Большая Советская Энциклопедия (СХ)

Лемером в 1615 западным путём в Индонезию. Его отчёт о кругосветном плавании, изданный в Амстердаме в 1618 под названием «Journal ou description du merveilleux vouage», многократно переиздавался. В честь С. названы открытые им острова близ северо-восточного побережья острова Новая Гвинея.

Схоутен   Я. А.

Схема в конструкторской документации.

схем электронных устройств радиотехники и связи, вычислительной техники, автоматики и др. областей техники. Основная задача С. — синтез (определение структуры) электронных схем, обеспечивающих выполнение определённых функций, и расчёт параметров входящих в них элементов. Термин «С.» появился в 60-х гг. 20 в. в связи с разработкой унифицированных схем, пригодных одновременно для многих применений.
     На основе электронной схемы создают соответствующее устройство (входящее в состав некоторой технической системы). К устройству предъявляется требование надёжной работы в течение заданного времени в реальных условиях производственного разброса параметров элементов и их старения, влияния внешней среды и возмущающих воздействий. Поэтому при разработке схем наряду с расчётом номинальных значений параметров элементов необходимо рассчитывать эксплуатационные допуски на них, предусматривать в схеме средства, повышающие надёжность устройства (обеспечивающие устойчивую работу схемы при внешних воздействиях), а также позволяющие контролировать его исправность.
     Элементной базой для создания электронных устройств служат дискретные электро- и радиоэлементы (резисторы, конденсаторы, диоды, транзисторы и т. д.) и интегральные микросхемы (ИС, см. Интегральная схема ) .Если электронная схема реализуется в виде ИС либо нескольких ИС, то говорят о «микросхемотехнике», под которой понимают область микроэлектроники,связанную с проектированием ИС. Помимо синтеза и расчёта электронных схем, микросхемотехника решает задачу разработки на основе электронных схем структуры (топологии) ИС. Основные этапы разработки: расчёт геометрических размеров элементов ИС; рациональное размещение элементов на поверхности или в объёме подложки ИС; нахождение оптимальных соединений элементов (возможные критерии оптимальности — обеспечение минимальных длин проводников, либо числа их пересечений, либо взаимного влияния и т. д.). Так как создание новой ИС — комплексная проблема, то её решают совместно специалисты по микросхемотехнике, физики, технологи, конструкторы, используя комплексные опытно-теоретические методы, в том числе моделирование на ЭВМ как самой схемы, так и условий её работы.
     Теоретической базой С. (в том числе микросхемотехники) служат теория линейных и нелинейных электрических цепей, электродинамика, математическое программирование, теория автоматов и др. При создании электронных схем перспективно использование методов проектирования с применением ЭВМ (см. в ст. Проектирование ) .По мере развития микроэлектроники, разработки больших ИС (БИС) — функциональных устройств, представляющих собой целые системы, С. по ряду аспектов сливается с системотехникой.
   
      Лит.:Алексенко А. Г., Основы микросхемотехники, М., 1971; Поспелов Д. А., Логические методы анализа и синтеза схем, 3 изд., М., 1974.
      Г. И. Веселов.

Одиссея перед возвращением на родину. В античности С. иногда отождествляли с островом Керкирой (Корфу).

Разделение церквей.

шизогнатизм.

пустынная саранча.

сельского общества в дореволюционной России. Ведал приёмом в сельское общество и исключением из него, распределением земли между членами общества, раскладкой оброка, общинных и казённых повинностей, избирал сельскую старосту и др. должностных лиц. Подчинялся полиции, мировому посреднику, земскому участковому начальнику.Собрание крестьян, решавших хозяйственные вопросы в первые годы Советской власти, называлось земельным сходом.

перспективе.На перспективных изображениях С. т. параллельных прямых находится в пересечении плоскости картины с лучом зрения, параллельным этим прямым. См. также Начертательная геометрия.

ряд
,составленный из значений функции u n (x)в данной точке x 0 ,является сходящимся. Аналогично определяется С. т. для функциональной последовательности.

