ализаторов для членов агрегата. Этот список составляется в
порядке возрастания индекса или в соответствии с порядком
членов. Если агрегат содержит подагрегаты, то это правило
применяется рекурсивно к членам агрегата. Если количество
инициализаторов в списке оказывается меньше числа членов аг-
регата, то оставшиеся члены агрегата заполняются нулями.
Запрещается инициализировать объединения или автоматические
агрегаты.
Фигурные скобки могут быть опущены следующим образом.
Если инициализатор начинается с левой фигурной скобки, то
последующий разделенный запятыми список инициализаторов ини-
циализирует члены агрегата; будет ошибкой, если в списке
окажется больше инициализаторов, чем членов агрегата. Если
однако инициализатор не начинается с левой фигурной скобки,
то из списка берется только нужное для членов данного агре-
гата число элементов; оставшиеся элементы используются для
инициализации следующего члена агрегата, частью которого яв-
ляется настоящий агрегат.



Последнее сокращение допускает возможность инициализации
массива типа CHAR с помощью строки. В этом случае члены мас-
сива последовательно инициализируются символами строки.
Например,

INT X[] = \(1,3,5\);

описывает и инициализирует X как одномерный массив; посколь-
ку размер массива не специфицирован, а список инициализитора
содержит три элемента, считается, что массив состоит из трех
членов.
Вот пример инициализации с полным использованием фигур-
ных скобок:

FLOAT *Y[4][3] = \(
( 1, 3, 5 ),
( 2, 4, 6 ),
( 3, 5, 7 ),
\);

Здесь 1, 3 и 5 инициализируют первую строку массива Y[0], а
именно Y[0][0], Y[0][1] и Y[0][2]. Аналогичным образом сле-
дующие две строчки инициализируют Y[1] и Y[2]. Инициализатор
заканчивается преждевременно, и, следовательно массив Y[3]
инициализируется нулями. В точности такого же эффекта можно
было бы достичь, написав

FLOAT Y[4][3] = \(
1, 3, 5, 2, 4, 6, 3, 5, 7
\);

Инициализатор для Y начинается с левой фигурной скобки, но
инициализатора для Y[0] нет. Поэтому используется 3 элемента
из списка. Аналогично следующие три элемента используются
последовательно для Y[1] и Y[2]. следующее описание

FLOAT Y[4][3] = \(
(1), (2), (3), (4)
\);

инициализирует первый столбец Y (если его рассматривать как
двумерный массив), а остальные элементы заполняются нулями.
И наконец, описание

CHAR MSG[] = "SYNTAX ERROR ON LINE %S\N";

демонстрирует инициализацию элементов символьного массива с
помощью строки.

    16.7. Имена типов



В двух случаях (для явного указания типа преобразования
в конструкции перевода и для аргументов операции SIZEOF) же-
лательно иметь возможность задавать имя типа данных. Это
осуществляется с помощью "имени типа", которое по существу
является описанием объекта такого типа , в котором опущено
имя самого объекта.



Имя типа:
спецификатор-типа абстрактный-описатель
абстрактный-описатель:
пусто
(абстрактный-описатель)
* абстрактный описатель
абстрактный-описатель ()
абстрактный-описатель [константное выражение
необ]

Во избежании двусмысленности в конструкции

(абстрактный описатель)

требуется, чтобы абстрактный-описатель был непуст. При этом
ограничении возможно однозначено определить то место в абст-
рактном-описателе, где бы появился идентификатор, если бы
эта конструкция была описателем в описании. Именованный тип
совпадает тогда с типом гипотетического идентификатора. Нап-
ример, имена типов

INT
INT *
INT *[3]
INT (*)[3]
INT *()
INT (*)()

именуют соответственно типы "целый", "указатель на целое",
"массив из трех указателей на целое", "указатель на массив
из трех целых", " функция, возвращающая указатель на целое"
и "указатель на функцию, возвращающую целое".

