технических культур . Объединяют однолетние и многолетние растения из различных ботанических семейств: зонтичных — кориандр, тмин, анис, фенхель; губоцветных — мята, лаванда, шалфей мускатный; розоцветных — роза эфирномасличная; гераниевых — герань (пеларгония) розовая; амариллисовых — тубероза; миртовых — эвкалипт лимонный и др. Среди Э. р. есть деревья (например, эвкалипт), кустарники и полукустарники (роза, жасмин, сирень, лаванда), травы (кориандр, мята, герань, тубероза). Э. р. накапливают эфирное масло в плодах (например, зонтичные), зелёной массе (мята, герань, базилик евгенольный), цветках и соцветиях (роза, лаванда, тубероза, сирень), корнях и корневищах (ирис, ветиверия). Кроме Э. р., сырьём для получения эфирного масла служат плоды цитрусовых, укропа, цветки цветочных культур (нарцисс, гиацинт), дикорастущие растения (бадьян, ладанник), деревья хвойных пород (сосна, пихта, кедр, лиственница).
     Многие Э. р. выращивают в тропических и субтропических областях, мяту, кориандр и др. зонтичные — в районах с умеренным климатом. В мировом земледелии основное значение имеют роза, мята, лаванда, герань. В СССР площади Э. р. в 1977 свыше 250 тыс. га; возделывают кориандр (более 80%), мяту, шалфей мускатный, розу, лаванду, герань розовую и др. Сырьё Э. р. содержит следующее количество эфирного масла (в %): кориандр 0,2—1,4; мята 1,3—3,5; шалфей мускатный 0,17—0,25; роза 0,12—0,15; лаванда 0,8—1,4; герань розовая 0,15—0,2. См. также статьи об отдельных Э. р.
     Лит.:Эфиромасличные культуры, М., 1976.
      А. А. Хотин.

аттрактантами или репеллентами , уменьшают теплоотдачу и т. д.
     Э. м. — многокомпонентные смеси органических соединений, главным образом терпенов и их кислородных производных — спиртов, альдегидов, кетонов, эфиров и др. (в ряде случаев преобладает один или нескольких компонентов). Например, в розовом масле обнаружено более 200 органических веществ, однако основную массу (около 80%) составляют b-фенилэтиловый спирт и т. н. терпеновые спирты (гераниол, линалоол, цитронеллол и нерол), в мятном масле — более 100 компонентов, основными из которых (90%) являются ментол, ментон, ментилацетат и цинеол. Часто в ходе развития растения состав Э. м. сильно изменяется. Так, кориандровое масло, полученное из цветков, содержит до 80% децилового альдегида, а выделенное из семян — 60—80% линалоола. э. м. прозрачные бесцветные или окрашенные (жёлтые, зелёные, бурые) жидкости. В отличие от масел растительных , многие Э. м. летучи. Плотность их, как правило, меньше единицы. Они практически нерастворимы в воде, хорошо растворимы в серном и петролейном эфирах, бензоле и других малополярных органических растворителях, оптически активны; под действием света и кислорода воздуха постепенно окисляются и осмоляются, что приводит к изменению их запаха.
     Э. м. известны с древних времён. Их применяли для благовонных курений, как косметические и лекарственные средства, при бальзамировании. Эфироносная флора мира насчитывает около 3000 видов растений (в СССР ~ 1000), однако промышленное значение имеют всего 150 — 200 видов (см. Эфирномасличные растения ). Большинство Э. м. получают из тропических и субтропических растений; лишь немногие растения (например, кориандр, анис) культивируют в средней полосе. Мировое производство Э. м. около 25 000 т(1976). В относительно крупном масштабе (не менее 1000 т) производят цитрусовые, цитронелловое, лемонграссовое, гвоздичное, мятное, кориандровое, бадьяновое и некоторые другие масла. Для выделения Э. м. используют сырое (зелёная масса герани, базилика), высушенное (листья мяты, корни аира) и предварительно ферментированное (корни ириса, дубовый мох) сырьё, Перегонка с водяным паром (гидродистилляция) — самый распространённый метод получения Э. м. (известны различные модификации этого способа, например обработка растительного сырья «сухим паром»), Образующуюся смесь паров Э. м. и воды конденсируют, масляный слой отделяют; с целью более полного извлечения Э. м. дистилляционную воду обрабатывают активным углём или легколетучим растворителем (например, серным эфиром). Э. м., отдельные компоненты которых разлагаются в сравнительно жёстких условиях гидродистилляции, извлекают экстракцией органическими жидкостями (петролейным эфиром, бензолом и др.) или сжиженными газами, например CO 2. Этим способом получают, например, Э. м. из цветков жасмина, корней ириса. Остаток после отгонки растворителя обычно имеет вид воскоили мазеобразной массы (т. н. конкрет); её обрабатывают спиртом (обычно при кипячении); полученный раствор охлаждают и фильтруют от балластных веществ, Э. м., остающееся после удаления спирта, называется абсолютным, или абсолю. Из других методов извлечения Э. м. распространены прессование (этим способом получают, например, Э. м. из кожуры плодов цитрусовых) и анфлераж. Последний состоит в том, что масло испаряющееся из цветков, поглощается чистым, не имеющим запаха свиным или говяжьим жиром, нанесённым тонким слоем на стекло. Из образовавшейся душистой массы, так называемой «помады», Э. м. извлекают растворителем. Редко применяемый метод мацерации (цветы заливают жиром, нагретым до 50—70°С) даёт масло более низкого качества, в ряде случаев натуральные Э. м. заменяют вследствие их дефицита искусств. композициями на основе синтетических душистых веществ (так называемые искусственные, или синтетические, Э. м.). Э. м. используют главным образом в парфюмерно-косметической промышленности в качестве компонентов парфюмерных композиций и косметических отдушек, сырья для получения душистых веществ (например, ментола , цитраля , эвгенола , гераниола , линалоола ). Некоторые Э. м. применяют в медицине (мятное, эвкалиптовое, анисовое), а так же в пищевой, кондитерской и консервной промышленности (мятное, анисовое, апельсиновое, лимонное, мандариновое и др.); в этих случаях из Э. м. часто удаляют, например ректификацией или обработкой спиртом, сравнительно токсичные терпеновые углеводороды
     Лит.:Горяев М. И., Эфирные масла флоры СССР, Алма-Ата, 1952, Коральник С. И., Нейман Л. Ю., Современные ресурсы и особенности производства эфирных масел, М., 1973; Guenther Е., The essential oils, v. 1—6, N. Y., 1948—52.
      В. Н. Фросин.

