нефтепродукты и пенопласты . Нефтепродукты ( дизельное топливо , мазут , соляровое масло ) образуют дым в результате испарения и последующей конденсации паров в атмосфере. Могут применяться с помощью дымовых машин и приборов различных конструкций. Для образования дыма из пенопластов пенообразующие смолы впрыскивают в поток газов, температура которых выше температуры образования самих пенопластов. Капельки смолы приобретают ячеистую структуру и затвердевают, образуя частицы дыма (размеры которых в этом случае значительно больше, чем обычно для дымов).">Дымообразующие вещества ).

Копчение ). Д. позволяет регулировать режим копчения в колбасном производстве. В простейших Д. (колосниковых с газовым или электрическим подогревом и др.) дым образуется при тлении опилок из дуба, ольхи и осины (без пламени). В Д. с механизированной подачей опилок можно получать дым определённой концентрации регулированием количества опилок. В Д. с электрическими нагревателями дымообразование регулируют изменением температуры нагревателя (от 200° до 400°С). В Д. с автоматическим регулированием состава коптильного агента полнота сгорания опилок обеспечивается подачей воздуха, который охлаждает дым до температуры, необходимой для копчения. Существуют Д., в которых количество подаваемых опилок регулируется магнитным вибратором. Во фрикционном Д. дым образуется под действием тепла, возникающего при трении дерева о вращающуюся металлическую поверхность.
     Лит. :Курко В. И., Физико-химические и химические основы копчения, М., 1960.

аэрозоли . Д. в. предназначены для получения маскирующих дымовых завес или сигнальных дымов. Д. в., применяемые для получения маскирующих дымов, по методам дымообразования разделяют на четыре группы. К 1-й группе относятся вещества, которые при распылении или испарении образуют туман в результате химического взаимодействия с влагой воздуха и образования гигроскопических веществ, интенсивно поглощающих из него влагу. В эту группу входят серный ангидрид , хлорсульфоновая кислота , растворы серного ангидрида в серной кислоте (олеум) или в хлорсульфоновой кислоте, а также некоторые хлориды . Для применения этих Д. в. могут быть использованы дымовые приборы различных конструкций, а для некоторых — артиллерийские снаряды и мины. 2-я группа включает вещества, дающие дым в результате реакции с кислородом воздуха. Характерный представитель этой группы белый (жёлтый) фосфор . Это вещество при горении даёт с кислородом воздуха фосфорный ангидрид, который с влагой воздуха образует ортофосфорную кислоту, интенсивно поглощающую влагу из воздуха. Для применения этого Д. в. могут быть использованы снаряды, мины и авиабомбы. В 3-ю группу входят вещества, дающие дым, который образуется при их возгонке или в ходе их термического разложения (так называемые пиротехнические смеси). К веществам, дающим дым в результате возгонки и последующей конденсации, относят хлористый аммоний, ароматические углеводороды ( нафталин , антрацен , фенантрен и др.) и некоторые углеводороды жирного ряда. К пиротехническим смесям относят металлохлоридные смеси на основе порошкообразных окислов металлов (цинка, железа) и различных галогенпроизводных ( четырёххлористого углерода , гексахлорэтана ). Пиротехнические дымовые составы применяют в дымовых шашках и ручных дымовых гранатах. К 4-й группе относят различные нефтепродукты и пенопласты . Нефтепродукты ( дизельное топливо , мазут , соляровое масло ) образуют дым в результате испарения и последующей конденсации паров в атмосфере. Могут применяться с помощью дымовых машин и приборов различных конструкций. Для образования дыма из пенопластов пенообразующие смолы впрыскивают в поток газов, температура которых выше температуры образования самих пенопластов. Капельки смолы приобретают ячеистую структуру и затвердевают, образуя частицы дыма (размеры которых в этом случае значительно больше, чем обычно для дымов).
     Для получения сигнальных дымов применяют пиротехнические твёрдые смеси, содержащие горючее, окислитель и органический краситель, придающий дыму красный, жёлтый, зелёный, синий, фиолетовый или чёрный цвет.
     Лит. Зайцев Г. С., Кузнецов Л. Я., Дымовые средства и дымообразующие вещества, М., 1961.
      В. И. Пузако.

вентилятор , устанавливаемый за котлоагрегатом для удаления газообразных продуктов сгорания топлива. Д. имеют наплавленные твёрдыми сплавами лопатки для защиты от абразивного действия золы. Производительность центробежных Д. от 8 до 700 тыс. м 3. Осевые Д. выпускают производительностью до 1 млн. м 3. Имеются проекты осевых Д. производительностью до 1650 тыс. м 3.

дымянка , хохлатка , дицентра и рупикапнос (Rupicapnos).
     Лит.:Тахтаджян А. Л., Система и филогения цветковых растений, М.—Л., 1966.

папайи .
     Лит.:Синягин И. И., Тропическое земледелие, М., 1968.
      С. К. Черепанов.
   Плод дынного дерева.
   Дынное дерево.

малопе .

твёрдого тела ), не занятое электроном энергетическое состояние, например в валентной зоне полупроводника . Д. ведут себя как частицы ( квазичастицы ) с положительным зарядом, равным по абсолютной величине заряду электрона, и являются наряду с электронами носителями тока в полупроводниках (дырочная электропроводность).
     Лит. см. при ст. Твёрдое тело , Полупроводники .

