Сторонники растительной гипотезы проявили немало изобретательности для ее защиты. Опираясь на примеры высокой приспособляемости земных растений и животных к суровым условиям внешней среды, они доказывали, что и в условиях Марса жизнь возможна. Ставили даже лабораторные эксперименты по выращиванию растений и размножению бактерий в искусственно созданных "марсианских" условиях. Эксперименты дали положительные результаты: растения выдерживали "марсианский" холод и низкое атмосферное давление, бактерии размножались в "марсианской" атмосфере. Правда, при постановке этих экспериментов принималось сильно завышенное значение давления у поверхности-85 миллибар, в 15 раз больше действительного, да и состав атмосферы Марса был тогда неизвестен. Но главное было не в этом.
   Получилось так, что вопрос о природе "морей" Марса оказался тесно связанным с проблемой жизни на этой планете. Между тем, это два совершенно разных вопроса. Доказательство возможности жизни в условиях Марса еще не означает, что она там действительно существует.
   Вершиной торжества растительной гипотезы явилось Хоткрытие в 1956-1958 гг. американским ученым У. Синтоном в спектре "морей" Марса трех полос
   49
   в инфракрасной части, соответствующих органическим соединениям (на длинах волн 3,43, 3,56 и 3,65 микрон).
   После этого, спустя примерно пять лет, начался закат этой привлекательной, но недостаточно обоснованной гипотезы. Еще в 50-х годах ее раскритиковал известный советский астроном академик В. Г. Фесенков. С тех пор было установлено, что плотность атмосферы Марса в 10-15 раз ниже, чем предполагалось ранее. Содержание кислорода в ней оказалось ничтожным (доли процента). Истинный цвет "морей", согласно
   многочисленным измерениям Н. П. Барабашова, И. К. Коваля и их сотрудников, оказался красноватым: они лишь казались зелеными из-за эффекта цветового контраста с более красными материками. На снимках американской космической станции "Маринер-4", подлетевшей к Марсу в июле ' 1965 г. и передавшей ряд изображений его поверхности, "моря" ничем в принципе не отличались от материков (это подтвердили и снимки других космических станций).
   Наконец, полосы Синтона-главный аргумент астроботаников-оказались принадлежащими... парам тяжелой воды в земной атмосфере (т. е. воды, в состав которой входит тяжелый водород-дейтерий). Это признал и сам Синтон.
   Еще позднее, в 1969 г., растительная гипотеза получила новый сокрушительный удар: полярные шапки Марса оказались состоящими не из воды в виде инея, снега или льда, а из замерзшей углекислоты. Вся стройная картина расцветания растений по мере получения ими живительной влаги от тающей полярной шапки потеряла под собой почву и рухнула.
   Отвлечемся от печальной судьбы растительной гипотезы и посмотрим, какими объективными данными о
   роде "морей" Марса располагали астрономы в докосмический период.
   Колориметрические наблюдения Н. П. Варабашова, И. К. Коваля, В. В, Шаронова, Н, Н. Сытинской показывали, что альбедо "морей" сначала, как и у материков, растет с длиной волны от фиолетовых лучей к красным, хотя и медленнее, чем у материков, но начиная с зеленого участка спектра этот рост замедляется, и поэтому
   контраст "морей" с материками в красных лучах значительно возрастает (рис. 9).
   Многочисленные поляриметрические наблюдения, проведенные на протяжении многих лет О. Дольфюсом, давали больше возможностей для суждения о природе отражающей поверхности. Дело в том, что характер изменения степени поляризации с углом фазы планеты (или отражающей поверхности) сильно зависит от состава и структуры поверхности. У плотных пород вид кривой отличается от ее вида в случае раздробленных
   рошков. Поведение поляризационных кривых в разных участках спектра зависит и от состава вещества поверхности (рис. 10).
   Подведя итоги своим многолетним исследованиям, О. Дольфюс сделал вывод, что поверхность марсианских "морей", как и поверхность материков, покрыта мелкораздробленным веществом, однако более темным, чем вещество материков, или же смесью этого вещества с другим, более темным.
   5i'UM результатом можно было бы удовлетвориться и заняться подбором подходящего вещества в лабораторных экспериментах, если бы не сезонные изменения альбедо, цвета и, как выяснилось из тех же поляриметрических
   Хнаблюдений Дольфюса, поляризации "морей". Наибольшие отклонения от "средней" поляризационной кривой наступали весной и держались до конца лета соответствующего полушария.