    16.8. TYPEDEF



Описания, в которых "класс памяти"специфицирован как
TYPEDEF, не вызывают выделения памяти. вместо этого они оп-
ределяют идентификаторы ,которые позднее можно использовать
так, словно они являются ключевыми словами, имеющими основ-
ные или производные типы.
Определяющее-тип-имя
идентификатор

В пределах области действия описания со спецификатором
TYPEDEF каждый идентификатор, являющийся частью любого опи-
сателя в этом описании, становится синтаксически эквивалент-
ным ключевому слову, имеющему тот тип , который ассоциирует
с идентификатором в описанном в п. 16.4 Смысле. Например,
после описаний

TYPEDEF INT MILES, >KLICKSP;
TYPEDEF STRUCT ( DOUBLE RE, IM; ) COMPLEX;

конструкции

MILES DISTANCE;
EXTERN KLICKSP METRICP;
COMPLEX Z, *ZP;



становятся законными описаниями; при этом типом DISTANCE яв-
ляется INT, типом METRICP - "указатель на INT", типом Z -
специфицированная структура и типом ZP - указатель на такую
структуру.
Спецификатор TYPEDEF не вводит каких-либо совершенно но-
вых типов, а только определяет синонимы для типов, которые
можно было бы специфицировать и другим способом. Так в при-
веденном выше примере переменная DISTANCE считается имеющей
точно такой же тип, что и любой другой объект, описанный в
INT.

    17. Операторы



За исключением особо оговариваемых случаев, операторы
выполняются последовательно.

    17.1. Операторное выражение



Большинство операторов являются операторными выражения-
ми, которые имеют форму

выражение;

обычно операторные выражения являются присваиваниями или об-
ращениями к функциям.

    17.2. Составной оператор (или блок)



С тем чтобы допустить возможность использования несколь-
ких операторов там, где ожидается присутствие только одного,
предусматривается составной оператор (который также и экви-
валентно называют "блоком"):

составной оператор:
\(список-описаний список-операторов
необ необ\)
список-описаний:
описание
описание список-описаний
список-операторов:
оператор
оператор список-операторов

Если какой-либо идентификатор из списка-описаний был описан
ранее, то во время выполнения блока внешнее описание подав-
ляется и снова вступает в силу после выхода из блока.
Любая инициализация автоматических и регистрационных пе-
ременных проводится при каждом входе в блок через его нача-
ло. В настоящее время разрешается (но это плохая практика)
передавать управление внутрь блока; в таком случае эти ини-
циализации не выполняются. Инициализации статических пере-
менных проводятся только один раз, когда начинается выполне-
ние программы.
Находящиеся внутри блока внешние описания не
резервируют памяти, так что их инициализация не
разрешается.




    17.3. Условные операторы



Имеются две формы условных операторов:

IF (выражение) оператор
IF (выражение) оператор ELSE оператор

В обоих случаях вычасляется выражение и, если оно отлично от
нуля, то выполняется первый подоператор. Во втором случае,
если выражение равно нулю, выпалняется второй подоператор.
Как обычно, двусмысленность "ELSE" разрешается связываением
ELSE с последним встречающимся IF, у которого нет ELSE.

    17.4. Оператор WHILE



Оператор WHILE имеет форму

WHILE (выражение) оператор

Подоператор выполняется повторно до тех пор, пока значение
выражения остается отличным от нуля. проверка производится
перед каждым выполнением оператора.

    17.5. Оператор DO



Оператор DO имеет форму

DO оператор WHILE (выражения)

Оператор выполняется повторно до тех пор, пока значение
выражения не станет равным нулю. Проверка производится после
каждого выполнения оператора.

    17.6. Оператор FOR



Оператор FOR имеет форму

(выражение-1 ; выражение-2 ; выражение-3 )оператор
необ необ необ

Оператор FOR эквивалентен следующему

выражение-1;
WHILE (выражение-2) \(
оператор
выражение-3
\)

Таким образом, первое выражение определяет инициализацию
цикла; второе специфиуирует проверку, выполняемую перед каж-
дой итерацией, так что выход из цикла происходит тогда, ког-
да значение выражения становится нулем; третье выражение
часто задает приращение параметра, которое проводится после
каждой итерации.
Любое выражение или даже все они могут быть опущены. Ес-
ли отсутствует второе выражение, то предложение с WHILE счи-
тается эквивалентным WHILE(1); другие отсутствующие выраже-
ния просто опускаются из приведенного выше расширения.




