К вопросам относительно понимания видов объектов ноосферы мы еще будем возвращаться не раз по ходу дальнейшего изложения. А сейчас в завершение настоящей главы заметим следующее.
   Большинство вопросов, затронутых в данной главе, изложены схематично. Это обусловлено двумя причинами. С одной стороны, нет надобности в углубленном изложении не главных, а вспомогательных моментов. С другой стороны, вскрытие и наблюдение самых общих тенденций требует абстрагирования, целенаправленного отсечения частных и второстепенных деталей. Так, например, в последнем разделе главы при рассмотрении воспроизводства видов не рассматривались такие моменты, как проявление унаследованных от родителей черт сознания и мышления, а в биосфере - роль конкретных биологических механизмов и условий воспроизводства живого организма и т.д. Подобные факторы, безусловно, оказывают влияние и в той или иной мере накладываются на общие тенденции, но существенными на уровне общих закономерностей они не являются.
   ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ МАТЕРИИ В ИЗВЕСТНЫХ СФЕРАХ МИРОЗДАНИЯ.
   ОСНОВНЫЕ СООТНОШЕНИЯ ТРЕХ ИЗВЕСТНЫХ СФЕР
   В числе принципов организации материи, общих для всех известных сфер материального мира, прежде всего следует назвать законы диалектики. Их объективность и всеобщий характер известны и очевидны. Не будем поэтому задерживаться на описании их проявлений. Обратим внимание на менее изученные факты, иллюстрирующие общность закономерностей построения мироздания на всех трех известных его уровнях, определенную пропорциональность соотношений известных его сфер.
   Рассмотрение таких фактов удобно начать с закономерности сохранения основ развития. Эта закономерность была описана автором в работе "Светлое будущее - миф или реальность?" (1992 г.). В данном случае также целесообразно изложить ее суть подробно.
   Качественные изменения объектов реального мира, образующих какую- либо систему, класс, вид, происходят не одновременно. Часть объектов, совершив качественный переход, дает начало новому, более прогрессивному виду (классу, системе). При этом происходит уничтожение прежнего качества лишь этих объектов. Остальные же объекты, не дошедшие в своем развитии до данного качественного перехода, сохраняются. Возникновение совершенного вида, таким образом, вовсе не означает неизбежного отмирания всего предшествующего вида, тех его объектов, которые на данный момент не совершили качественного перехода. С появлением нового, предшествующие, более примитивные виды, классы, системы, как правило, не отмирают, а сохраняются.
   Проявление этой закономерности можно наблюдать в любых случаях развития достаточно больших групп объектов, во всех трех сферах материального мира. Например, в сфере органической природы при выходе жизни из жидкой среды на сушу, при появлении земноводных животных, мир обитателей водной среды не прекратил своего существования. Далее, с появлением птиц и млекопитающих, никуда не делись земноводные, рыбы и другие эволюционно более ранние классы животных.
   Сохранение основ развития тем более выступает непреложным фактом относительно самых больших систем материального мира - трех его известных сфер. Возникновение живой природы вовсе не ведет к исчезновению неорганического мира, появление ноосферы не означает отмирания первых двух сфер.
   Сохранение основ развития, являясь следствием взаимодействия 1-го закона диалектики и неупорядоченности, неравномерности развития, выступает в качестве важнейшей закономерности эволюции природы. Действие этой закономерности обуславливает устойчивость развития в условиях его неупорядоченности. Виды, классы, системы объектов мироздания, дав начало новому, проявив таким образом свою способность совершать определенный акт развития, сохраняясь с его реализацией, становятся необходимыми основами, внутренними звеньями, скрытыми резервами эволюционного процесса. Они обеспечивают возможность его регенерации при катастрофах любого масштаба. От сохранившихся основ развития всегда могут пойти новые ростки прогресса.
   Следует подчеркнуть и такой аспект проявления данной закономерности. Благодаря сохранению основ развития с каждым актом появления нового происходит увеличение количества видов, классов, систем, иными словами, рост их многообразия. По отношению к закономерности сохранения основ развития тенденция роста многообразия является ее ярким внешним выражением. Эта тенденция обычно хорошо заметна даже в случаях, когда само по себе сохранение основ развития проследить трудно.
   Сохранение основ развития означает, что всякий возникающий новый вид, класс, система вбирает в себя лишь какую-то часть предшествующей основы. Соотношение этой части и ее основы в разных процессах развития материального мира различно. Для каждого конкретного класса объектов и соответствующего вида качественных переходов размер этого соотношения выражается тем или иным определенным числом или числовым интервалом. Нас интересует, какими числами выражаются соотношения нового качества и его основы в переходах сфера веществ - биосфера и биосфера - ноосфера.
