Страница:
Легко понять, почему классическая механика практически всегда остается справедливой, когда мы имеем дело с макроскопическими явлениями. По существу эти явления описываются столь большими значениями физических величин, что квантом действия можно при этом совершенно пренебречь, и его влияние полностью маскируется неизбежным недостатком точности физических измерений. Это легко уяснить на численных примерах и показать, скажем, что для того, чтобы подтвердить неравенство Гейзенберга для шарика весом в одну десятую миллиграмма (чрезвычайно благоприятный случай ввиду необычайной легкости шарика), было бы необходимо, даже если скорость известна с точностью до одного миллиметра в секунду, измерить положение его центра тяжести с точностью, не меньшей чем 10-20 сантиметра! Чтобы еще лучше понять, как достигается соответствие между старой и новой механикой, рассмотрим более подробно один частный случай.
Предположим, что мы изучаем крупномасштабное движение частицы, например движение электрона в магнитном поле. Мы знаем, что такое движение можно точно описать, исходя из представлений классической механики. Как это согласуется с соотношениями неопределенности? Для ответа на этот вопрос прежде всего заметим, что в условиях этого макроскопического эксперимента самые маленькие расстояния, которые мы можем измерять прямым способом, во много раз больше длины волны, соответствующей исследуемой частице. Следовательно, может существовать волновой пакет, размеры которого меньше тех, что мы можем прямо измерить, и который тем не менее будет образован волнами почти одинаковой длины.
Таким образом, точный и хорошо проведенный эксперимент может позволить, не вступая в противоречие с соотношениями Гейзенберга, представить состояние частицы после измерения в виде некоего волнового пакета. Поскольку этот пакет практически локализован в точке и практически для нас монохроматичен, мы можем в пределах точности макроскопического измерения получить строго определенные положение и скорость частицы. Кроме того, фундаментальный результат, полученный на самой заре развития волновой механики, гласит, что группа «КСИ»-волн перемещается со скоростью, которую классическая механика, приписывает соответствующей частице. Таким образом, наш квазиточечный волновой пакет двигается в точности как классическая частица и, так как согласно принципу интерференции реальная частица должна всегда находиться внутри волнового пакета, все происходит так, будто реальная частица подчиняется законам классической механики. Как видно из этого примера, лишь недостаточная точность наших макроскопических измерений маскирует квантовую неопределенность. Итак, оказывается, нет никаких серьезных трудностей в согласовании новой механики со старой. К тому же квантовая физика построена так, что включает классическую физику в свои более широкие рамки. Снова, как во всей истории науки, прогресс идет путем последовательных приближений к истине.
4. Индетерминизм в новой механике
5. Дополнительность, идеализация, пространство и время
Глава XI. Спин электрона
1. Тонкая структура и магнитные аномалии
Предположим, что мы изучаем крупномасштабное движение частицы, например движение электрона в магнитном поле. Мы знаем, что такое движение можно точно описать, исходя из представлений классической механики. Как это согласуется с соотношениями неопределенности? Для ответа на этот вопрос прежде всего заметим, что в условиях этого макроскопического эксперимента самые маленькие расстояния, которые мы можем измерять прямым способом, во много раз больше длины волны, соответствующей исследуемой частице. Следовательно, может существовать волновой пакет, размеры которого меньше тех, что мы можем прямо измерить, и который тем не менее будет образован волнами почти одинаковой длины.
Таким образом, точный и хорошо проведенный эксперимент может позволить, не вступая в противоречие с соотношениями Гейзенберга, представить состояние частицы после измерения в виде некоего волнового пакета. Поскольку этот пакет практически локализован в точке и практически для нас монохроматичен, мы можем в пределах точности макроскопического измерения получить строго определенные положение и скорость частицы. Кроме того, фундаментальный результат, полученный на самой заре развития волновой механики, гласит, что группа «КСИ»-волн перемещается со скоростью, которую классическая механика, приписывает соответствующей частице. Таким образом, наш квазиточечный волновой пакет двигается в точности как классическая частица и, так как согласно принципу интерференции реальная частица должна всегда находиться внутри волнового пакета, все происходит так, будто реальная частица подчиняется законам классической механики. Как видно из этого примера, лишь недостаточная точность наших макроскопических измерений маскирует квантовую неопределенность. Итак, оказывается, нет никаких серьезных трудностей в согласовании новой механики со старой. К тому же квантовая физика построена так, что включает классическую физику в свои более широкие рамки. Снова, как во всей истории науки, прогресс идет путем последовательных приближений к истине.
4. Индетерминизм в новой механике
Уравнения классической механики целиком и полностью определяют движение системы, если в начальный момент времени известны положения и состояния движения каждой из ее частей. Таким образом, можно полностью предсказать классическое движение частицы, если известны ее положение и скорость в некоторый начальный момент времени. Эта возможность самым неумолимым образом предсказать будущее механической системы, когда имеются данные о ее состоянии в некоторый момент времени, определяет детерминизм классической механики.
Поразительные успехи, достигнутые этой механикой, особенно в области математической астрономии, привели к тому, что все физики пытались создавать теории, которые бы всегда удовлетворяли условия детерминизма. Макроскопические явления, изучавшиеся ими тогда, были подчинены этому требованию, и вся классическая теоретическая физика покоится на дифференциальных уравнениях в полных или частных произведениях, которые позволяют строго вычислить эволюцию любой произвольной физической системы, исходя из определенных данных о ее начальном состоянии. Даже в тех областях физики, где были введены вычисления вероятностей, всегда предполагали, что элементарные процессы строго детерминированы и что только очень большое число и беспорядочность элементарных процессов, из которых состоят наблюдаемые явления, позволяют обратиться к статистическим методам и понятию вероятности. Более или менее сознательно внутренний детерминизм явлений природы, требующий, чтобы их можно было полностью предсказать, по крайней мере в принципе, стал чем-то вроде научной догмы. Развитие новых квантовых теорий абсолютно изменило эту ситуацию.