    17.7. Оператор SWITCH



Оператор SWITCH (переключатель), вызывает передачу уп-
равления к одному из нескольких операторов, в зависимости от
значения выражения. Оператор имеет форму

SWITCH (выражение) оператор

В выражении проводятся обычные арифметические преобразова-
ния, но результат должен иметь тип INT. Оператор обычно яв-
ляется составным. Любой оператор внутри этого оператора мо-
жет быть помечен одним или более вариантным префиксом CASE,
имеющим форму:

CASE констанстное выражение:

где константное выражение должно иметь тип INT. Никакие две
вариантные константы в одном и том же переключателе не могут
иметь одинаковое значение. точное определение константного
выражения приводится в п. 23.
Кроме того, может присутствовать самое большее один опе-
раторный префикс вида

DEFAULT:

При выполнении оператора SWITCH вычисляется входящее в
него выражение и сравнивается с каждой вариантной констан-
той. Если одна из вариантных констант оказывается равной
значению этого выражения, то управление передается операто-
ру, который следует за совпадающим вариантным префиксом. Ес-
ли ни одна из вариантных констант не совпадает со значением
выражения и если при этом присутствует префикс DEFAULT, то
управление передается оператору, помеченному этим префиксом.
если ни один из вариантов не подходит и префикс DEFAULT от-
сутствует, то ни один из операторов в переключателе не вы-
полняется.
Сами по себе префиксы CASE и DEFAULT не изменяют поток
управления, которое беспрепятсвенно проходит через такие
префиксы. Для выхода из переключателя смотрите оператор
BREAK, п. 17.8.
Обычно оператор, который входит в переключатель, являет-
ся составным. Описания могут появляться в начале этого опе-
ратора, но инициализации автоматических и регистровых пере-
менных будут неэффективными.

    17.8. Оператор BREAK



Оператор

BREAK;

вызывает завершение выполнения наименьшего охватывающего
этот оператор оператора WHILE, DO, FOR или SWITCH; управле-
ние передается оператору, следующему за завершенным операто-
ром.




    17.9. Оператор CONTINUE






Оператор

CONTINUE;

приводит к передаче управления на продолжающую цикл часть
наименьшего охватывающего этот оператор оператора WHILE, DO
или FOR; то есть на конец цикла. Более точно, в каждом из
операторов

WHILE(...) \( DO \( FOR(...) \(
... ... ...
CONTIN: ; CONTIN: ; CONTIN: ;
\) \) WHILE(...); \)

Оператор CONTINUE эквивалентен оператору GOTO CONTIN. (За
CONTIN: следует пустой оператор; см. П. 17.13.).

    17.10. Оператор возврата



Возвращение из функции в вызывающую программу осуществ-
ляется с помощью оператора RETURN, который имеет одну из
следующих форм

RETURN;
RETURN выражение;

В первом случае возвращаемое значение неопределено. Во вто-
ром случае в вызывающую функцию возвращается значение выра-
жения. Если требуется, выражение преобразуется к типу функ-
ции, в которой оно появляется, как в случае присваивания.
Попадание на конец функции эквивалентно возврату без возвра-
щаемого значения.

    17.11. Оператор GOTO



Управление можно передавать безусловно с помощью опера-
тора

GOTO идентификатор1

идентификатор должен быть меткой (п. 9.12), Локализованной в
данной функции.

    17.12. Помеченный оператор



Перед любым оператором может стоять помеченный префикс
вида
идентификатор:

который служит для описания идентификатора в качестве метки.
Метки используются только для указания места, куда передает-
ся управление оператором GOTO. Областью действия метки явля-
ется данная функция, за исключением любых подблоков, в кото-
рых тот же идентификатор описан снова. Смотри п. 19.




    17.13. Пустой оператор



Пустой оператор имеет форму:

;

Пустой оператор оказывается полезным, так как он позволяет
поставить метку перед закрывающей скобкой \) составного опе-
ратора или указать пустое тело в операторах цикла, таких как
WHILE.

    18. Внешние определения



C-программа представляет собой последовательность внеш-
них определений. Внешнее определение описывает идентификатор
как имеющий класс памяти EXTERN (по умолчанию), или возможно
STATIC, и специфицированный тип. Спецификатор типа (п. 16.2)
Также может быть пустым; в этом случае считается, что тип
является типом INT. Область действия внешних определений
распространяется до конца файла, в котором они приведены,
точно так же , как влияние описаний простирается до конца
блока. Синтаксис внешних определений не отличается от син-
таксиса описаний, за исключением того, что только на этом
уровне можно приводить текст функций.