   Как только ни пытались астрономы объяснить сезонные изменения в "морях". Шведский астроном Сванте Аррениус еще в 1911 г. предложил гипотезу о том, что "моря" Марса подобны земным такырам-глинистым пустыням, покрытым соляными корками. При увлажнении они намокают и темнеют. Но, как показал Дольфюс, кривая поляризации для такыров резко отличается от наблюдаемой на Марсе.
   В 1947 г. французский астроном А. Довилье изучил ряд кристаллических минералов, приобретающих определенную окраску под действием ультрафиолетовых лучей и теряющих ее при увлажнении парами воды. Дольфюс отклонил гипотезу Довилье по тем же причинам; к тому же максимум потемнения не совпадал с максимальным содержанием водяных паров в атмосфере Марса.
   Уже в 1965 г. польский астроном Р. Смолуховский предложил иной вариант гипотезы Довилье: породы в "морях" окрашиваются солнечными ультрафиолетовыми лучами, причем степень этого окрашивания зависит от температуры и возрастает в теплое время года. Этот механизм не противоречит данным поляриметрии, но требует резких усилений контрастов "морей" с материками в периоды хромосферных вспышек на Солнце,. чего не наблюдается.
   Американский астроном Д. Мак Лафлин в 1954 г. предложил "вулканическую" гипотезу, согласно которой "моря" сложены вулканическим пеплом, выбрасываемым при извержениях и рассеиваемых ветрами, дующими в постоянных направлениях. Предположение Мак Лафлина об активном вулканизме на Марсе (поддержанное советским астрономом С. К. Всехсвятским) получило полное подтверждение в ходе космических полетов последних лет, его предположение о наличии на планете отложений вулканического пепла - тоже, но не в таких масштабах, как это предполагал Мак Лафлин.
   Американский астроном Дж. Койпер в 1957 г. выдвинул предположение, что темные области на
   это поля застывшей лавы, аналогичные лунным "морям" и (какое предвидение!) темным пятнам на Меркурии*). Причину сезонных перемен в их окраске Койпер видел в том, что воздушные течения, имеющие сезонный характер, в одни сезоны наносят пыль и песок на поверхность лавы, а в другие-сдувают их.
   Критикуя гипотезу Койпера с точки зрения ее соответствия наблюдениям, Дольфюс выдвинул два возражения: во-первых, поляриметрия не показала существенных различий в гладкости материков и "морей"; во-вторых, у гладких поверхностей типа застывшей лавы поляризационная кривая имеет иной вид, чем у "морей" Марса.
   С лавовыми покровами Койпера получилось та;: же, как с отложениями пепла Мак Лафлина: фотографии с космических аппаратов показали, 410 они действительно имеются в различных местах поверхности Марса, но вовсе не устилают сплошь территорию марсианских "морей".
   Наконец, в 1967 г. американские астрономы Дж. Поллак и К. Саган предложили оригинальную гипотезу "сдувания", удовлетворявшую всем фотометрическим и поляриметрическим наблюдениям и не требовавшую наличия в морях каких-то особых покровов. Идея этой гипотезы состоит в том, что "моря" лежат в среднем выше материков и на них будут оседать более крупные зерна пыли (100-200 микрон), чем в светлых областях. Это и порождает различие в светлоте (слой мелкой пыли всегда светлее). Весной и летом изменение метеорологических условий вызывает в свою очередь измерение скорости зональных ветров и, как следствие, увеличение среднего размера частиц в темных областях и их потемнение. Однако гипотеза Поллака и Сагана не получила подтверждения в ходе исследований марсианского рельефа: "моря" оказались вовсе не возвышепностями, а скорее областями, переходными от возвышенностей к низинам. О дальнейших попытках выяснить природу "морей" мы расскажем ниже.
   *) Фотографирование поверхности Меркурия с близкого расстояния американской космической станцией "Маринер-10" в марте 1974 г. показало, что он очень похож на Луну, хотя площадь лавовых "морей" на нем значительно меньше.