предел.В этом смысле говорят о С. последовательности, С. ряда, С. бесконечного произведения, С. непрерывной дроби, С. интеграла и т. д. Понятие С. возникает, например, когда при изучении того или иного математического объекта строится последовательность более простых в известном смысле объектов, приближающихся к данному, то есть имеющих его своим пределом (так, для вычисления длины окружности используется последовательность длин периметров правильных многоугольников, вписанных в окружность; для вычисления значений функций используются последовательности частичных сумм рядов, которыми представляются данные функции, и т. п.).
     С. последовательности { an} , n= 1, 2,..., означает существование у неё конечного предела ; С. ряда конечного предела (называемого суммой ряда) у последовательности его частичных сумм , ; С. бесконечного произведения b 1b 2... b nконечного предела, не равного нулю, у последовательности конечных произведений p n= b 1b 2... b n, n =1, 2,...; С. интеграла  от функции f( x) ,интегрируемой по любому конечному отрезку [ а, b] ,—конечного предела у интегралов при b® +µ, называется несобственным интегралом
.

     Свойство С. тех или иных математических объектов играет существенную роль как в вопросах теории, так и в приложениях математики. Например, часто используется представление каких-либо величин или функций с помощью сходящихся рядов; так, для основания натуральных логарифмов еимеется разложение его в сходящийся ряд
    
     для функции sin х —в сходящийся при всех хряд
    
   Подобные ряды могут быть использованы для приближённого вычисления рассматриваемых величин и функций. Для этого достаточно взять сумму нескольких первых членов, при этом чем больше их взять, тем с большей точностью будет получено нужное значение. Для одних и тех же величин и функций имеются различные ряды, суммой которых они являются, например,
     ,
      .
   При практических вычислениях в целях экономии числа операций (а следовательно, экономии времени и уменьшения накопления ошибок) целесообразно из имеющихся рядов выбрать ряд, который сходится «более быстро». Если даны два сходящихся ряда  и ,и , . —их остатки, то 1-й ряд называется сходящимся быстрее 2-го ряда, если
     .
     Например, ряд
    
   сходится быстрее ряда
     .
   Используются и другие понятия «более быстро» сходящихся рядов. Существуют различные методы улучшения С. рядов, то есть методы, позволяющие преобразовать данный ряд в «более быстро» сходящийся. Аналогично случаю рядов вводится понятие «более быстрой» С. и для несобственных интегралов, для которых также имеются способы улучшения их С.
     Большую роль понятие С. играет при решении всевозможных уравнений (алгебраических, дифференциальных, интегральных), в частности при нахождении их численных приближённых решений. Например, с помощью последовательных приближений метода можно получить последовательность функций, сходящихся к соответствующему решению данного обыкновенного дифференциального уравнения, и тем самым одновременно доказать существование при определённых условиях решения и дать метод, позволяющий вычислить это решение с нужной точностью. Как для обыкновенных дифференциальных уравнений, так и уравнений с частными производными существует хорошо разработанная теория различных сходящихся конечноразностных методов их численного решения (см. Сеток метод ) .Для практического нахождения приближённых решений уравнений широко используются ЭВМ.
     Если изображать члены a n последовательности { a n} на числовой прямой, то С. этой последовательности к аозначает, что расстояние между точками a nи астановится и остаётся сколь угодно малым с возрастанием n.В этой формулировке понятие С. обобщается на последовательности точек плоскости, пространства и более общих объектов, для которых может быть определено понятие расстояния, обладающее обычными свойствами расстояния между точками пространства (например, на последовательности векторов, матриц, функций, геометрических фигур и т. д., см. Метрическое пространство ) .Если последовательность { a n} сходится к а,то вне любой окрестности точки алежит лишь конечное число членов последовательности. В этой формулировке понятие С. допускает обобщение на совокупности величин ещё более общей природы, в которых тем или иным образом введено понятие окрестности (см. Топологическое пространство ) .
     В математическом анализе используются различные виды С. последовательности функций { f n( x)} к функции f( x) (на некотором множестве М). Если  для каждой точки X 0(из М) ,то говорят о С. в каждой точке [если это равенство не имеет места лишь для точек, образующих множество меры нуль (см. Мера множества ) ,то говорят о С. почти всюду]. Несмотря на свою естественность, понятие С. в каждой точке обладает многими нежелательными особенностями [например, последовательность непрерывных функций может сходиться в каждой точке к разрывной функции; из С. функций f n( x) к f( x) в каждой точке не следует, вообще говоря, С. интегралов от функций f n( x) к интегралу от f( x) и т. д.]. В связи с этим было введено понятие равномерной С., свободное от этих недостатков: последовательность { f n( x)} называется равномерно сходящейся к f( x) на множестве М,если
    