Можно отдать себе отчет в различии, которое возникает в этом смысле, между старой и новой механикой. Для этого заметим, что элементы, одновременное знание которых в начальный момент времени необходимо в классической механике, чтобы строго предсказать эволюцию системы, – это как раз те самые, одновременное определение которых невозможно согласно соотношениям неопределенности. Для того чтобы строго решить классические уравнения движения системы, необходимо знать расположение и состояние движения ее частей в некоторый момент времени. Поскольку любую систему можно с точки зрения современной физики, учитывая приведенные рассуждения, свести к набору частиц, то нужно знать координаты и скорости (или импульсы) различных частиц системы в один и тот же момент времени. Сущность же соотношений неопределенности заключается в том, что точное и одновременное знание этих величин невозможно. Конечно, величина постоянной h, необычно малой по сравнению с нашими обычными масштабами, делает квантовую неопределенность физических явлений обычных масштабов пренебрежимо малой и детерминизм, по-видимому, строгим. Однако при микроскопическом изучении физических явлении неопределенность уже значительна и ее достаточно, чтобы сделать совершенно невозможным описание хода событии согласно требованиям детерминизма.
Исчезнувший или, по крайней мере, сильно ослабленный детерминизм в квантовой физике заменяется вероятностными законами. Однако обращение к вероятности имеет здесь совершенно иное значение, чем, скажем, в статистической механике. В классических теориях, где появляются вероятности, считают, что элементарные процессы подчинены строгим законам. Вероятности вводились там для описания явлений крупного масштаба, включающих огромное число элементарных процессов. В квантовой физике, наоборот, вероятности прямо вводятся для описания хода элементарных процессов. Чтобы лучше понять постановку вопроса, мы должны отчетливо показать, как новая механика описывает ход элементарных процессов с помощью волн.
Для этой цели рассмотрим одну частицу. Наши рассуждения легко можно обобщить на систему частиц, воспользовавшись методом, который описывается в гл. XII.
Задача теоретической физики заключается в том, чтобы, зная результат определенного числа наблюдений или экспериментов, предсказать результат других наблюдений или предстоящих экспериментов. В классической механике предполагается, что можно одновременно измерить координату и скорость частицы, а затем с помощью уравнений классической динамики в принципе строго предсказать результаты наблюдений или измерений, которые будут проведены с этой частицей в более поздние моменты времени. Наоборот, в новой механике мы вынуждены предполагать невозможность одновременного и точного измерения координат и импульса частицы. Даже измерения, проведенные с возможной наивысшей точностью, не могут дать об этих величинах сведений, содержащих меньшую неопределенность, чем позволяют неравенства Гейзенберга. Состояние частицы, о котором мы узнаем в результате измерения, будет описываться связанной с ней волной, которая никогда не может быть одновременно локализованной и монохроматической. Она всегда обладает некоторой протяженностью либо в пространстве, либо в спектре частот, а вообще говоря, и там и тут. Так, уравнение распространения позволяет, исходя из известной в начальный момент волновой «КСИ»-функции, точно вычислить эволюцию волны за период, когда не производится никаких наблюдений или измерений.
Следовательно, оно позволяет установить в каждый момент времени вероятность получения того или иного значения какой-либо характеристики движения частицы, если в этот момент времени будет проведено соответствующее измерение. По существу каждое новое измерение дает сведения о новом состоянии частицы. Теперь уже совершенно нельзя говорить о вероятностях, ибо всякое понятие вероятности того или иного события исчезает, как только сведения об этом событии получены. Поэтому после этого нового измерения необходимо построить новую «КСИ»-волну, которая будет изображать новое состояние частицы. Снова возвращаясь к идее, изложенной в начале главы, мы можем сказать, что каждый эксперимент благодаря существованию кванта действия приводит к неконтролируемому возмущению состояния частицы, которое не позволяет установить строгую причинную связь между предыдущим и последующим состояниями.
Это возмущение связано с существованием кванта действия, ибо именно он стоит на пути неограниченного уменьшения неопределенностей, возникающих в процессе измерения. Эволюция волновой функции между двумя последовательными измерениями полностью определяется ее начальным видом и уравнением распространения: се поведение строго детерминировано. Но отсюда никоим образом не следует, что существует строгий детерминизм для наблюдаемых и измеряемых процессов. Каждое новое наблюдение и измерение добавляет новые элементы и нарушает правильную эволюцию «КСИ»-волны.
Гейзенберг привел пример применения такого рода рассуждений. Он описал два последовательных измерения положения частицы. Первое измерение позволяет локализовать частицу в небольшой области пространства. Соответствующая волна в результате этого первого измерения будет представлять собой пакет, заключенный в этой области пространства (без этого мы бы пришли в противоречие с принципом интерференции). Этот волновой пакет, который волей-неволей далек от монохроматичности, будет сам собой расплываться согласно уравнению распространения.
