Большая Советская Энциклопедия (АЭ)

Электротехнические и электронные монополии.

Аэротерапия.

биологической очистки сточных вод (аэротенках, аэрофильтрах, биофильтрах) для обеспечения жизнедеятельности микроорганизмов (аэробных бактерий), осуществляющих процесс минерализации растворённых в сточных водах органических веществ и других загрязнений.

Вентиляция.
   
      Лит.:Батурин В. В., Эльтерман В. М., Аэрация промышленных зданий, 2 изд., М., 1963; Батурин В. В., Основы промышленной вентиляции, 3 изд., [М.], 1965.
      И. А. Шепелев.

проветривание карьера.

Почва.

Феллоген ) ,в широком смысле — всякая ткань подобного строения. А. характерна для растений, плавающих на поверхности воды или погруженных в воду (см. Гидрофиты ) .Большие межклеточные пространства А., заполненные воздухом, обеспечивают растению плавучесть и создают запас кислорода и углекислого газа, необходимых растению для его жизнедеятельности.

аэростат, аэродинамикаи т. п.).

аэро... и греч. bios — жизнь), жизнь в присутствии свободного кислорода. А. характерен для громадного большинства животных, растений и микроорганизмов. Все аэробные организмы (см. Аэробы ) ,в отличие от анаэробных (см. Анаэробы ) ,получают энергию для жизнедеятельности в результате окислительных процессов (см. Дыхание ) ,их ферментные системы способны переносить водород на свободный кислород. У громадного большинства аэробов дыхание сопровождается поглощением молекулярного кислорода и выделением углекислого газа: некоторые микроорганизмы не доводят окисление до конца (например, уксуснокислые бактерии, некоторые грибы и др.). Аэробный тип обмена веществ и энергии эффективнее анаэробиоза,т. к. обеспечивает выделение большего количества энергии на 1 мольвещества.

аэро... и греч. bios — жизнь), организмы, обладающие аэробным типом дыхания,т. е. способные жить и развиваться только при наличии свободного кислорода. К А. относятся почти все животные и растения, а также многие микроорганизмы, которые используют для жизнедеятельности энергию, освобождающуюся при реакциях окисления, протекающих с поглощением свободного кислорода (т. е. обладающие окислительным типом метаболизма). Облигатные (безусловные) А., аэрофилы (от греч. phileo — люблю), получают энергию только от реакции окисления (например, уксуснокислые и нитрифицирующие бактерии). Факультативные А. (условные А.; они же условные анаэробы ) используют энергию брожения,а потому могут жить и при больших, и при ничтожных количествах кислорода (например, дрожжи, денитрифицирующие бактерии). Каждому виду бактерий А. свойственны определённые, характерные для него максимальная, минимальная и оптимальная концентрации кислорода.
     Лит.:Работнова И. Л., Общая микробиология, М., 1966; Фробишер М., Основы микробиологии, пер. с англ., М., 1965; Stanier R., Doudoroff М., Adelberg Е., General microbiology, 2 ed., L., 1963.

аэрометодов изучения наземных объектов и явлений. А. н. выполняются с летательных аппаратов визуально (непосредственно или с помощью биноклей); предназначены главным образом для обследования труднодоступных районов, ускорения и облегчения экспедиционных работ на местности. А. н. дают возможность изучать объекты не только в их плановом изображении с одним заданным уменьшением, как на аэроснимках или картах, но и в любом ракурсе и наиболее выгодном масштабе. При А. н. на открытых пространствах различимы объекты, размеры которых превышают 1:500 от высоты полёта, а контрастные объекты — даже 1:1000. Для А. н. применяют преимущественно вертолёты, сочетая общий обзор по маршрутам с детальным осмотром объектов. Высота и скорость полёта при А. н. определяются задачей работы, природой изучаемых объектов (их угловыми размерами и оптическими контрастами) и свойствами наблюдателя (в частности, натренированностью, знанием района и т. д.). Для топографических целей средняя высота полёта устанавливается 200—300 м,скорость 60—80 км/ч.
     Результаты А. н. по ходу полёта фиксируются в виде пометок на маршрутных схемах или материалах аэрофотосъёмки, записей и зарисовок на движущихся бумажных лентах, звукозаписей на магнитофоне, бортовых фотографий малоформатными камерами, нанесением объектов на карты с помощью визирных устройств. А. н. могут иметь как рекогносцировочный характер (например, при разведке ледовой обстановки, выявлении промысловых животных, пожаров, контроле транспортных потоков), так и предназначаться для планомерного обследования картографируемой территории при лесотаксационных и геологических работах, различных инженерных изысканиях и топографических съёмках. В последнем случае А. н. комбинируют с дешифрированием аэроснимков, главным образом в целях изучения камерально не распознаваемых мест и выявления не запечатленных на аэроснимках существенных объектов.
      Л. М. Гольдман.