   Биосфера в сравнении со всей планетой Земля представляется исчезающе тонким ее слоем. Общая масса нашей биосферы на много порядков меньше массы Земли и тем более всех известных нам безжизненных объектов ближнего космоса.
   Количество материи, достигшей в условиях планеты Земля следующего уровня сложности - наша ноосфера - также на много порядков меньше своей предшествующей основы - биосферы (животный и растительный мир, биомасса мирового океана).
   Размер соотношения нового качества и его основы в переходе биосфера - ноосфера оказывается подобным соотношению неживой природы и биосферы. Тот факт, что каждая последующая сфера по количеству составляющей ее материи многократно меньше предшествующей сферы, отметим как первое важнейшее соотношение сфер материального мира.
   Продолжая поиск закономерностей в соотношениях сфер мироздания, обратимся к вопросу об их составляющих элементах.
   Сферы мироздания, как предельно большие его части, представлены великим разнообразием составляющих их объектов. В любой из сфер присутствуют объекты, ассоциации, системы объектов самых различных свойств и качеств, в том числе и весьма различные по своим размерам. Едва ли возможно четко обозначить в каждой сфере виды предельно больших объектов. Однако в каждой из сфер нетрудно выделить определенные классы мельчайших объектов. Минимальные объекты сфер мироздания назовем простейшими или первичными их элементами. В сфере веществ - это элементарные частицы, обладающие массой покоя (электроны, протоны, нейтроны и т.д.) и атомы, в биосфере - вирусы и отдельные живые клетки. Первичным элементом ноосферы следует считать сознание отдельно взятого человека.
   Сразу обращает на себя внимание соотношение размеров первичных элементов, самых мелких объектов сфер мироздания. Первичные элементы каждой последующей сферы многократно, на много порядков больше (по массе или количеству материи, по геометрическим размерам) первичных элементов каждой предыдущей. Этот факт отметим как второе важнейшее соотношение сфер мироздания.
   Выделение среди множеств объектов, составляющих сферы мироздания, их элементов позволяет также сделать ряд выводов об общности принципов организации материи во всех известных сферах. Прежде всего, в этом плане показательно сравнение сферы веществ и биосферы.
   Как в сфере веществ, так и в биосфере в качестве первичных элементов, руководствуясь принципом учета наиболее существенных признаков, можно обозначить два класса или уровня объектов. Признаки, значение и место этих уровней (классов) первичных элементов в сфере веществ и биосфере оказываются соответственно подобными.
   Элементы первого уровня - это предельно мелкие объекты соответствующих сфер. В сфере веществ - это элементарные частицы, обладающие массой покоя. В биосфере - простейшие вирусы, представленные одной молекулой биополимера, способной воспроизводить себе подобные молекулы. Элементы первого уровня являются самыми ранними в эволюционной истории каждой из сфер.
   Второй уровень первичных элементов в сфере веществ представляют атомы, а в биосфере - живые клетки. Эти объекты крупнее и сложнее соответствующих элементов первого уровня, и в эволюционном плане они являются более поздними. Однако они тоже выступают в роли элементов, причем первичных, поскольку именно объекты этого класса являются наиболее распространенными первокирпичиками, основными структурными единицами, непосредственно слагающими все сложные объекты соответствующих сфер мироздания.
   Периоды эволюционной истории сферы веществ и биосферы, соответствующие двум уровням первичных элементов, также оказываются подобными.
   Первый этап эволюции каждой из этих сфер выступает как предварительный или переходный. Для сферы веществ он начинается от момента, когда вскоре после начала расширения Вселенной концентрация энергии снижается до уровня, допускающего устойчивое существование частиц, обладающих массой покоя. Происходит превращение, как бы сгущение энергии полей в "тяжелые" элементарные частицы. На первом этапе своего развития сфера веществ, представленная лишь элементарными частицами - простейшими элементами первого уровня - находится как бы в зачаточном состоянии.
   Аналогично началом отсчета истории биосферы является момент появления молекул биополимеров, способных воспроизводить свою структуру с новых таких же молекулах. Подобно сфере веществ, биосфера на этом этапе также предстает как зарождающаяся система.
   Примечательно, что предварительный этап развития сферы мироздания проходят сравнительно быстро. В эволюционном плане он выглядит весьма коротким промежутком времени. При этом процесс развития (в сфере веществ от элементарных частиц - к атомам, а в биосфере от белковых молекул - к одноклеточным организмам) носит направленный, как бы линейный характер.