Второе измерение положения, проведенное в некоторый последующий момент времени, позволит локализовать частицу в новом малом объеме, который обязательно будет лежать внутри области, занятой к этому времени волновым пакетом, и который будет гораздо меньшего размера. Иными словами, в результате распространения волны область возможных положений частицы очень быстро растет, и роль второго измерения заключается в том, чтобы резко ее ограничить. После проведения второго измерения необходимо построить новый волновой пакет «КСИ», размеры которого значительно меньше размеров первого пакета в конечном состоянии. Эта новая форма «КСИ»-волны будет исходной для новой эволюции волновой функции.
Теперь мы можем понять, как представления новой квантовой физики разрушают старые требования детерминизма. По-видимому, все же существуют случаи, когда результаты измерения какой-либо характеристики можно предсказать с совершенной определенностью. Это бывает тогда, когда состояние перед измерением представляет собой чистое состояние, соответствующее этой характеристике, или, иными словами, когда разложение «КСИ»-функции по собственным функциям, соответствующим этой величине, сводится к одному единственному члену. Так будет в случае измерения энергии или импульса частицы, которой соответствует плоская монохроматическая волна. Однако эти случаи являются исключительными. Можно было бы даже сказать, что вероятность таких состояний, строго говоря, равна нулю.
Вопрос об индетерминизме в новой механике много дискутировался. Некоторые физики все еще проявляют величайшее отвращение к требованию отказаться от детерминизма, которое выдвигает современная квантовая физика. Они даже говорят, будто бы нельзя себе представить недетерминистическую науку. Такая точка зрения кажется нам явным преувеличением, ибо квантовая физика все же существует, а она индетерминистическая.
Однако может случиться так, что в один прекрасный день физики вернутся на путь детерминизма и тогда нынешняя ступень науки будет казаться временным отходом, когда несовершенство наших знаний заставило нас на время отказаться от следования по пути строгого детерминизма явлений атомного масштаба. Вполне возможно, что неспособность следовать сегодня в микромире дорогой причинности обусловлена тем, что мы пользуемся понятиями частица, пространство, время и т д. Эти понятия мы построили, исходя из наших сведений о макроскопических явлениях, а затем перенесли их на описание микромира.
В то же время ниоткуда не следует, что они годятся для описания реальных явлений в этой области. Скорее наоборот. Тем не менее, хотя, по-видимому, еще необходимы фундаментальные реформы, чтобы сделать понимание квантовой физики совершенно ясным, лично мне кажется невероятным, что нам полностью удастся восстановить детерминизм прошлого. Удары, которые нанесло ему развитие новой механики, представляются нам слишком глубокими, чтобы от них можно было легко оправиться. Несомненно, самое мудрое – это констатировать следующее положение: в настоящее время физические процессы, в которых играют роль кванты, не являются больше детерминистическими.
Поразительные успехи, достигнутые этой механикой, особенно в области математической астрономии, привели к тому, что все физики пытались создавать теории, которые бы всегда удовлетворяли условия детерминизма. Макроскопические явления, изучавшиеся ими тогда, были подчинены этому требованию, и вся классическая теоретическая физика покоится на дифференциальных уравнениях в полных или частных произведениях, которые позволяют строго вычислить эволюцию любой произвольной физической системы, исходя из определенных данных о ее начальном состоянии. Даже в тех областях физики, где были введены вычисления вероятностей, всегда предполагали, что элементарные процессы строго детерминированы и что только очень большое число и беспорядочность элементарных процессов, из которых состоят наблюдаемые явления, позволяют обратиться к статистическим методам и понятию вероятности. Более или менее сознательно внутренний детерминизм явлений природы, требующий, чтобы их можно было полностью предсказать, по крайней мере в принципе, стал чем-то вроде научной догмы. Развитие новых квантовых теорий абсолютно изменило эту ситуацию.
Можно отдать себе отчет в различии, которое возникает в этом смысле, между старой и новой механикой. Для этого заметим, что элементы, одновременное знание которых в начальный момент времени необходимо в классической механике, чтобы строго предсказать эволюцию системы, – это как раз те самые, одновременное определение которых невозможно согласно соотношениям неопределенности. Для того чтобы строго решить классические уравнения движения системы, необходимо знать расположение и состояние движения ее частей в некоторый момент времени. Поскольку любую систему можно с точки зрения современной физики, учитывая приведенные рассуждения, свести к набору частиц, то нужно знать координаты и скорости (или импульсы) различных частиц системы в один и тот же момент времени. Сущность же соотношений неопределенности заключается в том, что точное и одновременное знание этих величин невозможно. Конечно, величина постоянной h, необычно малой по сравнению с нашими обычными масштабами, делает квантовую неопределенность физических явлений обычных масштабов пренебрежимо малой и детерминизм, по-видимому, строгим. Однако при микроскопическом изучении физических явлении неопределенность уже значительна и ее достаточно, чтобы сделать совершенно невозможным описание хода событии согласно требованиям детерминизма.
Исчезнувший или, по крайней мере, сильно ослабленный детерминизм в квантовой физике заменяется вероятностными законами. Однако обращение к вероятности имеет здесь совершенно иное значение, чем, скажем, в статистической механике. В классических теориях, где появляются вероятности, считают, что элементарные процессы подчинены строгим законам. Вероятности вводились там для описания явлений крупного масштаба, включающих огромное число элементарных процессов. В квантовой физике, наоборот, вероятности прямо вводятся для описания хода элементарных процессов. Чтобы лучше понять постановку вопроса, мы должны отчетливо показать, как новая механика описывает ход элементарных процессов с помощью волн.