   Макрорельеф "красной планеты"
   С давних пор Марс, в отличие от Земли и Луны, считался гладким, без резко выраженного рельефа, без гор и впадин. Основанием для такого заключения были фотометрические наблюдения, показывавшие, что планета отражает свет Солнца по закону Ламберта, т. е. как гладкий матовый шар. Правда, это относилось лишь к материкам, но ведь они покрывали большую часть планеты. Только у южного полюса была замечена возвышенность, получившая название гор Митчелла. Она проявляла себя тем, что при таянии южной полярной шапки здесь всегда оставался белый островок, отделявшийся от шапки (общеизвестно, что в горах снега и льды тают позднее, чем в низинах).
   Первый удар по представлению о "гладком Марсе" нанесли фотографии "Маринера-4", переданные на Землю в июле 1965 г. Ученые воочию увидели на Марсе горы, в том числе кольцевые горы-кратеры, подобные лунным. Значит, планета имела рельеф. Но получить полное представление о нем по 20 снимкам "Маринера-4", охватывавшим едва один процент поверхности Марса, было невозможно.
   На помощь пришла радиолокация. В основе этого метода исследования небесных тел лежит получение отраженного планетой радиосигнала, посланного с Земли. Для посылки и приема сигналов применяются мощные радиотелескопы, для их усиления и анализа - сложные электронные устройства. 'За последние годы в этой области достигнут значительный прогресс.
   Как нетрудно понять, время прохождения сигнала до Марса и обратно прямо пропорционально расстоянию до планеты. Если бы поверхность Марса была плоская и располагалась перпендикулярно к лучу зрения, а Марс и Земля были бы неподвижны, то все было бы просто: радиолуч достигал бы возвышенности раньше, чем низины, и приходил бы обратно скорее как раз на время, необходимое лучу, чтобы пройти двойную разность высот между ними. Поскольку скорость радиоволн, как и света, равна 300000 км/сек, а разности высот на Марсе должны измеряться немногими километрами, времена относительного запаздывания сигнала будут составлять несколько микросекунд. Но современная
   ная техника позволяет измерять и такие промежутки времени.
   Однако Марс-шарообразный, он движется вокруг Солнца и вращается вокруг своей оси. Так1.г же движения совершает и наша Земля, а вместе с ней-радиотелескоп, передающий и принимающий сигналы. Поэтому время прохождения сигнала туда и обратно все вр( мя будет меняться.
   К счастью, эти изменения происходят плавно и по известному закону, поэтому учесть их не представляет особого труда. Главная трудность состояла в другомв том, чтобы выделить на поверхности Марса отдельные малые участки и получать отражения от каждого из них в отдельности. Иначе говоря, требовалось повысить разрешающую способность радиолокационного "лота".
   Один из способов добиться этого состоял в том, что всегда изучалось отражение от точки в центре диска планеты, которая, как легко сообразить, является ближайшей к Земле. Ясно, что отражение от нее придет первым. К сожалению, мы еще не можем посылать сигпал в виде узкого луча (шириной хотя бы не более 100 км). Радиолуч с удалением от Земли расширяется и захватывает весь Марс, отражаясь сначала от центральной точки (обращенной к Земле), потом от окружающей ее узкой кольцевой зоны, потом от более широкой зоны и т. д Но для нас в данном случае важен лишь самый первый отраженный сигнал. Поскольку Марс довольно быстро вращается вокруг оси, за ночь (точнее, за время, пока Марс находи гся над горизонтом станции наблюдения, ибо радиолокацию планеты можно производить и днем) через центр диска пройдут различные точки поверхности планеты, расположенные на одной ее параллели. Регистрируя время запаздывания сигнала, мы получим как бы разрез рельефа вдоль этой параллели.
   Именно такой метод применил в 1967 г. американский радиоастроном Дж. Петтенджил, получив профиль марсианского рельефа вдоль параллели с северной широтой 21°. Оказалось, что помимо отдельных горных хребтов, возвышенностей, долин, Марс имеет макрорельеф, т. е. возвышенности и низменности большого протяжения, в тысячи километров, с перепадом высот между ними в 12-13 км.
   55
   В этом не было ничего удивительного. На Земле перепад высот от вершин Гималаев до дна Марианской впадины в Тихом океане достигает 20 км, а расстояние между ними-6 тысяч км.
   В дальнейшем измерения профилей рельефа Марса радиолокационным методом были проведены неоднократно советскими и американскими учеными, на разных марсианских широтах. Они позволили составить общую картину макрорельефа планеты в тропической зоне.