    18.1. Внешнее определение функции



Определение функции имеет форму

определение-функции:

спецификаторы-описания описатель-функции
тело-функции
необ

Единственными спецификаторами класса памяти, допускаемыми в
качестве спецификаторов-описания, являются EXTERN или
STATIC; о различии между ними смотри п. 19.2. Описатель фун-
кции подобен описателю для "функции, возвращающей...", за
исключением того, что он перечисляет формальные параметры
определяемой функции.

Оисатель-функции:
описатель (список-параметров
необ)
список параметров:
идентификатор
идентификатор, список-параметров

тело-функции имеет форму

тело-функции:
список-описаний составной-оператор



Идентификаторы из списка параметров и только они могут
быть описаны в списке описаний. Любой идентификатор, тип ко-
торого не указан, считается имеющим тип INT. Единственным
допустимым здесь спецификатором класса памяти является
REGISTER; если такой класс памяти специфицирован, то в нача-
ле выполнения функции соответствующий фактический параметр
копируется, если это возможно, в регистр.
Вот простой пример полного определения функции:

INT MAX(A, B, C)
INT A, B, C;
\(
INT M;
M = (A>B) ? A:B;
RETURN((M>C) ? M:C);
\)

Здесь INT - спецификатор-типа, MAX(A,B,C) - описатель-функ-
ции, INT A,B,C; - список-описаний формальных параметров, \(
... \) - Блок, содержащий текст оператора.
В языке "C" все фактические параметры типа FLOAT преоб-
разуются к типу DOUBLE, так что описания формальных парамет-
ров, объявленных как FLOAT, приспособлены прочесть параметры
типа DOUBLE. Аналогично, поскольку ссылка на массив в любом
контексте (в частности в фактическом параметре) рассматрива-
ется как указатель на первый элемент массива, описания фор-
мальных параметров вила "массив ..." приспособлены прочесть
: "указатель на ...". И наконец, поскольку структуры,
объединения и функции не могут быть переданы функции, бесс-
мысленно описывать формальный параметр как структуру,
объединение или функцию (указатели на такие объекты, конеч-
но, допускаются).

    18.2. Внешние определения данных




Внешнее определение данных имеет форму

определение-данных:
описание

Классом памяти таких данных может быть EXTERN (в частности,
по умолчанию) или STATIC, но не AUTO или REGISTER.

    19. Правила, определяющие область действия



Вся C-программа необязательно компилируется одновремен-
но; исходный текст программы может храниться в нескольких
файлах и ранее скомпилированные процедуры могут загружаться
из библиотек. Связь между функциями может осуществляться как
через явные обращения, так и в результате манипулирования с
внешними данными.
Поэтому следует рассмотреть два вида областей действия:
во-первых, ту, которая может быть названа лексической об-
ластью действия идентификатора и которая по существу являет-
ся той областью в программе, где этот идентификатор можно
использовать, не вызывая диагностического сообщения "неопре-
деленный идентификатор"; и во-вторых, область действия, ко-
торая связана с внешними идентификаторами и которая характе-
ризуется правилом, что ссылки на один и тот же внешний иден-
тификатор являются ссылками на один и тот же объект.




    19.1. Лексическая область действия



Лексическая область действия идентификаторов, описанных
во внешних определениях, простирается от определения до кон-
ца исходного файла, в котором он находится. Лексическая об-
ласть действия идентификаторов, являющихся формальными пара-
метрами, распространяется на ту функцию, к которой они отно-
сятся. Лексическая область действия идентификаторов, описан-
ных в начале блока, простирается до конца этого блока. Лек-
сической областью действия меток является та функция, в ко-
торой они находятся.
Поскольку все обращения на один и тот же внешний иденти-
фикатор обращаются к одному и тому же объекту (см. П. 19.2),
Компилятор проверяет все описания одного и того же внешнего
идентификатора на совместимость; в действительности их об-
ласть действия распространяется на весь файл, в котором они
находятся.
Во всех случаях, однако, есть некоторый идентификатор,
явным образом описан в начале блока, включая и блок, который
образует функцию, то действие любого описания этого иденти-
фикатора вне блока приостанавливается до конца этого блока.
Напомним также (п. 16.5), Что идентификаторы, соответст-
вующие обычным переменным, с одной стороны, и идентификато-
ры, соответствующие членам и ярлыкам структур и объединений,
с другой стороны, формируют два непересекающихся класса, ко-
торые не вступают в противоречие. Члены и ярлыки подчиняются
тем же самым правилам определения областей действия, как и
другие идентификаторы. Имена, специфицируемые с помощью
TYPEDEF, входят в тот же класс, что и обычные идентификато-
ры. Они могут быть переопределены во внутренних блоках, но
во внутреннем описании тип должен быть указан явно:

TYPEDEF FLOAT DISTANCE;
...
\(
AUTO INT DISTANCE;
...