Для этой цели рассмотрим одну частицу. Наши рассуждения легко можно обобщить на систему частиц, воспользовавшись методом, который описывается в гл. XII.
Задача теоретической физики заключается в том, чтобы, зная результат определенного числа наблюдений или экспериментов, предсказать результат других наблюдений или предстоящих экспериментов. В классической механике предполагается, что можно одновременно измерить координату и скорость частицы, а затем с помощью уравнений классической динамики в принципе строго предсказать результаты наблюдений или измерений, которые будут проведены с этой частицей в более поздние моменты времени. Наоборот, в новой механике мы вынуждены предполагать невозможность одновременного и точного измерения координат и импульса частицы. Даже измерения, проведенные с возможной наивысшей точностью, не могут дать об этих величинах сведений, содержащих меньшую неопределенность, чем позволяют неравенства Гейзенберга. Состояние частицы, о котором мы узнаем в результате измерения, будет описываться связанной с ней волной, которая никогда не может быть одновременно локализованной и монохроматической. Она всегда обладает некоторой протяженностью либо в пространстве, либо в спектре частот, а вообще говоря, и там и тут. Так, уравнение распространения позволяет, исходя из известной в начальный момент волновой «КСИ»-функции, точно вычислить эволюцию волны за период, когда не производится никаких наблюдений или измерений.
Следовательно, оно позволяет установить в каждый момент времени вероятность получения того или иного значения какой-либо характеристики движения частицы, если в этот момент времени будет проведено соответствующее измерение. По существу каждое новое измерение дает сведения о новом состоянии частицы. Теперь уже совершенно нельзя говорить о вероятностях, ибо всякое понятие вероятности того или иного события исчезает, как только сведения об этом событии получены. Поэтому после этого нового измерения необходимо построить новую «КСИ»-волну, которая будет изображать новое состояние частицы. Снова возвращаясь к идее, изложенной в начале главы, мы можем сказать, что каждый эксперимент благодаря существованию кванта действия приводит к неконтролируемому возмущению состояния частицы, которое не позволяет установить строгую причинную связь между предыдущим и последующим состояниями.
Это возмущение связано с существованием кванта действия, ибо именно он стоит на пути неограниченного уменьшения неопределенностей, возникающих в процессе измерения. Эволюция волновой функции между двумя последовательными измерениями полностью определяется ее начальным видом и уравнением распространения: се поведение строго детерминировано. Но отсюда никоим образом не следует, что существует строгий детерминизм для наблюдаемых и измеряемых процессов. Каждое новое наблюдение и измерение добавляет новые элементы и нарушает правильную эволюцию «КСИ»-волны.
Гейзенберг привел пример применения такого рода рассуждений. Он описал два последовательных измерения положения частицы. Первое измерение позволяет локализовать частицу в небольшой области пространства. Соответствующая волна в результате этого первого измерения будет представлять собой пакет, заключенный в этой области пространства (без этого мы бы пришли в противоречие с принципом интерференции). Этот волновой пакет, который волей-неволей далек от монохроматичности, будет сам собой расплываться согласно уравнению распространения.
Второе измерение положения, проведенное в некоторый последующий момент времени, позволит локализовать частицу в новом малом объеме, который обязательно будет лежать внутри области, занятой к этому времени волновым пакетом, и который будет гораздо меньшего размера. Иными словами, в результате распространения волны область возможных положений частицы очень быстро растет, и роль второго измерения заключается в том, чтобы резко ее ограничить. После проведения второго измерения необходимо построить новый волновой пакет «КСИ», размеры которого значительно меньше размеров первого пакета в конечном состоянии. Эта новая форма «КСИ»-волны будет исходной для новой эволюции волновой функции.
Теперь мы можем понять, как представления новой квантовой физики разрушают старые требования детерминизма. По-видимому, все же существуют случаи, когда результаты измерения какой-либо характеристики можно предсказать с совершенной определенностью. Это бывает тогда, когда состояние перед измерением представляет собой чистое состояние, соответствующее этой характеристике, или, иными словами, когда разложение «КСИ»-функции по собственным функциям, соответствующим этой величине, сводится к одному единственному члену. Так будет в случае измерения энергии или импульса частицы, которой соответствует плоская монохроматическая волна. Однако эти случаи являются исключительными. Можно было бы даже сказать, что вероятность таких состояний, строго говоря, равна нулю.
Вопрос об индетерминизме в новой механике много дискутировался. Некоторые физики все еще проявляют величайшее отвращение к требованию отказаться от детерминизма, которое выдвигает современная квантовая физика. Они даже говорят, будто бы нельзя себе представить недетерминистическую науку. Такая точка зрения кажется нам явным преувеличением, ибо квантовая физика все же существует, а она индетерминистическая.
Однако может случиться так, что в один прекрасный день физики вернутся на путь детерминизма и тогда нынешняя ступень науки будет казаться временным отходом, когда несовершенство наших знаний заставило нас на время отказаться от следования по пути строгого детерминизма явлений атомного масштаба. Вполне возможно, что неспособность следовать сегодня в микромире дорогой причинности обусловлена тем, что мы пользуемся понятиями частица, пространство, время и т д. Эти понятия мы построили, исходя из наших сведений о макроскопических явлениях, а затем перенесли их на описание микромира.