аэропортах.Основное сооружение пассажирского комплекса ( рис. 1 ), расположенного в центральной зоне аэропорта; в его состав входят: привокзальная площадь со стоянками городского транспорта, перрон со стоянками самолётов, здания перронно-технических служб; цех приготовления бортового питания, гостиница, командно-диспетчерский пункт. Как правило, эти здания и сооружения объединяются со зданием А. Различают А. внутренних и международных линий. Обслуживание пассажиров в А. включает: продажу и регистрацию билетов; приём, оформление, комплектование по рейсам и выдачу багажа; информацию об отправлении и прибытии самолётов: почтовые, бытовые, медицинские и прочие услуги. В А. международных линий осуществляются также пограничный паспортный контроль и таможенный досмотр багажа. В зависимости от назначения все помещения А. объединены в 3 группы: пассажирские (операционные залы, залы ожидания и посадки, торговые залы кафе и ресторана); вспомогательного назначения (багажные помещения, комнаты матери и ребёнка, отделение связи и т. д.); служебно-эксплуатационные (помещения службы перевозок, инженерно-технического оборудования и др.). Размеры А. зависят от установленного для данного аэропорта объёма пассажирских перевозок. При определении площади помещений А. учитывают также необходимость обслуживания посетителей, сопровождающих пассажиров, из расчёта 30—40% от числа пассажиров.
     Для лучшего обслуживания населения больших городов и разгрузки А. аэропортов сооружаются городские А. в пунктах, удобно связанных с аэропортом городским транспортом. Первые А. были построены в странах Зап. Европы в 1922—23 (в аэропортах Париж-Бурже, Берлин-Темпельхоф). Строительство А. получило значительное развитие после 2-й мировой войны в связи с совершенствованием и обновлением парка пассажирских самолётов, а в СССР — особенно после 1958, с вводом в эксплуатацию скоростных многоместных самолётов Ту-104, Ил-18, Ан-10, Ту-114.
     Практика проектирования и строительства А. в СССР обширна и разнообразна. Разветвлённость сети авиалиний даёт возможность применять типовые проекты А. с расчётной пропускной способностью 50, 100, 200 и 400 пассажиров в час. Более крупные А. — от 600 до 3000 пассажиров в час (например, А. в аэропорту Домодедово под Москвой, рис. 2 ), а также строящиеся в особых условиях (в северных и сейсмических районах) — проектируются индивидуально.
     Архитектурно-планировочное решение современных А. подчинено технологической схеме обслуживания пассажиров, организации их посадки в самолёты. Основным помещением является операционный зал, площадь и характер оборудования которого определяют пропускную способность здания А. Объёмно-планировочная структура пассажирских помещений должна соответствовать принятой для данного А. схеме планировки перрона. При большой интенсивности движения самолётов, особенно многоместных, для сокращения времени стоянки самолёта, обеспечения безопасности и создания удобств пассажирам планировка А. предусматривает устройство наземных или подземных переходных галерей и специальных павильонов, связанных с самолётами стационарными крытыми трапами на уровне 2-го этажа здания А. Планировка А. должна быть чёткой, исключать пересечения и встречи массовых потоков пассажиров и принятого к перевозке багажа, лишние спуски и подъёмы, обеспечивать возможность самостоятельной ориентировки пассажиров на пути к самолётам (и от самолётов). Архитектурная выразительность современных А. достигается применением большепролётных железобетонных и металлических конструкций, эффективных стеновых материалов, витражей и т. д. (А. аэропорта Домодедово, 1965, арх. Г. А. Елькин, Г. В. Крюков, В. Г. Локшин, инж. Н. И. Ирмес, Б. И. Журавлёв, А. А. Арнольд). Ритм повторяющихся унифицированных металлических и сборных железобетонных конструкций, открытых в интерьере и легко читаемых на фасаде, создаёт впечатляющий художественный эффект. Архитектурно-пространственная композиция отдельных А. связана с поисками новых форм, пластически выражающих многообразные конструктивные возможности монолитного железобетона (А. в аэропорту Кеннеди в Нью-Йорке, 1962, арх. Э. Сааринен).
     Лит.:Локшин В., Согомонян Н., Берлин Ю., Аэровокзалы аэропортов. Типы зданий, М., 1966; Голубев Г. Е., Анджелини Г. М., МодоровА. Ф., Современные вокзалы..., М., 1967; Haas Е., Moderne Flughafen fur den zivilen Luftverkehr, B., 1962; Kohl F., Moderner Flughafenbau, B., 1956.
      Л. И. Горецкий, В. Г. Локшин.
   Аэровокзал международного аэропорта Шереметьево. Москва. 1964. Вид со стороны перрона.
   Аэровокзал аэропорта Домодедово. 1965. Арх. Г. А. Елькин, Г. В. Крюков, В. Г. Локшин.
   Международный аэропорт. Женева. 1968. Архитектор Ж. М. Элленбергер. Здание аэровокзала. Вид со стороны перрона.
   Аэровокзал международного аэропорта. Варшава-Окенце. 1962—68. Архитекторы К. и Я. Добровольские, инженеры А. Влодаж и Ч. Цивиньский.
   Аэропорт. Амстердам. Общий вид перрона из вышки управления движением.
   Аэровокзал компании TWA в аэропорту Кеннеди. Нью-Йорк. 1962. Архитектор Э. Сааринен.
   Международный аэропорт Шереметьево. Зал ожидания. 1964.
   Рис. 1. Схематический план пассажирского комплекса аэропорта Домодедово: 1 — аэровокзал; 2 — перрон с галереями для посадки пассажиров в самолёты; 3 — проектируемое расширение комплекса (аэровокзалы 2-й и 3-й очереди строительства); 4 — автомобильная магистраль: А— автобусная станция; Э— станция пригородных электропоездов; Р— автостоянки.
   Аэровокзал аэропорта Борисполь. Киев. 1966.
   Общий вид операционного зала аэровокзала Внуково-1. Москва. 1960.
   Аэропорт Внуково. Пассажирский перрон.
   Аэропорт Домодедово. 1965. Вид на аэровокзал со стороны привокзальной площади.

