Страница:
Пьезоэлектричество
). Наибольшее распространение получили П. г. с плоским (квадратным в плане) пьезоэлементом из
сегнетовой соли.К свободному углу такого элемента приклеивается своей вершиной коническая диафрагма — излучатель звука. П. г., несмотря на низкое качество их звучания и малую надёжность пьезоэлементов, выпускались в СССР в годы Великой Отечественной войны 1941—45 и в первые послевоенные годы как наиболее дешёвые и простые в изготовлении.
измерительный преобразователь
механического усилия в электрический сигнал; его действие основано на использовании пьезоэлектрического эффекта (см.
Пьезоэлектричество
). Один из вариантов конструкции П. д. давления показан на
рис
. Под действием измеряемого давления на внешней и внутренней сторонах пары пластин пьезоэлектрика возникают электрические заряды, причём суммарная эдс (между выводом и корпусом) изменяется пропорционально давлению. П. д. целесообразно применять при измерении быстроменяющегося давления; если давление меняется медленно, то возрастает погрешность преобразования из-за «стекания» электрического заряда с пластин на корпус. Включением дополнительного конденсатора параллельно П. д. можно уменьшить погрешность измерения, однако при этом уменьшается напряжение на выводах датчика. Основные достоинства П. д. — их высокие динамические характеристики и способность воспринимать колебания давления с частотой от десятков
гцдо десятков
Мгц.Применяются при тензометрических измерениях, в весовых и сортировочных (по весу) устройствах, при измерениях вибраций и деформаций и т.д.
измерительный преобразователь
механического усилия в электрический сигнал; его действие основано на использовании пьезоэлектрического эффекта (см.
Пьезоэлектричество
). Один из вариантов конструкции П. д. давления показан на
рис
. Под действием измеряемого давления на внешней и внутренней сторонах пары пластин пьезоэлектрика возникают электрические заряды, причём суммарная эдс (между выводом и корпусом) изменяется пропорционально давлению. П. д. целесообразно применять при измерении быстроменяющегося давления; если давление меняется медленно, то возрастает погрешность преобразования из-за «стекания» электрического заряда с пластин на корпус. Включением дополнительного конденсатора параллельно П. д. можно уменьшить погрешность измерения, однако при этом уменьшается напряжение на выводах датчика. Основные достоинства П. д. — их высокие динамические характеристики и способность воспринимать колебания давления с частотой от десятков
гцдо десятков
Мгц.Применяются при тензометрических измерениях, в весовых и сортировочных (по весу) устройствах, при измерениях вибраций и деформаций и т.д.
Схема устройства пьезоэлектрического датчика давления: p — измеряемое давление; 1 — пьезопластины; 2 — гайка из диэлектрика; 3 — электрический вывод; 4 — корпус (служащий вторым выводом); 5 — изолятор; 6 — металлический электрод.

электричество
), явления возникновения поляризации
диэлектрика
под действием механических напряжений (прямой пьезоэлектрический эффект) и возникновения механических деформаций под действием электрического поля (обратный пьезоэлектрический эффект). Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах — пьезоэлектриках. Первое подробное исследование пьезоэлектрических эффектов сделано в 1880 братьями Ж. и П.
Кюри
на кристалле
кварца.В дальнейшем пьезоэлектрические свойства были обнаружены более чем у 1500 веществ, из которых широко используются
сегнетова соль
,
титанат бария и др. (см.
Пьезоэлектрические материалы
).
Пьезоэлектрические свойства кристаллов связаны с их структурой. Ими обладают все
пироэлектрики
(спонтанно поляризованные диэлектрики). При механической деформации пироэлектрика меняется величина его спонтанной поляризации, что и наблюдается как прямой пьезоэлектрический эффект. Пьезоэлектрические эффекты наблюдаются также в некоторых непироэлектриках (например, у кварца). Справедливо общее утверждение: кристаллы, обладающие центром симметрии, не могут быть пьезоэлектриками. Это объясняется тем, что при деформации кристалла центр симметрии сохраняется, а при наличии центра симметрии не может быть поляризации (
рис. 1
,
2
). Наличие других элементов симметрии (оси, плоскости симметрии) может «запрещать» появление поляризации в определённых направлениях или при некоторых определённых деформациях (см.
Симметрия кристаллов
).