В то же время ниоткуда не следует, что они годятся для описания реальных явлений в этой области. Скорее наоборот. Тем не менее, хотя, по-видимому, еще необходимы фундаментальные реформы, чтобы сделать понимание квантовой физики совершенно ясным, лично мне кажется невероятным, что нам полностью удастся восстановить детерминизм прошлого. Удары, которые нанесло ему развитие новой механики, представляются нам слишком глубокими, чтобы от них можно было легко оправиться. Несомненно, самое мудрое – это констатировать следующее положение: в настоящее время физические процессы, в которых играют роль кванты, не являются больше детерминистическими.
5. Дополнительность, идеализация, пространство и время
Бор, роль которого в развитии современной физики огромна, в своих всегда глубоких и часто очень тонких исследованиях много сделал для уяснения довольно необычного смысла новой механики. В частности, именно он ввел понятие дополнительности, такое любопытное с философской точки зрения.
Бор исходил из идеи, что электрон можно описать с помощью корпускулярной и волновой картины. Удивительно, каким образом два столь различных описания, можно сказать, столь противоречащих Друг Другу, можно использовать одновременно. Он показал, что это можно сделать только потому, что соотношения неопределенности – следствие существования кванта действия – не позволяют вступить этим двум образам в прямое противоречие. Чем более стремятся уточнить в процессе наблюдений одну картину, тем более смутной становится другая.
Когда длина волны электрона такова, что существенную роль может играть явление интерференции, его нельзя больше считать локализованным и использовать корпускулярные представления. Наоборот, когда электрон строго локализован, его интерференционные свойства исчезают и его нельзя больше описывать с волновой точки зрения.
Волновые и корпускулярные свойства никогда не вступают в конфликт, ибо они никогда не существуют одновременно. Мы пребываем в постоянном ожидании борьбы между волной и частицей, но ее никогда не происходит, так как никогда оба противника не появляются вместе. Понятие электрон, так же как и другие элементарные физические понятия, имеет, таким образом, два противоречивых аспекта, к которым, однако, нужно обращаться по очереди, чтобы объяснить все его свойства. Они подобны двум сторонам одного предмета, которые никогда нельзя увидеть одновременно, но которые, однако, нужно осмотреть по очереди, чтобы полностью описать этот предмет. Эти два аспекта Бор и назвал дополнительными, понимая под этим, что они, с одной стороны, противоречат друг другу, с другой – друг друга дополняют. Оказывается, что это понятие дополнительности играет важную роль в чисто философской доктрине.
Действительно, совсем не очевидно, что мы можем описать физические явления с помощью одной единственной картины или одного единственного представления нашего ума. Наши картины и представления мы образуем, черпая вдохновение из нашего повседневного опыта. Из него мы извлекаем определенные понятия, а затем уже, исходя из них, придумываем путем упрощения и абстрагирования некоторые простые картины, некоторые, по-видимому, ясные понятия, которые, наконец, пытаемся использовать для объяснения явлений. Таковы понятия строго локализованной частицы, строго монохроматической волны. Однако вполне возможно, что эту идеализацию, чрезмерно упрощенный и весьма грубый, по выражению Бора, продукт нашего мозга, нельзя никогда строго применять к реальным процессам. Чтобы описать всю совокупность реального мира, возможно, необходимо применять последовательно две (или больше) идеализации для одного единственного понятия. То одна, то другая будет более подходящей: иногда (в случае, о котором мы говорили в предыдущем разделе) можно считать, что одна из двух точно описывает явление. Однако этот случай будет редким исключением. Вообще же говоря, мы не можем избежать привлечения двух идеальных образов.
Если глубоко вникнуть в очень сложную мысль знаменитого физика, то это поистине одна из самых оригинальных идей, которые внушила Бору квантовая физика. Можно попытаться распространить область приложения этих философских идей за пределы физики, например исследовать, как это сделал сам Бор, не может ли понятие дополнительности найти важное применение в биологии, в понимании двойственности физико-химического и специфически жизненного аспекта в явлениях живой природы. Мы могли бы исследовать также вопрос о том, не окажутся ли все эти идеализации тем менее применимыми к реальной действительности, чем более они совершенны. Не имея склонности к парадоксам, можно утверждать, вопреки Декарту, что нет ничего более обманчивого, чем ясная и отчетливая идея. Однако разумнее остановиться у этой опасной черты и вернуться к физике.
Несомненно, конечно, что наши понятия пространства и времени даже после их углубления теорией относительности нельзя строго применять к описанию атомных явлений. Существование кванта действия обнаружило совершенно непредвиденную связь между геометрией и динамикой: оказывается, что возможность локализации физических процессов в геометрическом пространстве зависит от их динамического состояния. Общая теория относительности уже научила нас рассматривать локальные свойства пространства-времени в зависимости от распределения вещества во Вселенной. Однако существование квантов требует гораздо более глубокого преобразования и больше не позволяет нам представлять движение физического объекта вдоль определенной линии в пространстве-времени (мировой линии). Теперь уже нельзя определить состояние движения, исходя из кривой, изображающей последовательные положения объекта в пространстве с течением времени. Теперь нужно рассматривать динамическое состояние не как следствие пространственно-временной локализации, а как независимый и дополнительный аспект физической реальности.
Действительно, понятия пространства и времени взяты из нашего повседневного опыта и справедливы лишь для явлений большого масштаба. Нужно было бы заменить их другими понятиями, играющими фундаментальную роль в микропроцессах, которые бы асимптотически переходили при переходе от элементарных процессов к наблюдаемым явлениям обычного масштаба в привычные понятия пространства и времени. Стоит ли говорить, что это очень трудная задача? Было бы удивительно, если бы оказалось возможным когда-нибудь исключить из физической теории понятия, представляющие самую основу нашей повседневной жизни. Правда, история науки обнаруживает удивительную плодотворность человеческой мысли и не стоит терять надежды. Однако, пока мы не добились успеха в распространении наших представлений в указанном направлении, мы должны стараться с большими или меньшими трудностями втиснуть микроскопические явления в рамки понятий пространства и времени, хотя нас все время будет беспокоить чувство, что мы пытаемся втиснуть алмаз в оправу, которая ему не подходит.
