посмертном переселении душ на Солнце и в другие "небесные обители".
   Латинский поэт Лукреций в поэме "О природе вещей" пишет: ... Остается принять неизбежно, Что во Вселенной еще и другие имеются земли, Да и людей племена и также различные звери...
   И далее следует такое глубокомысленное и красноречивое суждение:
   Видим мы прежде всего, что повсюду,
   во всех направленьях С той и с другой стороны, и вверху и внизу у Вселенной Нет предела, как я доказал, как сама очевидность Громко гласит и как ясно из самой природы пространства. А потому уж никак невозможно признать вероятным, Чтоб, когда всюду кругом бесконечно пространство зияет И когда всячески тут семена в этой бездне несутся В неисчислимом числе, гонимые вечным движеньем, Чтобы лишь наша земля создалась и одно наше небо, И чтобы столько материи тел оставалось без дела ...
   Бесспорно, эти воззрения еще не опирались на сколько-нибудь серьезные основания. Но как не восхититься при мысли, что уже тогда существовали столь поэтичные представления!
   К несчастью, на смену этим хотя и лирическим гениальным прозрениям пришли пятнадцать веков ложного толкования священных книг, ослепляющего ум и оправдывающего его робость.
   Человечество преклонилось - не навсегда, но надолго - перед знаменитым предписанием Тертуллиана: "Верующий ничего более не желает".
   В эпоху Возрождения идея обитаемых миров вновь возродилась и достигла апогея к середине XVII века, когда философы и ученые, вдохновленные успехами оптики, давшей зрительную трубу, а затем и телескоп, со страстью обратились к наблюдению небесных тел. Широкая же публика познакомилась с ней благодаря остроумному Фонтенелю и его "Беседам о множественности миров", опубликованным в 1686 году. Конечно, этот тезис в книге защищается легковесно, что сильно уменьшает ее достоинства. Но мнение человека, до Вольтера считавшегося первым писателем, получило широкое распространение. Книга имела огромный успех. В том же году голландский астроном Гюйгенс защищал тот же тезис, используя гораздо более серьезные научные аргументы, в своем трактате "Космотеорос" ("Созерцатель космоса").
   Очевидно, что теория не становится верной только потому, что у нее много сторонников. Но производит глубокое впечатление сам факт того, сколько знаменитых философов не побоялись рискнуть своей репутацией, утверждая, что неразумно представление о существовании жизни лишь на нашей планете. Как не привести, хотя бы частично, каталог из книги замечательного астронома Камиля Фламмариона "Множество обитаемых миров", относящийся к одному только XVIII веку? Здесь мы найдем имена Лейбница, Бернулли, Ньютона, Уистона, Дерема, Сведенборга, Вольтера с его "Микромегасом", Бюффона с "Эпохами природы", Шарля Бонне с "Аналитическим опытом" и "Созерцанием природы", Кондильяка с "Логикой", Ламберта с "Космологическими письмами", Мармонтеля с
   "Инками", Байи с "Историей древней астрономии", Лафатера с "Физиогномикой", Бернардена де Сен-Пьера с "Гармониями природы", Дидро с "Это нам неизвестно" и многих других.
   Надо еще назвать Гердера, Дюпона де Немура, Балланша, Кузена-Депрео, Жозефа де Местра и в первую очередь Иммануила Канта, который во "Всеобщей естественной истории и теории неба" без колебаний писал (все же с излишним оптимизмом): "Я придерживаюсь мнения, что не нуждается даже в доказательстве, что все планеты населены, ибо отрицать это было бы совершенным абсурдом в глазах всех людей или по крайней мере большинства. В царстве природы все миры и системы по сравнению с мирозданием в целом - лишь пылинки. Посреди стольких сфер лишь те области могут быть пустынны и ненаселены, где не могут обитать разумные существа, являющиеся целью всей природы".
