Страница:
9. Гиалоплазма – внутренняя среда клетки. Цитоплазматические включения
Внутри клетки находится цитоплазма. Она состоит из жидкой части – гиалоплазмы (матрикса), органелл и цитоплазматиче-ских включений.
Гиалоплазма
Гиалоплазма – основное вещество цитоплазмы, заполняет все пространство между плазматической мембраной, оболочкой ядра и другими внутриклеточными структурами. Гиалоплазму можно рассматривать как сложную коллоидную систему, способную существовать в двух состояниях: золеобразном (жидком) и гелеобраз-ном, которые взаимно переходят одно в другое. В процессе этих переходов осуществляется определенная работа, затрачивается энергия. Гиалоплазма лишена какой-либо определенной организации. Химический состав гиалоплазмы: вода (90 %), белки (ферменты гликолиза, обмена сахаров, азотистых оснований, белков и липи-дов). Некоторые белки цитоплазмы образуют субъединицы, дающие начало таким органеллам, как центриоли, микрофиламенты.
Функции гиалоплазмы:
1) образование истинной внутренней среды клетки, которая объединяет все органеллы и обеспечивает их взаимодействие;
2) поддержание определенной структуры и формы клетки, создание опоры для внутреннего расположения органелл;
3) обеспечение внутриклеточного перемещения веществ и структур;
4) обеспечение адекватного обмена веществ как внутри самой клетки, так и с внешней средой.
Включения
Это относительно непостоянные компоненты цитоплазмы. Среди них выделяют:
1) запасные питательные вещества, которые используются самой клеткой в периоды недостаточного поступления питательных веществ извне (при клеточном голоде), – капли жира, гранулы крахмала или гликогена;
2) продукты, которые подлежат выделению из клетки, например, гранулы зрелого секрета в секреторных клетках (молоко в лактоцитах молочных желез);
3) балластные вещества некоторых клеток, которые не выполняют какой-либо конкретной функции (некоторые пигменты, например, липофусцин стареющих клеток).
Гиалоплазма
Гиалоплазма – основное вещество цитоплазмы, заполняет все пространство между плазматической мембраной, оболочкой ядра и другими внутриклеточными структурами. Гиалоплазму можно рассматривать как сложную коллоидную систему, способную существовать в двух состояниях: золеобразном (жидком) и гелеобраз-ном, которые взаимно переходят одно в другое. В процессе этих переходов осуществляется определенная работа, затрачивается энергия. Гиалоплазма лишена какой-либо определенной организации. Химический состав гиалоплазмы: вода (90 %), белки (ферменты гликолиза, обмена сахаров, азотистых оснований, белков и липи-дов). Некоторые белки цитоплазмы образуют субъединицы, дающие начало таким органеллам, как центриоли, микрофиламенты.
Функции гиалоплазмы:
1) образование истинной внутренней среды клетки, которая объединяет все органеллы и обеспечивает их взаимодействие;
2) поддержание определенной структуры и формы клетки, создание опоры для внутреннего расположения органелл;
3) обеспечение внутриклеточного перемещения веществ и структур;
4) обеспечение адекватного обмена веществ как внутри самой клетки, так и с внешней средой.
Включения
Это относительно непостоянные компоненты цитоплазмы. Среди них выделяют:
1) запасные питательные вещества, которые используются самой клеткой в периоды недостаточного поступления питательных веществ извне (при клеточном голоде), – капли жира, гранулы крахмала или гликогена;
2) продукты, которые подлежат выделению из клетки, например, гранулы зрелого секрета в секреторных клетках (молоко в лактоцитах молочных желез);
3) балластные вещества некоторых клеток, которые не выполняют какой-либо конкретной функции (некоторые пигменты, например, липофусцин стареющих клеток).
ЛЕКЦИЯ № 5. Неклеточные формы жизни – вирусы, бактериофаги
Вирусы – доклеточные формы жизни, которые являются облигатными внутриклеточными паразитами, т. е. могут существовать и размножаться только внутри организма хозяина. Вирусы были открыты Д. И. Ивановским в 1892 г. (он изучал вирус табачной мозаики), но доказать их существование удалось намного позднее.