Бор исходил из идеи, что электрон можно описать с помощью корпускулярной и волновой картины. Удивительно, каким образом два столь различных описания, можно сказать, столь противоречащих Друг Другу, можно использовать одновременно. Он показал, что это можно сделать только потому, что соотношения неопределенности – следствие существования кванта действия – не позволяют вступить этим двум образам в прямое противоречие. Чем более стремятся уточнить в процессе наблюдений одну картину, тем более смутной становится другая.
Когда длина волны электрона такова, что существенную роль может играть явление интерференции, его нельзя больше считать локализованным и использовать корпускулярные представления. Наоборот, когда электрон строго локализован, его интерференционные свойства исчезают и его нельзя больше описывать с волновой точки зрения.
Волновые и корпускулярные свойства никогда не вступают в конфликт, ибо они никогда не существуют одновременно. Мы пребываем в постоянном ожидании борьбы между волной и частицей, но ее никогда не происходит, так как никогда оба противника не появляются вместе. Понятие электрон, так же как и другие элементарные физические понятия, имеет, таким образом, два противоречивых аспекта, к которым, однако, нужно обращаться по очереди, чтобы объяснить все его свойства. Они подобны двум сторонам одного предмета, которые никогда нельзя увидеть одновременно, но которые, однако, нужно осмотреть по очереди, чтобы полностью описать этот предмет. Эти два аспекта Бор и назвал дополнительными, понимая под этим, что они, с одной стороны, противоречат друг другу, с другой – друг друга дополняют. Оказывается, что это понятие дополнительности играет важную роль в чисто философской доктрине.
Действительно, совсем не очевидно, что мы можем описать физические явления с помощью одной единственной картины или одного единственного представления нашего ума. Наши картины и представления мы образуем, черпая вдохновение из нашего повседневного опыта. Из него мы извлекаем определенные понятия, а затем уже, исходя из них, придумываем путем упрощения и абстрагирования некоторые простые картины, некоторые, по-видимому, ясные понятия, которые, наконец, пытаемся использовать для объяснения явлений. Таковы понятия строго локализованной частицы, строго монохроматической волны. Однако вполне возможно, что эту идеализацию, чрезмерно упрощенный и весьма грубый, по выражению Бора, продукт нашего мозга, нельзя никогда строго применять к реальным процессам. Чтобы описать всю совокупность реального мира, возможно, необходимо применять последовательно две (или больше) идеализации для одного единственного понятия. То одна, то другая будет более подходящей: иногда (в случае, о котором мы говорили в предыдущем разделе) можно считать, что одна из двух точно описывает явление. Однако этот случай будет редким исключением. Вообще же говоря, мы не можем избежать привлечения двух идеальных образов.
Если глубоко вникнуть в очень сложную мысль знаменитого физика, то это поистине одна из самых оригинальных идей, которые внушила Бору квантовая физика. Можно попытаться распространить область приложения этих философских идей за пределы физики, например исследовать, как это сделал сам Бор, не может ли понятие дополнительности найти важное применение в биологии, в понимании двойственности физико-химического и специфически жизненного аспекта в явлениях живой природы. Мы могли бы исследовать также вопрос о том, не окажутся ли все эти идеализации тем менее применимыми к реальной действительности, чем более они совершенны. Не имея склонности к парадоксам, можно утверждать, вопреки Декарту, что нет ничего более обманчивого, чем ясная и отчетливая идея. Однако разумнее остановиться у этой опасной черты и вернуться к физике.
Несомненно, конечно, что наши понятия пространства и времени даже после их углубления теорией относительности нельзя строго применять к описанию атомных явлений. Существование кванта действия обнаружило совершенно непредвиденную связь между геометрией и динамикой: оказывается, что возможность локализации физических процессов в геометрическом пространстве зависит от их динамического состояния. Общая теория относительности уже научила нас рассматривать локальные свойства пространства-времени в зависимости от распределения вещества во Вселенной. Однако существование квантов требует гораздо более глубокого преобразования и больше не позволяет нам представлять движение физического объекта вдоль определенной линии в пространстве-времени (мировой линии). Теперь уже нельзя определить состояние движения, исходя из кривой, изображающей последовательные положения объекта в пространстве с течением времени. Теперь нужно рассматривать динамическое состояние не как следствие пространственно-временной локализации, а как независимый и дополнительный аспект физической реальности.
Действительно, понятия пространства и времени взяты из нашего повседневного опыта и справедливы лишь для явлений большого масштаба. Нужно было бы заменить их другими понятиями, играющими фундаментальную роль в микропроцессах, которые бы асимптотически переходили при переходе от элементарных процессов к наблюдаемым явлениям обычного масштаба в привычные понятия пространства и времени. Стоит ли говорить, что это очень трудная задача? Было бы удивительно, если бы оказалось возможным когда-нибудь исключить из физической теории понятия, представляющие самую основу нашей повседневной жизни. Правда, история науки обнаруживает удивительную плодотворность человеческой мысли и не стоит терять надежды. Однако, пока мы не добились успеха в распространении наших представлений в указанном направлении, мы должны стараться с большими или меньшими трудностями втиснуть микроскопические явления в рамки понятий пространства и времени, хотя нас все время будет беспокоить чувство, что мы пытаемся втиснуть алмаз в оправу, которая ему не подходит.