   В том же духе пишут и поэты: Гёте, Краузе, Шеллинг, Юнг в знаменитых "Ночах", Гервей, Томсон, Сен-Ламбер, Фонтан...
   Далее идут знаменитые астрономы - такие, как Боде, Лаланд, Лаплас или Уильям Гершель, писавший: "Нужно очень мало извлечь из изучения астрономии, чтобы предполагать, что человек - единственный предмет попечений Создателя и в обширном и поразительном космосе, окружающем нас, нет обителей, предназначенных для других разумных рас",
   Современная история дает нам множество других, не менее славных имен... Но оставим последнее слово самому Камилю Фламмариону, Он хочет "подняться до небес, чтобы найти новые земли", и в романтическом исступлении так завершает свою чудесную небольшую работу, посвященную этой проблеме:
   ^ Досье внеземных цивилизаций ^ "
   "О, сохраним же тщательно это учение, как драгоценное для души, посвятим его звездному богу. И когда возвышенная ночь, окружая нас своим великолепием, зажжет на востоке алмазные гирлянды созвездий, когда по безбрежному небу поплывет их таинственное сияние, - через беспредельность миров, посреди звездоносных небес, под серебряным парусом далеких туманностей, в неизмеримых глубинах бесконечности, до тех неведомых краев, где сияет вечный свет... - поклонитесь им, братья мои: это проплывают наши общие братья по разуму!".
   Документ 2
   СТРАНСТВИЕ В МИРЕ БОЛЬШИХ ЧИСЕЛ
   ОТВЕТ УИЛЬЯМА ГЕРШЕЛЯ
   В первой части нашей удивительной истории мы остановились на работе Ньютона, который понял и объяснил устройство Солнечной системы, но не смог переступить представление о неподвижности звезд. Вторая часть начинается с появления его соотечественника Эдмунда Галлея, открывшего в 1718 году, что звезды не неподвижны. Ему самому удалось вычислить "собственное движение" двух звезд: Альдебарана и Арктура. Теперь известно около 40 тысяч звезд с вычисленными траекториями. Рухнула еще одна догма. Значит, и наше Солнце может быть всего лишь одной из многих звезд. Значит, и весь беспредельный звездный строй, в который мы можем все дальше проникать при помощи телескопа, подвижен. Но что же тогда собственно Вселенная?
   На этот вопрос ответил еще один англичанин. До четырнадцати лет он пас овец, до восемнадцати играл на гобое в оркестре королевской гвардии, а до тридцати пяти давал уроки музыки и служил органистом в церкви в Бате. Однажды этому простому и скромному человеку по имени Уильям Гершель попалась на глаза книга по астрономии. Он ее прочел увлеченно. За несколько часов пробудившийся интерес превратился в страсть. Как это часто бывает,
   позднее призвание захватило его целиком. Чтобы разбираться в астрономии, он изучил алгебру и геометрию. Чтобы самому наблюдать чудеса, о которых прочел, освоил оптику.
   Мало того: не имея средств, чтобы купить ^себе телескоп, Гершель решил его построить. Он проводил за этим занятием все ночи. Его сестра Каролина с ужасом видела, как дом превращается в какую-то мастерскую, как брат тащит туда кучу железок и стеклышек и никого к этим "драгоценностям" не подпускает...
   Первый телескоп Гершеля имел фокусное расстояние 5 м. Второй - уже 39, в нем было зеркало диаметром 1,47 м, и весил он целую тонну! Слава улыбнулась Гершелю 13 марта 1781 года, когда он случайно увидел в созвездии Близнецов небесное тело, не похожее на звезду. Сначала он принял его за комету. Но директор Гринвичской обсерватории Маскелайн, которому Гершель сообщил о своем открытии, заново все перепроверил. Скоро было официально объявлено: Уильям Гершель открыл новую планету, названную Ураном.