Во втором описании спецификатор типа INT должен присутство-
вать, так как в противном случае это описание будет принято
за описание без описателей с типом DISTANCE (прим. Автора:
согласитесь, что лед здесь тонок.).

    19.2. Область действия внешних идентификаторов



Если функция ссылается на идентификатор, описанный как
EXTERN, то где-то среди файлов или библиотек, образующих
полную программу, должно содержаться внешнее определение
этого идентификатора. Все функции данной программы, которые
ссылаются на один и тот же внешний идентификатор, ссылаются
на один и тот же объект, так что следует позаботиться, чтобы
специфицированные в этом определении тип и размер были сов-
местимы с типом и размером, указываемыми в каждой функции,
которая ссылается на эти данные.



Появление ключевого слова EBTERN во внешнем определении
указывает на то, что память для описанных в нем идентифика-
торов будет выделена в другом файле. Следовательно, в состо-
ящей из многих файлов программе внешнее определение иденти-
фикатора, не содержащее спецификатора EXTERN, должно появ-
ляться ровно в одном из этих файлов. любые другие файлы, ко-
торые желают дать внешнее определение этого идентификатора,
должны включать в это определение слово EXTERN. Идентифика-
тор может быть инициализирован только в том описании, кото-
рое приводит к выделению памяти.
Идентификаторы, внешнее определение которых начинается
со слова STATIC, недоступны из других файлов. Функции могут
быть описаны как STATIC.

    20. Строки управления компилятором



Компилятор языка "C" содержит препроцессор, который поз-
воляет осуществлять макроподстановки, условную компиляцию и
включение именованных файлов. Строки, начинающиеся с #, об-
щаются с этим препроцессором. Синтаксис этих строк не связан
с остальным языком; они могут появляться в любом месте и их
влияние распространяется (независимо от области действия) до
конца исходного программного файла.

    20.1. Замена лексем



Управляющая компилятором строка вида

#DEFINE идентификатор строка-лексем

(Обратите внимание на отсутствие в конце точки с запя-
той) приводит к тому, что препроцессор заменяет последующие
вхождения этого идентификатора на указанную строку лексем.
Строка вида

#DEFINE идентификатор
(идентификатор,...,идентификатор)строка лексем

где между первым идентификатором и открывающейся скобкой (
нет пробела, представляет собой макроопределение с аргумен-
тами. Последующее вхождение первого идентификатора, за кото-
рым следует открывающая скобка '(', последовательность раз-
деленных запятыми лексем и закрывающая скобка ')', заменяют-
ся строкой лексем из определения. каждое вхождение идентифи-
катора, упомянутого в списке формальных параметров в опреде-
лении , заменяется соответствующей строкой лексем из обраще-
ния. Фактическими аргументами в обращении являются строки
лексем, разделенные запятыми; однако запятые, входящие в за-
кавыченные строки или заключенные в круглые скобки, не раз-
деляют аргументов. Количество формальных и фактических пара-
метров должно совпадать. Текст внутри строки или символьной
константы не подлежит замене.
В обоих случаях замененная строка просматривается снова
с целью обнаружения других определенных идентификаторов. В
обоих случаях слишком длинная строка определения может быть
продолжена на другой строке, если поместить в конце продол-
жаемой строки обратную косую черту \ .



Описываемая возможность особенно полезна для определения
"объявляемых констант", как, например,

#DEFINE TABSIZE 100
INT TABLE[TABSIZE];

Управляющая строка вида

#UNDEF идентификатор

приводит к отмене препроцессорного определения данного иден-
тификатора.