   Кратковременность предварительного периода, невозможность наблюдения его промежуточных стадий и их результатов - все это чрезвычайно затрудняет его познание, что, в свою очередь, оказывается источником всякого рода мистических истолкований происхождения соответствующих сфер.
   Второй этап эволюции каждой из сфер является основным. Его также можно назвать периодом разветвленного и полноценного развития. Он базируется на наличии сформировавшихся первичных элементов второго уровня: в сфере веществ - атомов, в живой природе - одноклеточных организмов. На этом этапе происходит образование сложных объектов, их конгломератов и систем. Процесс развития становится разветвленным и многократно дублирует каждый уровень совершенства объектов путем образования широчайшего многообразия их разных видов. В каждой из сфер формируется многоступенчатая иерархия подсистем, классов, видов ее объектов. Данный этап развития каждой сферы означает ее развертывание как гигантской сложной системы.
   Значительная протяженность во времени, многоплановость развития, неравномерность роста его различных ветвей, возможность наблюдать посредством их исследования разные эволюционные уровни второго этапа делают его значительно более доступным для изучения.
   Образующиеся на втором этапе эволюционной истории сферы веществ и биосферы их сложные объекты можно подразделить на две группы. Одну группу составляют объекты, имеющие признаки необходимой и достаточной завершенности, цельности. Ярким примером таких сложных объектов в биосфере являются макроорганизмы растений и животных. В сфере веществ аналогичными объектами являются молекулы химических соединений. Деление таких объектов на части, как и добавление к ним чего-либо невозможно без глубоких изменений их качественной определенности. Сложные объекты первой группы назовем поэтому вторичными (или сложными) элементами сфер мироздания.
   Ко второй группе относятся сложные объекты, не обнаруживающие признака цельности, неделимости, завершенности. В сфере веществ - это разнообразные конгломераты, сгустки вещества или смеси веществ размером от нескольких молекул до астрономических тел и их систем, в биосфере - колонии микроорганизмов, грибков, насекомых, стада животных и т.д.
   <Подразделение сложных объектов сфер мироздания на две указанные группы в некоторой степени условно. В частности, сложными элементами биосферы, возможно, правильнее было бы считать не целостные макроорганизмы, а их отдельные органы или даже функционально определенные части органов. Безусловно, признаки цельного и неделимого в биосфере проявляет, прежде всего, полноценный организм. Однако разделение многоклеточного организма на части не означает мгновенного прекращения жизни его органов. Некоторые органы могут сохранять свои функции довольно длительное время. А из частей низших многоклеточных животных может происходить регенерация целого организма.>
   Важная закономерность, иллюстрирующая общность принципов развития сфер мироздания и преемственность в ходе эволюционного процесса обнаруживается в первой группе сложных объектов сфер мироздания - в группе их сложных элементов. Эта закономерность, во-первых, определяет способ построения сложных элементов сфер мироздания. Любые более или менее сложные их элементы строятся не произвольным образом и не путем укрупнения или качественного усложнения первичных элементов, а по одному принципу, единому для всех трех известных сфер - посредством образования ассоциаций соответствующих первичных элементов.
   Так молекулы химических соединений - сложные или вторичные элементы сферы веществ - строятся из атомов, первичных элементов этой сферы; макроорганизмы биосферы слагаются из живых клеток. То же самое хорошо прослеживается и в ноосфере. Ее сложные объекты - это различные ассоциации людей как носителей сознания, первичных элементов ноосферы.
   <В составе сложных элементов любой из названных сфер, кроме ее первичных элементов, присутствуют также разнообразные объекты всех более простых форм организации материи. Так, например, в объектах ноосферы и биосферы присутствуют и неживые вещества, и различные поля, и, определенно, еще более тонкие материальные формы. Неотделимые от объектов высших сфер, эти компоненты обеспечивают протекание энергетических и информационных процессов, выступают в роли материала для самообновления и т.д., но какими-либо структурными единицами они здесь не являются. Присутствие в образованиях высших сфер мироздания в качестве вспомогательных компонентов, а также в виде случайных включений объектов всех нижерасположенных сфер является одним из проявлений отмечавшегося уже необходимого всеобщего взаимопроникновения сфер мироздания.>
   Вторая сторона данной закономерности раскрывает характер эволюционной связи между сферами материального мира. Зарождение каждой последующей сферы, появление ее первичных элементов происходит в результате роста, усложнения и совершенствования ассоциаций первичных элементов предыдущей сферы.
   Так рост сложности молекул химических соединений как ассоциаций атомов приводит в конце концов к появлению молекул биополимеров, наиболее совершенные из которых проявляют способность к воспроизводству себе подобных молекул, становясь, таким образом, первичными элементами новой сферы материального мира - живой природы.