   Благодаря пенсии, которую назначил ему за это открытие король, Гершель наконец смог полностью посвятить себя новому увлечению. Многие годы он каждую ночь занимался составлением звездного каталога, неутомимо диктуя сестре свои наблюдения. Поскольку самые ясные ночи бывают зимой, эти сеансы стали настоящей пыткой для бедной Каролины: она долгие часы мерзла, сидя за столиком, и только тихо вздыхала, когда застывали чернила.
   Упорство Гершеля было не напрасным. Прежде всего он выяснил, что вся Солнечная система движется, причем Солнце с огромной скоростью (20 км/сек) смещается в сторону Беги. Он показал, что кольцо Сатурна вращается, и
   лил скорость его вращения. Затем он решил про верить гипотезу, выдвинутую Райтом в 1750 году: может быть, Млечный Путь - не огромное звездное кольцо вокруг Солнца, а диск, в который входит и само Солнце?
   Ответ оказался положительным, и это потрясало. Оказывается, Млечный Путь - скопление бесчисленного множества иных Солнц!
   Доказав утверждение, Уильям Гершель положил начало современной астрономии. Началось грандиозное странствие в мире больших чисел. Возникло новое представление о Вселенной - безграничной и движущейся, - которую следует так и представлять себе, преодолев неизбежное головокружение...
   Гершель умер 25 августа 1822 года в возрасте девяноста двух лет, не зная, что столетие спустя подтвердятся самые смелые его гипотезы. Но слава его была и без того бесспорна. Должно быть, его душа сладко встрепенулась, когда несколько лет спустя сын его Джон со всеми внуками, забравшись в трубу большого телескопа, пел вместе со всеми молитвы за упокой его души...
   МАСШТАБ БЕСКОНЕЧНОСТИ
   В космосе все огромно: расстояния, размеры, скорости, число небесных тел... Невозможно их себе представить без постоянного усилия воображения.
   Прежде всего надо отбросить вредные иллюзии. Небо - это не поэтический "небесный свод". Оно не синее. Оно не едино. Небо астрономов - совсем не то, что небо метеорологов: первое начинается там, где второе кончается.
   Ночью мы возводим глаза к небесам, и далекий мир звезд кажется нам неподвижным и
   койным. Мы ищем в нем мира и тишины, как будто перед нами нарисован некий гигантский натюрморт... Ничего подобного!
   Этот мир весь в непрестанном и разнообразном движении. Его постоянно сотрясают взрывы. Подвижно все, что его составляет. И в этой безумной пляске, которая совершенно ошеломила бы нас, если бы совершалась в измерении, доступном человеку, планета Земля не более чем маленький камушек, подобный множеству других, причем не вечный. Эволюция этого камушка началась миллиарды лет назад и будет продолжаться еще миллиарды лет, если не случится какой-нибудь непредвиденной катастрофы.
   Если представить Солнце в виде биллиардного шара диаметром 7 см, то Меркурий - ближайшая к Солнцу планета - будет крохотным шариком на расстоянии 2,8 м от него. Шарик-Земля будет на расстоянии 7,6 м, Юпитер -40 м, а самый далекий шарик Плутон - 300 м. Диаметр шарика, изображающего Землю, будет около 0,5 мм, а окружность орбиты Луны примерно 4 см.
   Ближайшая к Солнцу звезда Проксима Центавра в этом масштабе окажется на расстоянии 2000 км от биллиардного шара, а диск нашей Галактики будет иметь диаметр 60 миллионов километров!
   Об огромности небесных расстояний можно составить представление и по скорости движения звезд.
   Предположим, например, что некий наблюдатель следит за самолетом, летящим со скоростью 1 000 км/час. Если самолет пролетит рядом, наблюдатель едва успеет его заметить. Чем дальше будет находиться самолет, тем более он доступен наблюдению. На границе поля зрения за его полетом можно следить несколько минут.