Глава XI. Спин электрона
1. Тонкая структура и магнитные аномалии
Мы изложили принципы волновой механики электрона. Теперь мы должны показать, почему, несмотря на ее успехи, эта механика в своей первоначальной форме оказалась все же несовершенной и должна претерпеть еще существенные изменения. Причина заключается в том, что волновая механика электрона в своей первоначальной форме не позволяет объяснить некоторых фактов спектроскопических и магнитных измерений, известных уже много лет, которым старая квантовая механика не могла дать объяснения.
К первой категории трудно объяснимых фактов относятся данные спектроскопии. Мы знаем, что старая квантовая теория, а вслед за ней и новая механика, успешно и с большой точностью предсказали существование большого числа спектральных линий. Однако таблицы спектральных линий, полученные на основе этих теорий, как выяснилось, оказались неспособны передать всю сложность реальных спектров. Иными словами, в оптических и рентгеновских спектрах существуют линии, которые не находят объяснения. Мы видели, что Зоммерфельд, использовав идеи теории относительности в рамках старой квантовой теории, добился успеха в объяснении тонкой структуры водородного спектра и рентгеновских спектров. Он пошел путем, который на первый взгляд выглядит вполне удовлетворительно, однако более внимательное изучение не вполне подтверждает это благоприятное впечатление: теория Зоммерфельда правильно предсказывает образование дублетов серии Бальмера и рентгеновских серий, однако их положения она указывает неправильно. Не следует думать, что кажущийся успех Зоммерфельда был чисто случайным, однако всегда чувствовалось, что в его теории отсутствует какой-то важный элемент. Ситуация далеко не прояснилась с созданием волновой механики. Наоборот, она ухудшилась. Действительно, чтобы перевести попытки Зоммерфельда на язык волновой механики, необходимо было ввести в нее элементы теории относительности. Релятивистское волновое уравнение легко было найти. Оно представляет собой естественное релятивистское обобщение уравнения Шредингера, за исключением того, что оно второго порядка по времени. Казалось, достаточно было бы применить к этому уравнению новый метод квантования, т е. найти его собственные значения, как мы снова сразу же получим формулу Зоммерфельда. Результат такого вычисления оказался разочаровывающим: полученная формула имела вид, аналогичный зоммерфельдовской, но тем не менее несколько отличный, и эта формула нисколько не лучше соответствовала экспериментальным фактам. Провал был полным: волновая механика не внесла того нового элемента, который был необходим и природа которого была к тому времени известна благодаря работам Уленбека и Гоудсмита. О них мы скажем несколько позже.
Но кроме вопросов, связанных с дублетами Зоммерфельда, возникли также другие трудности, касающиеся тонкой структуры. Так, в рентгеновских спектрах теория Зоммерфельда очень хорошо предсказывает некоторые из тонких структур, которые реально существуют, однако строение этих серий в значительной степени более сложно, чем следует из формул этой теории. Например, в рентгеновских спектрах элементов всегда имеется три L–серии, линии которых в шкале частот перекрываются. Теория же Зоммерфельда позволяет предсказать две, и только две L–серии, из нее никак не получается третья. Чтобы получить недостающие спектральные линии, Зоммерфельд впоследствии ввел наряду с двумя квантовыми числами, имеющимися в его теории, третье квантовое число, которое он назвал внутренним квантовым числом. Введение этого третьего квантового числа было совершенно эмпирическим. Всякие попытки его теоретически обосновать, предпринятые в то время, были отброшены. Не удалось добиться большего и квантовой механике. Она оказалась неспособной объяснить существование лишней серии и внутреннего квантового числа. Снова чувствовалась необходимость введения нового элемента, о котором мы говорили.
Обратимся теперь ко второй категории явлений, не нашедших своего объяснения в старой квантовой теории, – магнитным аномалиям. Мы уже отмечали существование аномального эффекта Зеемана, который одинаково безуспешно пытались объяснить и первая теория электрона Лоренца, и старая квантовая теория, и волновая механика. Причина этой общей неудачи заключается в том, что в основу объяснения эффекта Зеемана во всех трех теориях был положен один и тот же постулат. Предполагалось, что магнитные моменты, которыми могут обладать атомы, возникают лишь благодаря орбитальному движению внутриатомных электронов. Такая точка зрения предполагала, что полный момент количества движения атома обязательно должен иметь строго фиксированное отношение к его полному магнитному моменту, причем величина этого отношения зависит исключительно от отношения электрического заряда электрона к его массе. Этот вывод, одинаковый и в классической теории электрона, и в старой квантовой теории, и в волновой механике в ее первоначальной форме, привел во всех этих трех теориях к тому, что эффект Зеемана всегда должен быть нормальным, таким, какой был впервые предсказан Лоренцом и открыт экспериментально Зееманом.
Существование аномального эффекта Зеемана, так же как существование спектроскопических данных, о которых мы говорили, указывало на необходимость введения в теорию нового элемента и показывало, что этот элемент должен как-то влиять на магнитные свойства. Кроме того, непрерывно продолжались, начиная с памятного открытия Зеемана, экспериментальные исследования аномального эффекта Зеемана и эмпирические законы его были очень хорошо известны. Мы не можем здесь обсуждать эти эмпирические законы, а лишь ограничимся сообщением, что Ланде добился успеха, обобщив большое число таких законов введением в формулы старой квантовой теории некоего фактора, g-фактора Ланде, корректное, объяснение которого оставалось сомнительным. В то же время, безусловно, все эти исследования аномального эффекта Зеемана прокладывали дорогу к окончательной теории явления, так как заранее был известен точный математический вид законов, которые нужно объяснить.