   В рамках биосферы на основном этапе ее эволюции образуются, усложняются, совершенствуются ассоциации живых клеток. Вершиной совершенства их ассоциаций оказывается человеческий мозг, точнее особый комплекс его структур, проявляющий свойства сознания. Этот объект начинает далее выполнять роль первичного элемента следующей ступени организации материи - ноосферы.
   Итак, сравнение сферы вещества и биосферы обнаруживает комплекс общих для этих сфер принципов организации материи: два уровня первичных элементов, выполняющих аналогичные роли в сфере веществ и в биосфере, два этапа эволюции этих сфер, соответственно похожих во многих отношениях, одинаковые принципы построения сложных элементов и перехода к последующей сфере.
   Относительно вопроса о действии этих закономерностей в ноосфере имеет место следующее. Нынешний уровень познания ноосферы не позволяет провести такой же анализ принципов организации ее материи. Однако, исходя из косвенных фактов, можно утверждать, что отмеченные закономерности организации материи действуют и в ноосфере. Таким косвенным подтверждением, прежде всего, может служить то, что указанные принципы можно непротиворечиво вписать в известную эволюционную картину ноосферы, дополнив ее как бы недостающими логическими звеньями.
   А именно, эволюционная история ноосферы, как и двух предшествующих сфер, видимо, имеет два периода: предварительный, или переходный, и основной. Предварительный этап - от первых случайных проблесков сознания древнего человека до тех пор, когда сознание стало главным фактором, определяющим специфику его поведения - аналогично двум другим сферам, надо полагать, был коротким. Кратковременность и необратимость этого периода затрудняют его познание - относительно конкретных путей и механизмов происхождения сознания, как и в отношении возникновения двух предшествующих сфер, поэтому имеет место много неясностей и спорных вопросов.
   Неизвестны размеры наименьшего простейшего элемента ноосферы - того комплекса нейронов древнего человека, который обладал способностью целенаправленно отражать - осознавать - свои познавательные процессы. Однако можно с уверенностью утверждать, что размер этого комплекса нейронов был вполне определенным, предельно минимальным, что никакие ассоциации нервных клеток меньшего размера не могли проявлять свойство сознания.
   Индивидуальное сознание современного человека выступает как первичный элемент второго уровня, а обозримый этап развития ноосферы, соответственно, как второй или основной ее эволюционный период. (Развитие ноосферы на протяжении всего известного исторического пути человечества носит многоплановый и разветвленный характер. При этом образуются и устойчиво существуют самые различные сложные или вторичные ее элементы, представляющие собой ассоциации людейносителей сознания, объединенных информационными связями).
   ***
   Описанные принципы организации материи и соотношения трех известных сфер позволяют представить эволюционный ряд "сфера веществ биосфера - ноосфера", известную нам часть мироздания, как стройную, пропорциональную систему.
   Всеобщий в рамках этой части материального мира характер отмеченных принципов организации материи и соотношений его сфер позволяет предполагать присутствие этих закономерностей и в других сферах мироздания или, по меньшей мере, в соседних, непосредственно примыкающих к известным сферам "снизу" и "сверху".
   Кроме описанных в данной главе основных соотношений сфер материального мира существует немало менее значимых. На некоторые соотношения второго плана и соответствующие тенденции при переходе от низших сфер к высшим будет обращено внимание по ходу дальнейшего изложения.
   СОВЕРШЕНСТВОВАНИЕ РАЗВИТИЯ - ВАЖНЕЙШИЙ ФАКТОР ЭВОЛЮЦИОННОГО ПРОЦЕССА
   Обобщенное рассмотрение эволюционной картины известной части материального мира, анализ общих принципов построения трех его сфер приводит также к выводу о том, что по ходу эволюции происходит совершенствование и самого процесса развития.
   Прежде всего очевидно его разветвление: возникновение всякой новой сферы мироздания означает появление целого комплекса новых линий его развития при сохранении прежних. Аналогично с течением времени становится все более разветвленным и развитие каждой из сфер. Возникновение в рамках каждой сферы новых классов, видов, подвидов объектов, начинающих свой эволюционный путь, также выступает как появление соответствующих новых факторов, линий, ветвей развития этой сферы, ветвящихся и далее.
   Яркой иллюстрацией качественного совершенствования процесса развития при переходе к каждой последующей сфере является и такой факт. Первичные элементы всякой новой сферы, выступающие в ней первокирпичиками, структурными единицами всех ее сложных образований, многократно крупнее и неизмеримо совершеннее аналогичных структурных единиц сферы предыдущей. (В качестве первичных элементов всякой последующей сферы выступают самые сложные и совершенные ассоциации первичных элементов соответствующей предыдущей сферы). Это значит, что по ходу эволюции мироздания с образованием все более высоких его сфер, их развитие, строительство их сложных объектов идет путем использования все более крупных и совершенных "блоков материи".