Целлюлозы эфиры ). Свыше 95% Э. л. получают на основе нитратов целлюлозы (см. Нитролаки ). Практическое значение имеют, кроме того, материалы на основе этилцеллюлозы, ацетилцеллюлозы и ацетобутирата целлюлозы. В состав этилцеллюлозных лаков входят дешёвые растворители (например, смесь толуола с этиловым спиртом), пластификаторы (например, эфиры фталевых кислот), а также синтетические (например, феноло-формальдегидные) или природные смолы. Назначение смол — улучшение декоративных свойств покрытий, их адгезии к подложке и увеличение содержания плёнкообразующего вещества в лаке. Плёнки этих лаков более эластичны, щёлоче-, свето- и теплостойки и менее горючи, чем плёнки нитролаков. Они выдерживают нагревание до 150 °С и сохраняют гибкость при низких температурах. Используют этилцеллюлозные лаки главным образом для пропитки тканевых оплёток электрических проводов, а также для отделки бумаги. Ацетилцеллюлозные лаки образуют свето- и теплостойкие (до 200°С) негорючие покрытия с низкой адгезией к подложке и разрушающиеся в щелочах. Применение ацетилцеллюлозы в производстве лаков ограничивается её несовместимостью с многими синтетическими и природными смолами и плохой растворимостью в доступных растворителях. На основе ацетобутирата целлюлозы, который растворим в большом числе органических соединений и совместим со смолами, получают лаки, образующие свето- и теплостойкие (до 200—220°С) малогорючие покрытия. Эти лаки применяют, например, для отделки бумаги.
      М. М. Гольдберг.

целлозольвы (моноэфиры этиленгликоля ). Э. п., как правило, плохо растворимы в воде, хорошо — в органических растворителях, многие из них — приятно пахнущие жидкости. Химически довольно инертны, особенно по отношению к щелочам и щелочным металлам. Вследствие слабовыраженного основного характера, определяемого наличием свободных электронных пар на атоме кислорода, Э. п. с минеральными кислотами и кислотами Льюиса образуют так называемые оксониевые соединения , например (C 2H 5) 2O +HCl -, (C 2H 5) 2O +BF 3 -. При насыщении Э. п. йодистым водородом происходит расщепление связи между атомами углерода и кислорода:
     C 2H 5OC 2H 5+ HI ® C 2H 5I + C 2H 5OH
     Э. п. расщепляются также при нагревании их с металлическим натрием. Эта реакция используется в аналитической химии для определения метоксии этоксигрупп (CH 3O— и C 2H 5OH). При длительном контакте с кислородом воздуха Э. п. образуют взрывчатые перекисные соединения, что в сочетании с лёгкой воспламеняемостью ограничивает их применение в промышленности в качестве растворителей и экстрагентов (см., например, Этиловый эфир ). Алифатические Э. п. получают каталитической дегидратацией спиртов или алкилированием алкоголятов (так называемые Вильямсона синтезы ). Последняя реакция лежит в основе промышленного способа получения этилцеллюлозы . Жирноароматические Э. п. могут быть получены непосредственным взаимодействием фенолов с диазометаном, алкилированием фенолятов, например диалкилсульфатами. Э. п. применяют также как душистые вещества (неролин, яра-яра и др.), этиловый эфир — как средство для ингаляционного наркоза, дифениловый эфир — как теплоноситель. К Э. п. относят также гетероциклические соединения, содержащие атом кислорода в кольце ( этилена окись , тетрагидрофуран ), эфиры гидратных форм альдегидов и кетонов (см. Ацетали и кетали ), эфиры ортокислот RC (OR) 3и полиэфиры .
      Лит.:Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1—2, М., 1969—70.