Многие вирусы являются возбудителями заболеваний, таких как СПИД, коревая краснуха, эпидемический паротит (свинка), ветряная и натуральная оспа.
Вирусы имеют микроскопические размеры, многие из них способны проходить через любые фильтры. В отличие от бактерий, вирусы нельзя выращивать на питательных средах, так как вне организма они не проявляют свойств живого. Вне живого организма (хозяина) вирусы представляют собой кристаллы веществ, не имеющих никаких свойств живых систем.
Строение вирусов
Зрелые вирусные частицы называются вирионами. Фактически они представляют собой геном, покрытый сверху белковой оболочкой. Эта оболочка – капсид. Она построена из белковых молекул, защищающих генетический материал вируса от воздействия нуклеаз – ферментов, разрушающих нуклеиновые кислоты.
У некоторых вирусов поверх капсида располагается супер-капсидная оболочка, также построенная из белка. Генетический материал представлен нуклеиновой кислотой. У одних вирусов это ДНК (так называемые ДНК-овые вирусы), у других – РНК (РНК-овые вирусы).
РНК-овые вирусы также называют ретровирусами, так как для синтеза вирусных белков в этом случае необходима обратная транскрипция, которая осуществляется ферментом – обратной транскриптазой (ревертазой) и представляет собой синтез ДНК на базе РНК.
Размножение вирусов
При внедрении вируса внутрь клетки-хозяина происходит освобождение молекулы нуклеиновой кислоты от белка, поэтому в клетку попадает только чистый и незащищенный генетический материал. Если вирус ДНК, то молекула ДНК встраивается в молекулу ДНК хозяина и воспроизводится вместе с ней. Так появляются новые вирусные ДНК, неотличимые от исходных. Все процессы, протекающие в клетке, замедляются, клетка начинает работать на воспроизводство вируса. Так как вирус является облигатным паразитом, то для его жизни необходима клетка-хозяин, поэтому она не погибает в процессе размножения вируса. Гибель клетки происходит только после выхода из нее вирусных частиц.
Если это ретровирус, внутрь клетки-хозяина попадает его РНК. Она содержит гены, обеспечивающие обратную транскрипцию: на матрице РНК строится одноцепочечная молекула ДНК. Из свободных нуклеотидов достраивается комплементарная цепь, которая и встраивается в геном клетки-хозяина. С полученной ДНК информация переписывается на молекулу и-РНК, на матрице которой затем синтезируются белки ретровируса.
Бактериофаги
Это вирусы, паразитирующие на бактериях. Они играют большую роль в медицине и широко применяются при лечении гнойных заболеваний, вызванных стафилококками и др. Бактериофаги имеют сложное строение. Генетический материал находится в головке бактериофага, которая сверху покрыта белковой оболочкой (капсидом). В центре головки находится атом магния. Далее идет полый стержень, который переходит в хвостовые нити. Их функция – узнавать свой вид бактерий, осуществлять прикрепление фага к клетке. После прикрепления ДНК выдавливается в бактериальную клетку, а оболочки остаются снаружи.
Многие вирусы являются возбудителями заболеваний, таких как СПИД, коревая краснуха, эпидемический паротит (свинка), ветряная и натуральная оспа.
Вирусы имеют микроскопические размеры, многие из них способны проходить через любые фильтры. В отличие от бактерий, вирусы нельзя выращивать на питательных средах, так как вне организма они не проявляют свойств живого. Вне живого организма (хозяина) вирусы представляют собой кристаллы веществ, не имеющих никаких свойств живых систем.
Строение вирусов
Зрелые вирусные частицы называются вирионами. Фактически они представляют собой геном, покрытый сверху белковой оболочкой. Эта оболочка – капсид. Она построена из белковых молекул, защищающих генетический материал вируса от воздействия нуклеаз – ферментов, разрушающих нуклеиновые кислоты.