тканевое дыхание , клеточное Д.). Бескислородный путь освобождения энергии свойствен только небольшой группе организмов — так называемым анаэробам (см. Брожение ); в ходе эволюции освобождение энергии в результате Д. стало у подавляющего большинства организмов главным процессом, а анаэробные реакции сохранились в основном как промежуточные этапы обмена веществ .
     Д. животных и человека.У простейших, губок, кишечнополостных и некоторых др. организмов О 2диффундирует непосредственно через поверхность тела. С усложнением организации и увеличением размеров тела появляются специальные дыхания органы , а также система кровообращения, в которой циркулирует жидкость — кровь или гемолимфа, содержащая вещества, способные связывать и переносить O 2и CO 2(см. Гемоглобин ). У насекомых O 2поступает в ткани из системы воздухоносных трубочек — трахей . У водных животных, использующих растворённый в воде O 2, органами Д. служат жабры , снабжённые богатой сетью кровеносных сосудов. В этом случае O 2, растворённый в воде, диффундирует в кровь, циркулирующую в сосудах жаберных щелей. У многих рыб значительную роль играет кишечное Д., при котором воздух заглатывается и O 2поступает в кровь через кровеносные сосуды кишечника; некоторую роль в Д. рыб играет также плавательный пузырь; у многих обитающих в воде животных обмен газов (главным образом СО 2) происходит и через кожу. У сухопутных животных внешнее Д. обеспечивается преимущественно лёгкими . У земноводных и многих др. животных наряду с этим функционирует кожное Д. У птиц существенное значение имеют сообщающиеся с лёгкими воздушные мешки , которые изменяются в объёме при летательных движениях и облегчают Д. в полёте. У земноводных и пресмыкающихся воздух в лёгкие нагнетается движениями мышц дна рта. У птиц, млекопитающих и человека внешнее Д. обеспечивается ритмической работой дыхательных мышц (главным образом диафрагмы и межрёберных мышц), координируемой нервной системой. При сокращении этих мышц объём грудной клетки увеличивается и происходит растяжение находящихся в ней лёгких; поэтому возникает разность между атмосферным и внутрилёгочным давлением и воздух поступает в лёгкие (вдох). Выдох может быть пассивным — за счёт спадения растянутой во время вдоха грудной клетки, а вслед за ней и лёгких; активный выдох обусловлен сокращением некоторых групп мышц. Количество воздуха, поступающее в легкие за 1 вдох, называется дыхательным объёмом (см. Лёгочные объёмы ).
     При Д. дыхательная мускулатура преодолевает эластичное сопротивление, связанное с упругостью грудной клетки, тягой лёгких и поверхностным натяжением альвеол. Последнее, однако, значительно снижается под влиянием поверхностно активного вещества, вырабатываемого клетками альвеолярного эпителия; поэтому альвеолы при выдохе не спадаются, а при вдохе легко расширяются. Чем выше эластичное сопротивление, тем труднее растягиваются грудная клетка и лёгкие; при глубоком Д. работа дыхательной мускулатуры, затрачиваемая на его преодоление, резко возрастает. Неэластичное сопротивление Д. обусловлено главным образом трением воздуха при его движении по носовым ходам, гортани, трахее и бронхам. Оно зависит от скорости потока воздуха во время Д. и от его характера. При спокойном Д. поток близок к ламинарному (линейному) в прямых участках воздухоносных путей и к турбулентному (вихревому) в местах разветвления или сужения. С увеличением скорости потока (при форсированном Д.) турбулентность возрастает и для продвижения воздуха требуется более высокая разность давлений, а следовательно, и увеличение работы дыхательных мышц. Неравномерное распределение сопротивления движению воздуха по дыхательным путям приводит к тому, что поступление воздуха в разные группы лёгочных альвеол происходит неравномерно; такая разница в вентиляции особенно значительна при лёгочных заболеваниях.
     Количество воздуха, вентилирующее лёгкие в 1 мин, называется минутным объёмом дыхания (МОД). МОД равен произведению дыхательного объёма на частоту Д. (число дыхательных движений в 1 мин, равное у человека примерно 15—18) и составляет у взрослого человека в покое 5—8 л/мин. Только часть МОД (около 70%) участвует в обмене газов между вдыхаемым и альвеолярным воздухом, эту часть называют объёмом альвеолярной вентиляции; остальная часть МОД используется для «промывания» так называемого мёртвого, или вредного, пространства дыхательных путей, в котором к началу выдоха сохраняется наружный воздух, заполнивший его в конце предшествовавшего вдоха (объём мёртвого пространства около 160 мл). Вентиляция альвеол обеспечивает постоянство состава альвеолярного воздуха . Парциальное давление O 2( p O2) и CO 2( p CO2) в альвеолярном воздухе колеблется в очень узких пределах и составляет для О 2около 13 кн/м 2(100 мм рт. cт.) и для СО 2около 5,4 кн/м 2(40 мм рт. ст.).
     Обмен газов между альвеолярным воздухом и венозной кровью, поступающей в капилляры лёгких, осуществляется через альвеоло-капиллярную мембрану, общая поверхность которой очень велика (у человека около 90 м 2). Диффузия O 2в кровь обеспечивается разностью парциальных давлений O 2в альвеолярном воздухе и в венозной крови (8—9 кн/м 2, или 60—70 мм рт. ст.). CO