К первой категории трудно объяснимых фактов относятся данные спектроскопии. Мы знаем, что старая квантовая теория, а вслед за ней и новая механика, успешно и с большой точностью предсказали существование большого числа спектральных линий. Однако таблицы спектральных линий, полученные на основе этих теорий, как выяснилось, оказались неспособны передать всю сложность реальных спектров. Иными словами, в оптических и рентгеновских спектрах существуют линии, которые не находят объяснения. Мы видели, что Зоммерфельд, использовав идеи теории относительности в рамках старой квантовой теории, добился успеха в объяснении тонкой структуры водородного спектра и рентгеновских спектров. Он пошел путем, который на первый взгляд выглядит вполне удовлетворительно, однако более внимательное изучение не вполне подтверждает это благоприятное впечатление: теория Зоммерфельда правильно предсказывает образование дублетов серии Бальмера и рентгеновских серий, однако их положения она указывает неправильно. Не следует думать, что кажущийся успех Зоммерфельда был чисто случайным, однако всегда чувствовалось, что в его теории отсутствует какой-то важный элемент. Ситуация далеко не прояснилась с созданием волновой механики. Наоборот, она ухудшилась. Действительно, чтобы перевести попытки Зоммерфельда на язык волновой механики, необходимо было ввести в нее элементы теории относительности. Релятивистское волновое уравнение легко было найти. Оно представляет собой естественное релятивистское обобщение уравнения Шредингера, за исключением того, что оно второго порядка по времени. Казалось, достаточно было бы применить к этому уравнению новый метод квантования, т е. найти его собственные значения, как мы снова сразу же получим формулу Зоммерфельда. Результат такого вычисления оказался разочаровывающим: полученная формула имела вид, аналогичный зоммерфельдовской, но тем не менее несколько отличный, и эта формула нисколько не лучше соответствовала экспериментальным фактам. Провал был полным: волновая механика не внесла того нового элемента, который был необходим и природа которого была к тому времени известна благодаря работам Уленбека и Гоудсмита. О них мы скажем несколько позже.
Но кроме вопросов, связанных с дублетами Зоммерфельда, возникли также другие трудности, касающиеся тонкой структуры. Так, в рентгеновских спектрах теория Зоммерфельда очень хорошо предсказывает некоторые из тонких структур, которые реально существуют, однако строение этих серий в значительной степени более сложно, чем следует из формул этой теории. Например, в рентгеновских спектрах элементов всегда имеется три L–серии, линии которых в шкале частот перекрываются. Теория же Зоммерфельда позволяет предсказать две, и только две L–серии, из нее никак не получается третья. Чтобы получить недостающие спектральные линии, Зоммерфельд впоследствии ввел наряду с двумя квантовыми числами, имеющимися в его теории, третье квантовое число, которое он назвал внутренним квантовым числом. Введение этого третьего квантового числа было совершенно эмпирическим. Всякие попытки его теоретически обосновать, предпринятые в то время, были отброшены. Не удалось добиться большего и квантовой механике. Она оказалась неспособной объяснить существование лишней серии и внутреннего квантового числа. Снова чувствовалась необходимость введения нового элемента, о котором мы говорили.
Обратимся теперь ко второй категории явлений, не нашедших своего объяснения в старой квантовой теории, – магнитным аномалиям. Мы уже отмечали существование аномального эффекта Зеемана, который одинаково безуспешно пытались объяснить и первая теория электрона Лоренца, и старая квантовая теория, и волновая механика. Причина этой общей неудачи заключается в том, что в основу объяснения эффекта Зеемана во всех трех теориях был положен один и тот же постулат. Предполагалось, что магнитные моменты, которыми могут обладать атомы, возникают лишь благодаря орбитальному движению внутриатомных электронов. Такая точка зрения предполагала, что полный момент количества движения атома обязательно должен иметь строго фиксированное отношение к его полному магнитному моменту, причем величина этого отношения зависит исключительно от отношения электрического заряда электрона к его массе. Этот вывод, одинаковый и в классической теории электрона, и в старой квантовой теории, и в волновой механике в ее первоначальной форме, привел во всех этих трех теориях к тому, что эффект Зеемана всегда должен быть нормальным, таким, какой был впервые предсказан Лоренцом и открыт экспериментально Зееманом.
Существование аномального эффекта Зеемана, так же как существование спектроскопических данных, о которых мы говорили, указывало на необходимость введения в теорию нового элемента и показывало, что этот элемент должен как-то влиять на магнитные свойства. Кроме того, непрерывно продолжались, начиная с памятного открытия Зеемана, экспериментальные исследования аномального эффекта Зеемана и эмпирические законы его были очень хорошо известны. Мы не можем здесь обсуждать эти эмпирические законы, а лишь ограничимся сообщением, что Ланде добился успеха, обобщив большое число таких законов введением в формулы старой квантовой теории некоего фактора, g-фактора Ланде, корректное, объяснение которого оставалось сомнительным. В то же время, безусловно, все эти исследования аномального эффекта Зеемана прокладывали дорогу к окончательной теории явления, так как заранее был известен точный математический вид законов, которые нужно объяснить.