енола или фенола — OR, например C 2H 5OCOCH 3, C 5H 11ONO. Э. с. являются структурными аналогами солей кислородных кислот: вместо атома металла в Э. с. находится углеводородный радикал R. Отсюда и сходная номенклатура, например натрия ацетат NaOCOCH 3и этилацетат C 2H 5OCOCH 3. Подобно солям, Э. с. образуют с двух- и многоосновными кислотами продукты неполного и полного замещения: соответственно кислые эфиры, например монометилсульфат HOSO 2OCH 3, и полные, или средние, эфиры, например диметилсульфат CH 3OSO 2OCH 3. Однако по свойствам Э. с. существенно отличаются от солей; это типичные органические соединения: обычно жидкие летучие вещества, в некоторых случаях обладающие фруктовым или цветочным запахом, практически нерастворимые в воде, хорошо растворимые в органических растворителях. Под действием воды Э. с. подвергаются гидролизу с образованием соответствующих спирта и кислоты, например RCOOR' + H 20 Ы RCOOH + HOR’. Эта реакция ускоряется кислотами и ещё эффективнее — щелочами. В последнем случае образуются не свободные кислоты, а их соли и реакция становится необратимой. Из других реакций, в которых Э. с. проявляют ацилирующие свойства, наиболее известны переэтерификация , алкоголиз, реакции двойного обмена. Некоторые Э. с., например образованные низшими алифатическими спиртами и такими кислотами, как серная, трифторуксусная, фосфорная, фталевая, обладают также алкилирующими свойствами (см. Алкилирование , Диметилсульфат , Этилсерная кислота ). Получают Э. с., как правило, этерификацией , а также ацилированием спиртов различными производными кислот (галогенангидридами, ангидридами), действием солей кислот на алкилгалогениды
     C 2H 5I + AgONO ® C 2H 5ONO + Agl
     и кислот на олефины
     HOSO 2OH + CH 2= CH 2® НО 3О 2ОСН 2СН з.
     Э. с. — основные компоненты жиров (Э. с. глицерина и высших карбоновых кислот), восков (Э. с. высших одноатомных алифатических спиртов и карбоновых кислот), входят в состав эфирных масел (главным образом Э. с. терпеновых спиртов). В технике Э. с. применяют как пластификаторы пластмасс (диоктил- и дибутилфталаты), мономеры ( акрилаты , винилацетат ), моющие вещества (алкилсульфаты), растворители (амил-, бутил- и этилацетаты), экстрагенты и пестициды (эфиры ортофосфорной кислоты), взрывчатые вещества (Э. с. азотной кислоты и многоатомных спиртов, например нитроглицерин ), лекарств. препараты (валидол, ацетилсалициловая кислота), душистые вещества (бенэилацетат, терпенилацетат). Многие высокомолекулярные Э. с., например полиэтилентерефталат и ацетаты целлюлозы, используют в производстве пластиков, лаков и синтетических волокон (см. также Глифталевые смолы , Полиэфирные волокна ).
   
      Лит.:Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1—2, М., 1969—70; Чичибабин A. E., Основные начала органической химии, 7 изд., т. 1, М., 1963.

герусию и апеллу , председательствовали в них, заведовали государственной казной, объявляли набор войска, назначали военачальников, руководили судопроизводством и др. Наблюдали за действиями царей и должностных лиц, за поведением граждан, за жизнью зависимого населения — периэков и илотов. Были оплотом существовавшего в Спарте олигархического режима.

генов в хромосоме на. проявление их активности. Явление открыто американским генетиком А. Стёртевантом в 1925. Наблюдается при структурных перестройках хромосом (транслокациях), в результате которых гены активных зон хромосом (эухроматина) могут переноситься в неактивные зоны (гетерохроматин) и инактивироваться и наоборот. При перестройке, возвращающей эухроматиновый ген из гетерохроматина в любую точку зухроматина, функционирование данного гена восстанавливается. Свойство обратимости при Э. п. г. используют для доказательства того, что наблюдаемое изменение проявления данного гена — Э. п. г., а не его мутация . В результате исчезают пуфы в эухроматиновых участках, нарушаются синтезы ДНК и РНК: гетерохроматин при перенесении в эухроматин активируется и становится цитологически не отличим от эухроматина. Нарушение активности при Э. п. г. может наблюдаться одновременно у нескольких эухроматиновых генов, расположенных за геном, непосредственно прилегающим к гетерохроматину, причём влияние гетерохроматина всегда направлено от места перестройки к ближайшему эухроматиновому гену и по мере увеличения расстояния между эухроматиновыми и гетерохроматиновыми генами это влияние ослабляется (эффект поляризованного распространения). Наиболее изучен т. н. мозаичный Э. п. г., фенотипически проявляющийся в мозаичности, т. е. в появлении измененных соматических клеток на фоне нормальных.