   Но этот метод не может быть применен ко всей планете. Из-за наклона оси Марса на угол 65° к плоскости его орбиты, через центр диска в разное время могут проходить области, расположенные внутри тропического пояса планеты, т. е. между широтами +25° и -25°. Области более высоких широт никогда не могут проходить через центр диска Марса. Казалось, что мы не сможем получить информацию об их макрорельефе.
   Однако это было не так. Для изучения рельефа этих областей вскоре были применены еще два метода. Один состоял в использовании космических аппаратов, проходивших вблизи Марса или становившихся его спутниками, для наблюдений "радиозатмений" излучения спутника диском Марса (об этом мы расскажем несколько позже). Другой метод, очень простой и не требующий серьезных затрат, требовал только наличия мощного телескопа с хорошим инфракрасным спектрометром. Этот метод состоял в измерении эквивалентных ширин линий 002 в спектре отдельных областей Марса.
   Как мы уже знаем, углекислый газ составляет более 90% марсианской атмосферы. Поэтому можно считать парциальное давление 002 пропорциональным полному давлению у поверхности Марса. Эквивалентная ширина полосы 002 в спектре планеты пропорциональна содержанию этого газа на пути луча и общему давлению, которое в свою очередь пропорционально содержанию 002 в вертикальном столбе единичного сечения. По формулам теоретической спектроскопии и по найденной в лаборатории зависимости эквивалентной ширины полосы от содержания газа на пути луча и давления (кривая, выражающая эту зависимость, называется кривой роста) можно по эквивалентной ширине полосы 002 определять давление у поверхности. Очевидно, что на
   возвышенностях давление будет ниже, а в низинах выше. Переход от разности давлений к разности высот не представляет труда. Нуль-пункт шкалы высот определяется из радиолокационных наблюдений. Этот чрезвычайно остроумный метод был успешно применен американскими асгрономами М. Белтоном и Д. Хаюепом в 1969 г. Им удалось построить карту линий равных высот для значительной части марсианской поверхности. В дальнейшем этот метод применили другие ученые, в частности, советский астроном В, И. Мороз. Наиболее успешно этот метод применялся на космических аппаратах "Маринер-6", "Маринер-7", "Маринер-9", "Марс-3" и "Марс-5".
   Сочетание всех трех методов показало хорошее согласие их между собой и позволило составить ясное представление о рельефе Марса. Оказалось, что светлая область Hellas-гигантская котловина, расположенная на 4,5 hM ниже среднего уровня поверхности, а в областях Tharsis и Claritas мы имеем, наоборот, плоскогорье высотой в 7 км. Светлые области Марса (материки) могут быть и плоскогорьями, и котловинами, тогда как темные области чаще всего располагаются в местах, где наблюдается перепад высот, т. е. на склонах. Какое значение имеет это обстоятельство для объяснения природы морей, будет выяснено ниже.
   Итак, концепция "гладкого Марса" уступила место представлению о планете, обладающей сложным рельефом. Фотографии с космических кораблей еще более убедили нас в этом.
   Внутреннее строение Марса
   На первый взгляд может показаться, что мы вообще не можем судить о внутреннем строении Марса: у нас нет о нем даже таких косвенных сведений, какие дают нам показания сейсмографов о строении земных недр. Однако такое представление будет неправильным. Наука располагает целым набором физических сведений, которые если не определяют полностью картину внутреннего строения Марса, то во всяком случае позволяют построить ее весьма правдоподобную модель.
   В самом деле, нам известны масса Марса и его средняя плотность. Далее, мы знаем скорость вращения
   нечы и ее полярное сжатие. Из анализа движения естественных, а теперь и искусственных спутников Марса можно получить данные о гравитационном поле планеты.
   Важнейшей характеристикой гравитационного поля является гравитационный потенциал. Численно эта величина равна работе, которую надо совершить для перемещения единичной массы, находящейся в поле тяготения планеты, из данной точки в бесконечность. Потенциал однородного шара, у которого плотность убывает с расстоянием от центра одинаково во всех направлениях, равен
   Для реальных планет, форма которых значительно отличается от шарообразной, а распределение масс внутри может носить весьма сложный характер, применяется разложение гравитационного потенциала по сферическим функциям. Коэффициенты этого разложения определяются из наблюдений движения спутников планеты. Они характеризуют ее фигуру и распределение масс.