   Этот вид С. соответствует определению расстояния между функциями f( x) и ( ( х) по формуле
    
   Д. Ф. Егоров доказал, что если последовательность измеримых функций сходится почти всюду на множестве М,то из Мможно так удалить часть сколь угодно малой меры, чтобы на оставшейся части имела место равномерная С.
     В теории интегральных уравнений, ортогональных рядов и т. д. широко применяется понятие средней квадратической С.: последовательность { f n( x)} сходится на отрезке [ a, b] в среднем квадратическом к f( x) ,если
     .
   Более общо, последовательность { f n( x)} сходится в среднем с показателем р к f( x) ,если
     .
   Эта С. соответствует заданию расстояния между функциями по формуле
     .
   Из равномерной С. на конечном отрезке вытекает С. в среднем с любым показателем р.Последовательность частичных сумм разложения функции j(х)с интегрируемым квадратом по нормированной ортогональной системе функций может расходиться в каждой точке, но такая последовательность всегда сходится к j(х)в среднем квадратическом. Рассматриваются также другие виды С. Например, С. по мере: для любого e  > 0 мера множества тех точек, для которых ,стремится к нулю с возрастанием n',слабая С.:
    
   для любой функции j(x)с интегрируемым квадратом (например, последовательность функций sinx, sin2x,..., sinnx,... слабо сходится к нулю на отрезке [—p, p], так как для любой функции j(х) синтегрируемым квадратом коэффициенты  ряда Фурье стремятся к нулю).
     Указанные выше и многие другие понятия С. последовательности функций систематически изучаются в функциональном анализе, где рассматриваются различные линейные пространства с заданной нормой (расстоянием до нуля) — так называемые банаховы пространства. В таких пространствах можно ввести понятия С. функционалов, операторов и т. д., определяя для них соответствующим образом норму. Наряду со С. по норме (так называемой сильной С.), в банаховых пространствах рассматривается слабая С., определяемая условием  для всех линейных функционалов; введённая выше слабая С. функций соответствует рассмотрению нормы . В современной математике рассматривается также С. по частично упорядоченным множествам (см. Упорядоченные и частично упорядоченные множества ) .В теории вероятностей для последовательности случайных величин употребляются понятия С. с вероятностью 1 и С. по вероятности.
     Ещё математики древности (Евклид, Архимед) по существу употребляли бесконечные ряды для нахождения площадей и объёмов. Доказательством С. рядов им служили вполне строгие рассуждения по схеме исчерпывания метода.Термин «С.» в применении к рядам был введён в 1668 Дж. Грегори при исследовании некоторых способов вычисления площади круга и гиперболического сектора. Математики 17 в. обычно имели ясное представление о С. употребляемых ими рядов, хотя и не проводили строгих с современной точки зрения доказательств С. В 18 в. широко распространилось употребление в анализе заведомо расходящихся рядов (в частности, их широко применял Л. Эйлер ) .Это, с одной стороны, привело впоследствии ко многим недоразумениям и ошибкам, устранённым лишь с развитием отчётливой теории С., а с другой — предвосхитило современную теорию