Аэрометоды, Аэромагнитная съёмка, Аэроэлектроразведка.

Жуковский,в 1921—42 — С. А. Чаплыгин.В 1925—29 при ЦАГИ была создана первая экспериментальная база с самой большой в мире в то время аэродинамической трубой, гидравлической лабораторией, гидроканалом и другими установками. В работах ЦАГИ были заложены основы технических авиационных дисциплин. На созданных опытным заводом ЦАГИ под руководством А. Н. Туполева самолётах отечественной конструкции уже начиная с 1926 совершен ряд выдающихся перелётов. В 1930—32 на базе научных отделов ЦАГИ были организованы самостоятельные научно-исследовательские институты: Всесоюзный институт авиационных материалов (ВИАМ), Центральный институт авиационного моторостроения (ЦИАМ), Всесоюзный институт гидромашиностроения (ВИГМ), Центральный ветроэнергетический институт (ЦВЭИ). В ЦАГИ имеется мощная экспериментальная база, созданы уникальные установки — натурные, модельные, околозвуковые и сверхзвуковые аэродинамические трубы, штопорная труба, стенды для исследования динамики и прочности самолёта. В состав ЦАГИ входят специализированные лаборатории аэродинамики, гидродинамики, акустики, промышленной аэродинамики, вертолётная, приборная, вычислительной техники, комплекс лабораторий прочности, опытное производство, бюро научной информации, издательский отдел, научно-мемориальный музей Н. Е. Жуковского. С первых шагов ЦАГИ развивался как комплексный институт, тесно связанный с промышленностью. Главными проблемами, над которыми работает ЦАГИ, являются вопросы аэродинамики, динамики и прочности самолётов и других летательных аппаратов. Институт выпускает печатные издания: «Труды» (с 1925), «Технические заметки» (с 1932), «Технические отчёты» (с 1941), «Учёные записки», тематические сборники, монографии и информационные материалы. При институте имеется аспирантура. Награжден орденами Трудового Красного Знамени (1926), Красного Знамени (1933), Ленина (1945).