   Через коэффициенты разложения потенциала определяются моменты инерции планеты. Как известно, момент инерции однородного шара относительно любой из его осей равен
   Для реальной планеты главные моменты инерции не равпы друг другу, а коэффициенты перед произведениями Ма^, МЬ^ и Мс^ меньше 0,4 (а, Ь, с-полуоси эллипсоида планеты). Чем меньше эти коэффициенты (называемые безразмерными моментами инерции), тем сильнее отличается распределение масс в недрах плане гы от однородного. Так, у Земли безразмерный момент инерции относительно ее оси вращения равен 0,33.
   Величина ff=(C-А)/С называется динамическим сжатием планеты, в отличие от ее оптического сжатия, определяемого отношением геометрических полуосей эллипсоида. Динамическое сжатие Марса, полученное по данным "Маринера-9" (стр. 12), равно 0,0052, в хорошем согласии с более ранними определениями по движению
   спутника Марса Фобоса. Оптическое сжатие планеты больше и достигает 0,0074.
   Отличие фигуры Марса от эквипотенциальной поверхности (поверхности равного давления) должно приводить к систематическому "перетеканию" атмосферных масс с экватора на полюсы. К чему это может привести, мы увидим дальше.
   Безразмерный момент инерции Марса, определенный по его динамическому сжатию, равен 0,375. Иначе говоря, Марс по своему внутреннему строению ближе к однородному шару, чем Земля. Это значит, что ядро Марса не должно быть столь большим, как земное, и составляет меньшую долю его массы (на долю земного ядра приходится 32% массы Земли). О том же говорит средняя плотность Марса: 3,89 г/см^, почти в 1,5 раза меньше средней плотности Земли.
   Помимо динамических данных в распоряжении ученых есть и некоторые геохимические данные. Так, обнаружение спектральными методами в атмосферной пыли 50% кремнезема (8102) указывает на то, что на поверхности Марса преобладают легкие кислые породы, которые были в свое время выплавлены и поднялись наверх в ходе расплавления, а затем химической дифференциации марсианских недр. С учетом всего этого можно, опираясь на теорию внутреннего строения планет, построить модель Марса. Эта работа была выполнена советской исследовательницей С. В. Козловской.
   В ее модели принято, что в кору Марса было выплавлено 50% всего легкого сиалического материала, содержащегося в недрах планеты (сиаль-породы; содер .ащие окислы кремния и алюминия, например полевой шпат). Поэтому толщина коры была принята равной 100 км. В ней сосредоточено около 7% всей массы планеты.
   На долю железного ядра Марса, как показывает безразмерный момент инерции, может приходиться не более 5% массы планеты. Это определяет радиус ядра960 км.
   Остальное вещество недр Марса сосредоточено в его мантии (оболочке, окружающей ядро). Ее главной компонентой является, по-видимому, оливин - тяжелая порода, содержащая ортосиликаты магния (MgzSiO-i, форстерит) и железа (Fe^SiO^, файялит). При этом доля
   "файялита должна быть на 15-20% больше, чем в земной мантии, чтобы объяснить "утяжеление" марсианской мантии за счет железа, не выплавившегося в ядро пла;неты. Средняя плотность вещества мантии Марса по этой .модели 3,55 г^cм"', тогда как у Земли она равна 3,3 гlcм"Х.
   Американский геофизик Д. Андерсон сделал другое предположение: он считает, что в ядре Марса
   Хствует не только никелистое железо, но и сернистое же.лезо, например троилит FeS-минерал, часто встречающийся в метеоритах и более легкий, чем чистое железо я никель. Относительные пропорции железа, никеля,
   Хсеры и кремния в ядре зависят от условий формирова.ния Марса, в частности от температуры. Условие фазового равновесия в системе Fe-FeS показывает, что тем;пература недр Марса при образовании ядра превышала 1000°. Предполагая, что содержание железа, никеля и
   Хсеры в веществе Марса такое же, как в большинстве каменных метеоритов, Д. Андерсон получил такие результаты. Ядро составляет 12% массы Марса, а его радиус равен 1500 км. Оно содержит 63% железа, никеля, серы, входящих в состав вещества планеты. Общая доля соДдержания железа на Марсе 25%, тогда как на Земле, ^на равна, по Б. Мейсону, 38,8%.
   ЧАСТЬ II КОСМИЧЕСКИЕ ИССЛЕДОВАНИЯ МАРСА
   Кратеры и каньоны на Марсе
   В июле 1965 г. американская космическая станция "Маринер-4" прошла от Марса на минимальном расстоянии 12 тыс. км и передала на Землю 22 снимка поверхности планеты. С первого же взгляда на этих снимках удалось различить десятки кратеров, напоминающих лунные. При первом обзоре их было обнаружено 70, затем число их возросло до 110, а после улучшения изображений путем контрастирования и устранения дефектов даже до 300.