   Качественное совершенствование процесса развития обуславливает нарастание его скорости. По ходу эволюции мироздания хорошо прослеживается ускорение развития.
   Так развитие неживой природы (сферы веществ нашей Вселенной) до образования биосферы длилось около 15 млрд. лет, развитие биосферы до появления человека разумного, по разным оценкам, - 1 - 4 млрд. лет. А вся история ноосферы Земли насчитывает около 1 млн. лет. Причем, как будет показано далее, наша ноосфера находится сейчас на завершающих стадиях своего развития. Так что общая длительность ее эволюционного цикла составит величину порядка одного миллиона лет. (По некоторым современным оценкам, появление человека разумного произошло около 2-х млн. лет тому назад. В наших рассуждениях, понятно, это обстоятельство не меняет сути дела.)
   Рост скорости развития, его ускорение хорошо прослеживается и в рамках эволюции каждой из известных сфер: наиболее результативными как по количеству новых видов объектов, так и по сложности являются завершающие этапы их эволюции.
   Указанный комплекс факторов совершенствования развития, как говорится, лежит на поверхности. Совершенствование процесса развития имеет также и другие аспекты и факторы. С целью поиска и иллюстрации их проведем более углубленный анализ некоторых особенностей развития каждой из известных сфер.
   Обращаясь к рассмотрению развития сферы веществ, необходимо сначала сделать следующее уточнение. Почти вся материя нашей Вселенной представлена сферой веществ. На долю более высоких сфер приходится ничтожная часть материи Вселенной. Всякие изменения Вселенной, все известные события космического пространства являются процессами сферы веществ. Однако развитие сферы веществ не сводится к эволюции Вселенной. Это принципиально разные, хотя и тесно переплетающиеся, взаимосвязанные процессы.
   Эволюция Вселенной - это изменение предельно большого из известных материального образования от момента так называемого большого взрыва Вселенной (или начала ее расширения) до настоящего времени и далее по предполагаемому пути.
   Развитие же сферы веществ - это необходимый отрезок эволюции материального мира или отдельных его областей. Границы этого эволюционного отрезка обозначаются с одной стороны образованием "тяжелых" элементарных частиц, а с другой - образованием молекул биополимеров.
   На первых этапах расширения Вселенной ее эволюция и развитие сферы веществ идут как бы параллельно. Снижение концентрации энергии, обусловленное расширением Вселенной, обеспечивает возможность устойчивого существования сначала "тяжелых" элементарных частиц, затем все более сложных ядер атомов. При этом сфера вещества развивается относительно равномерно по всему тогда еще сравнительно небольшому объему Вселенной.
   После образования в пространстве расширяющейся Вселенной гигантской массы вещества, происходит формирование различных неоднородностей в его распределении. Под действием сил гравитации атомы и молекулы простых химических соединений слипаются в конгломераты разных размеров - до масштабов звезд и планет.
   Образование астрономических тел и их систем выступает как важный промежуточный итог процесса эволюции Вселенной. По отношению же к сфере веществ само по себе формирование звезд и планет определенного показательного значения не имеет, поскольку астрономические тела являются лишь произвольными конгломератами элементов сферы веществ и прямо не отражают уровень ее развития. Однако образование астрономических тел как гигантских неоднородностей сферы веществ становится необходимым условием ее дальнейшего развития.
   После образования небесных тел отмеченная параллельность эволюции Вселенной и развития ее сферы веществ нарушается. Развитие сферы веществ разбивается на множество отдельных зон, в качестве которых выступают сформировавшиеся астрономические тела. Развитие сферы веществ - появление все более сложных молекул в этих сгустках вещества - протекает практически обособленно и с различной скоростью. Наиболее быстро этот процесс идет на поверхностях планет. В этих уголках Вселенной разворачивается основной по результативности этап прогресса сферы веществ, интересный в плане наблюдения особенностей ее развития, выявления направлений его совершенствования.
   В качестве главных условий, определяющих быстрое и полноценное развитие сферы веществ на поверхностях планет выступает, во-первых, дальнейшее неуклонное снижение концентрации энергии (температуры как ее суммарного показателя), а во-вторых, достаточно большие размеры поверхностей планет. Последнее обстоятельство обеспечивает ряд вторичных необходимых условий: неравномерность распределения веществ по поверхности каждой планеты, достаточно большие ее физические неоднородности, различный приток энергии извне к разным местам.