Количественными характеристиками П. в данном кристалле является совокупность пьезоконстант и пьезомодулей — коэффициент пропорциональности между электрическими величинами (напряжённость электрического поля
Е, поляризация
P) и механическими величинами (механические напряжения s
,относительные деформации
u)
.Например,
P=
ds
.Коэффициент
dи есть одна из пьезоконстант. Т. к. произвольное механическое напряжение может быть представлено как совокупность 6 независимых напряжений, а вектор поляризации
Pимеет 3 независимых компоненты, то в общем случае может быть 18 разных пьезоконстант
d.Однако симметрия кристалла ограничивает число независимых и отличных от нуля пьезоконстант. Величина
dзависит от условий опыта, а именно: она имеет одно значение
d,если заряд на обкладках конденсатора (
рис. 3
) поддерживать равным нулю, и другое значение
d',если обкладки конденсатора закорочены, т. е.
Е= 0. Поэтому соотношение
P=
ds
целесообразно записывать, например, в виде:
P=
d's + c
Е.Величины
dи
d'связаны соотношением
d’=
de
,где e —
диэлектрическая проницаемость
кристалла.
Пьезоконстантами называются также коэффициенты
r, g, hв соотношениях
P=
ru+ c’
Е, u=
S's +
hP, u=
S's
+
hEи т.п. Все пьезоконстанты
d, r, g, hсвязаны друг с другом, так что при описании пьезоэлектрических свойств кристалла можно ограничиться только одной, например
d.Характерная величина пьезоконстанты
dв системе СГСЭ составляет для кварца 3Ч10
—8. Существенно больших величин могут достигать пьезоконстанты сегнетоэлектриков, что связано с их высокой диэлектрической проницаемостью и доменной структурой, которая может перестраиваться при деформации.
Пьезоэлектрики широко применяют в технике, акустике, радиофизике и т.д. Их применение основано на преобразовании электрических сигналов в механические и наоборот. Пьезоэлектрики используются в резонаторах, входящих в состав генераторов (см.
Кварцевый генератор
),
фильтров, различного рода преобразователей и датчиков.
Лит.:Кэдп У., Пьезоэлектричество и его практическое применение, пер. с англ., М. , 1949; Мэзон У., Пьезоэлектрические кристаллы и их применение в ультраакустике, пер. с англ. , М., 1952; Берлинкур [и др.], Пьезоэлектрические и пьезомагнитные материалы и их применение в преобразователях, в кн.: Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966.
А. П. Леванюк. Д. Г. Санников.
Рис. 2. а — плоская модель кристалла, обладающего центром симметрии; б — тот же кристалл, подвергнутый сжатию.
Рис. 1. а — плоская модель кристалла, не имеющего центра симметрии; центры тяжести положительных и отрицательных зарядов совпадают, стрелки изображают отдельные электрические дипольные моменты одной группы зарядов; б — тот же крисстал, подвергнутый сжатию, при котором изменяются длины связей между зарядами каждой группы, но не углы между ними; горизонтальная стрелка слева — суммарный электрический дипольный момент одной группы зарядов.
Рис. 3. а — прямой пьезоэлектрический эффект; сжатие или растяжение пьезоэлектрической пластины приводит к возникновению разности потенциалов; б — обратный пьезоэлектрический эффект; в зависимости от знака разности потенциалов, приложенной к пьезоэлектрической пластинке, она сжимается или растягивается.



Сардинского королевства
со столицей в Турине. В 1802—14 входил в состав Франции. С 20—40-х гг. 19 одна из наиболее развитых в экономическом отношении областей Италии. Буржуазия и обуржуазившееся дворянство П. играли значительную роль в итальянском национально-освободительном движении 19 в., являясь ведущей силой буржуазной Пьемонтской революции 1821, активно участвуя в Революции 1848—1849 в Италии. Вокруг Сардинского королевства (фактически вокруг П.) в 1859—60 произошло объединение Италии. Во время 2-й мировой войны 1939—45 П. в сентябре 1943 был оккупирован немецко-фашистскими войсками; он стал одним из важнейших центров Движения Сопротивления. Освобожден в основном силами Сопротивления в апреле 1945. Высокая степень концентрации промышленности и рабочего класса (прежде всего в Турине) определила положение П. как одного из главных центров рабочего и демократического движения Италии.
Рис. к ст. Пьемонт.