   Кратеры Марса во многом напоминали лунные: почти тот же диапазон размеров (от 3 до 120 км), те же формы. Только вот кратеров с центральной горкой было сравнительно мало, да наблюдался явный дефицит небольших кратеров. Вначале это приписали малой разрешающей способности камер "Маринера-4", но потом это обстоятельство подтвердили снимки "Маринера-6" и "Маринера-7", камеры которых могли регистрировать кратеры до 0,5 км поперечником (рис. II). Кроме того, очертания марсианских кратеров по сравнению с лунными казались сглаженными. Одновременно несколько ученых (в том числе и автор этой книги) объяснили это действием эрозии, в основном ветровой.
   Как мы уже знаем, скорость ветра на Марсе может достигать значительных величин. Поэтому горние образования там подвергнуты прямому воздейстащач^в^^нвыветриванию. Но это еще не все: Be,T"pqo^^fi)c^\flffeJli- кую пыль, и удары пылинок за..м8Лотеи^6нТО1педо^6ии производить заметные разр^ий^ния. кн^П, н к1'.мэг явн
   Меньшую роль в ароцерс^^ррэдь^^дМврабяоанйш играть метеор.ижнййк^йИ^фай^а^яс^ойефяевдртьоДмйу беззащи<и^ сви )шадNВдййет;й"рико^ (я^егавг.ра^м@ра, ^эн^мыкаир^пникээюд ^аймвдвй^от^ямой^ра- iM^>^
   надежно защищает поверхность планеты от ударов тел меньше одного сантиметра: они испаряются в марсианской} атмосфере, как и в атмосфере Земли. Но большие тела, разумеется, падают на Марс и способны производить разрушения.
   Следует отметить, что Марс находится (и находился) в иных условиях по отношению к метеоритной бомбардировке, чем Земля и Луна. Во-первых, он ближе к кольцу астероидов, и можно думать, что в современную
   эпоху метеориты астероидального происхождения должны падать на Марс в большем количестве, чем на Землю и Луну. Во-вторых, в прошлом Марс находился в другой части допланетного облака и рос "в одиночку", тогда как Земля и Луна аккумулировались почти одновременно вблизи друг от друга, что могло приводить к ускорению и даже к фокусировке притяжением Земли остатков допланетного роя тел, падающих на Луну. Масса Марса - промежуточная между массами Земли и Луны,
   что тоже имело значение: чем больше масса планеты, тем больше ее "зона захвата", зона вычерпывания вещества роя.
   В 1969 г. "Маринер-6" и "Маринер-7" передали на Землю около 200 снимков Марса, из них 55-с близкого расстояния: от 10 до 3,5 тыс. км. Качество этих снимков было значительно лучше, чем у "Маринера-4", и они (после соответствующей обработки) позволяли различить детали до 0,5 км.
   Сравнение распределения кратеров по размерам на Марсе и на Луне (отдельно в лунных морях и горных районах) отчетливо выявило упомянутый выше дефицит мелких кратеров (меньше 5-10 км). Большинство крупных кратеров на Марсе имеет плоское дно, невысокий вал с пологими склонами, мелкие кратеры имеют преимущественно чашеобразную форму дна.
   Открытие кратеров на Марсе еще острее, чем раньше, поставило перед учеными старый вопрос о происхождении лунных (а теперь и марсианских) кратеров. Как известно, в течение более ста лет конкурировали с переменным успехом две гипотезы их образования: вулканическая и метеоритная. Нередко они фигурируют в литературе под обобщенными названиями: эндогенная (эндо-внутренний) и экзогенная (экзо-внешний).
   Метеоритная гипотеза имеет важное преимущество перед вулканической: она разработана с физико-математической стороны. Советский ученый К. П. Станюкович еще в 1938 г. разработал основы теории образования кратеров в результате ударов метеоритов с космическими скоростями. В 1947 г. в статье "О разрушительном действии метеоритных ударов" К. П. Станюкович и В. В. Федынский предсказали существование метеоритных кратеров на Марсе. Значительно позднее (в 1950 г.) аналогичные предсказания сделали Э. Эпик и Ф. Уиппл.