    20.2. Включение файлов



Строка управления компилятором вида

#INCLUDE "FILENAME"

приводит к замене этой строки на все содержимое файла с име-
нем FILENAME. Файл с этим именем сначала ищется в справочни-
ке начального исходного файла, а затем в последовательности
стандартных мест. В отличие от этого управляющая строка вида

#INCLUDE <FILENAME>

ищет файл только в стандартных местах и не просматривает
справочник исходного файла.
Строки #INCLUDE могут быть вложенными.

    20.3. Условная компиляция



Строка управления компилятором вида

#IF константное выражение

проверяет, отлично ли от нуля значение константного выраже-
ния (см. П. 15). Управляющая строка вида

#IF DEF идентификатор

проверяет, определен ли этот идентификатор в настоящий мо-
мент в препроцессоре, т.е. Определен ли этот идентификатор с
помощью управляющей строки #DEFINE.

    21. Неявные описания



Не всегда является необходимым специфицировать и класс
памяти и тип идентификатора в описании. Во внешних определе-
ниях и описаниях формальных параметров и членов структур
класс памяти определяется по контексту. Если в находящемся
внутри функции описании не указан тип, а только класс памя-
ти, то предполагается, что идентификатор имеет тип INT; если
не указан класс памяти, а только тип, то идентификатор пред-
полагается описанным как AUTO. Исключение из последнего пра-
вила дается для функций, потому что спецификатор AUTO для
функций является бессмысленным (язык "C" не в состоянии ком-
пилировать программу в стек); если идентификатор имеет тип
"функция, возвращающая ...", то он предполагается неявно
описанным как EXTERN.



Входящий в выражение и неописанный ранее идентификатор,
за которым следует скобка ( , считается описанным по контек-
сту как "функция, возвращающая INT".

    22. Снова о типах



В этом разделе обобщаются сведения об операциях, которые
можно применять только к объектам определенных типов.

    22.1. Структуры и объединения



Только две вещи можно сделать со структурой или объеди-
нением: назвать один из их членов (с помощью операции) или
извлечь их адрес ( с помощью унарной операции &). Другие
операции, такие как присваивание им или из них и передача их
в качестве параметров, приводят к сообщению об ошибке. В бу-
дущем ожидается, что эти операции, но не обязательно ка-
кие-либо другие, будут разрешены.
В п. 15.1 Говорится, что при прямой или косвенной ссылке
на структуру (с помощью . Или ->) имя справа должно быть
членом структуры, названной или указанной выражением слева.
Это ограничение не навязывается строго компилятором, чтобы
дать возможность обойти правила типов. В действительности
перед '.' допускается любое L-значение и затем предполагает-
ся, что это L-значение имеет форму структуры, для которой
стоящее справа имя является членом. Таким же образом, от вы-
ражения, стоящего перед '->', требуется только быть указате-
лем или целым. В случае указателя предполагается, что он
указывает на структуру, для которой стоящее справа имя явля-
ется членом. В случае целого оно рассматривается как абсо-
лютный адрес соответствующей структуры, заданный в единицах
машинной памяти.
Такие структуры не являются переносимыми.

    22.2. Функции



Только две вещи можно сделать с функцией: вызвать ее или
извлечь ее адрес. Если имя функции входит в выражение не в
позиции имени функции, соответствующей обращению к ней, то
генерируется указатель на эту функцию. Следовательно, чтобы
передать одну функцию другой, можно написать

INT F();
...
G(F);

Тогда определение функции G могло бы выглядеть так:

G(FUNCP)
INT(*FUNCP)();
\(
...
(*FUNCP)();
...
\)

Обратите внимание, что в вызывающей процедуре функция F дол-
жна быть описана явно, потому что за ее появлением в G(F) не
следует скобка ( .




    22.3. Массивы, указатели и индексация



Каждый раз, когда идентификатор, имеющий тип массива,
появляется в выражении, он преобразуется в указатель на пер-
вый член этого массива. Из-за этого преобразования массивы
не являются L-значениями. По определению операция индексация
[] интерпретируется таким образом, что E1[E2] считается
идентичным выражению *((е1)+(е2)). Согласно правилам преоб-
разований, применяемым при операции +, если E1 - массив, а
е2 - целое, то е1[е2] ссылается на е2-й член массива е1. По-
этому несмотря на несимметричный вид операция индексации яв-
ляется коммутативной.
В случае многомерных массивов применяется последователь-