   Если же наблюдать за Луной, то uiia l.Хr^-"Хoт^Хя неподвижной: не наметив точные ориопти^л, движения ее уловить нельзя. Но это неподвижное с виду тело перемещается в пространстве со скоростью 1 км/сек, то есть 3 600 км/час. Можно себе представить, как Луна далеко от нас. И это расстояние - ничто по сравнению с тем, которое отделяет нас от звезд!
   Планеты Солнечной системы движутся со скоростью от 5 до 50 км/сек. А звезды, казавшиеся человеку испокон веков совершенно неподвижными, это на самом деле снаряды, по большей части несущиеся с потрясающей скоростью от 80 до 300 км/сек.
   Как же не поразиться, узнав, что эти скорости еще очень малы в сравнении с движением самих галактик, проносящихся по космосу со скоростью более 200 000 км/сек! И что сказать о расстояниях, отделяющих нас от них? Ничего - только то, что этого человеческий ум вообразить себе не может или может с величайшим трудом.
   Земные расстояния бессильны дать какое-либо представление о небесных (за исключением орбит некоторых спутников планет): здесь нужно оперировать сотнями миллионов километров, миллиардами и даже больше.
   Так, Солнечная система, элементы которой настолько близки к нам, что для современной астрономии сравнительно малоинтересны, которая является лишь крохотной частичкой безграничного мироздания, имеет в диаметре около II миллиардов километров. Огромное число! Однако оно совершенно незначительно по сравнению с теми величинами, которыми измеряются межзвездные расстояния. Вот почему в астрономии обычно применяются две единицы.
   Первая - астрономическая единица (а.е.) - служит для измерения расстояний до
   ших светил и равна расстоянию от Земли до Солнца, т.е. 150 миллионам километров.
   Вторая единица связана со скоростью света. Поскольку световые волны распространяются со скоростью 300 000 км/сек (семь с половиной земных окружностей в одну секунду), за год они проходят расстояние 9 468 000 000 000 км, которое соответствует одному световому году.
   Таким образом, 1 а.е. равна 8 с небольшим световым минутам. Иначе говоря, свет Солнца доходит до Земли всего за 8 минут.
   Плутон - самая далекая планета Солнечной системы, - находится от Солнца на расстоянии 6 миллиардов километров, или 5,5 световых часов. Дальняя же граница Солнечной системы находится приблизительно на расстоянии II световых часов.
   Покинем Солнечную систему и переступим порог бесконечности. Необходимо знать и понимать, что ближайшая из мириадов звезд, еженощно мерцающих у нас над головой, - Проксима Центавра - находится на расстоянии сорока световых лет от Земли.
   Сопоставление двух цифр говорит о космических масштабах больше, чем любые сложные доказательства: от Солнца свет доходит до нас за восемь минут, от самой близкой звезды - за сорок лет!
   СТО МИЛЛИАРДОВ СОЛНЦ
   Млечный Путь (от греческого galaktikos - млечный) содержит более ста миллиардов звезд. Его форму обычно уподобляют жернову или большому диску с утолщением в центре. Диаметр этого диска более 100 тысяч световых лет, толщина - около 15 тысяч.
   На самом деле такое сравнение дает недостаточное представление о действительности. Можно подумать, что диск повсюду имеет одинаковую плотность и что звезды распределены ио нему равномерно. Это совсем не так: плотность звезд в Галактике весьма неравномерна. В центре она очень велика и уменьшается к периферии - в частности, в районе Солнечной системы, расположенной на расстоянии около 30 000 световых лет от центра.
   Отсюда ясно, что, вопреки нашему неосознанному впечатлению, мы находимся внутри Млечного Пути, то есть Земля является его частью Огромная белесая полоса, видимая в ясные ночи, соответствует плоскости Галактики, и наш взгляд, направленный на Млечный Путь, теряется в самой ее толще. Мы лучше поймем это явление, сравнив Галактику с двояковыпуклой линзой. Легко можем смотреть сквозь линзу в направлении, перпендикулярном ее плоскости, но не параллельном (через края). Белесоватый цвет Млечному Пути придает огромное множество звезд.