У некоторых вирусов поверх капсида располагается супер-капсидная оболочка, также построенная из белка. Генетический материал представлен нуклеиновой кислотой. У одних вирусов это ДНК (так называемые ДНК-овые вирусы), у других – РНК (РНК-овые вирусы).
РНК-овые вирусы также называют ретровирусами, так как для синтеза вирусных белков в этом случае необходима обратная транскрипция, которая осуществляется ферментом – обратной транскриптазой (ревертазой) и представляет собой синтез ДНК на базе РНК.
Размножение вирусов
При внедрении вируса внутрь клетки-хозяина происходит освобождение молекулы нуклеиновой кислоты от белка, поэтому в клетку попадает только чистый и незащищенный генетический материал. Если вирус ДНК, то молекула ДНК встраивается в молекулу ДНК хозяина и воспроизводится вместе с ней. Так появляются новые вирусные ДНК, неотличимые от исходных. Все процессы, протекающие в клетке, замедляются, клетка начинает работать на воспроизводство вируса. Так как вирус является облигатным паразитом, то для его жизни необходима клетка-хозяин, поэтому она не погибает в процессе размножения вируса. Гибель клетки происходит только после выхода из нее вирусных частиц.
Если это ретровирус, внутрь клетки-хозяина попадает его РНК. Она содержит гены, обеспечивающие обратную транскрипцию: на матрице РНК строится одноцепочечная молекула ДНК. Из свободных нуклеотидов достраивается комплементарная цепь, которая и встраивается в геном клетки-хозяина. С полученной ДНК информация переписывается на молекулу и-РНК, на матрице которой затем синтезируются белки ретровируса.
Бактериофаги
Это вирусы, паразитирующие на бактериях. Они играют большую роль в медицине и широко применяются при лечении гнойных заболеваний, вызванных стафилококками и др. Бактериофаги имеют сложное строение. Генетический материал находится в головке бактериофага, которая сверху покрыта белковой оболочкой (капсидом). В центре головки находится атом магния. Далее идет полый стержень, который переходит в хвостовые нити. Их функция – узнавать свой вид бактерий, осуществлять прикрепление фага к клетке. После прикрепления ДНК выдавливается в бактериальную клетку, а оболочки остаются снаружи.
ЛЕКЦИЯ № 6. Строение и функции половых клеток (гамет)
1. Общие свойства гамет
По сравнению с другими клетками гаметы выполняют уникальные функции. Они обеспечивают передачу наследственной информации между поколениями особей, что поддерживает жизнь во времени. Гаметы – это одно из направлений дифферен-цировки клеток многоклеточного организма, направленное на процесс размножения. Это высокодифференцированные клетки, ядра которых содержат всю необходимую наследственную информацию для развития нового организма.
По сравнению с соматическими клетками (эпителиальными, нервными, мышечными) гаметы имеют ряд характерных особенностей. Первое отличие – наличие в ядре гаплоидного набора хромосом, что обеспечивает воспроизведение в зиготе типичного для организмов данного вида диплоидного набора (гаметы человека, например, содержат по 23 хромосомы; при слиянии гамет после оплодотворения формируется зигота, которая содержит 46 хромосом – нормальное количество для человеческих клеток).
Второе отличие – необычное ядерно-цитоплазматическое соотношение (т. е. отношение объема ядра к объему цитоплазмы). У яйцеклеток оно снижено за счет того, что имеется много цитоплазмы, где содержится питательный материал (желток) для будущего зародыша. В сперматозоидах, наоборот, ядерно-цито-плазматическое соотношение высокое, так как мал объем цитоплазмы (почти вся клетка занята ядром). Этот факт находится в соответствии с основной функцией сперматозоида – доставкой наследственного материала к яйцеклетке.
Третье отличие – низкий уровень обмена веществ в гаметах. Их состояние похоже на анабиоз. Мужские половые клетки вообще не вступают в митоз, а женские гаметы получают эту способность только после оплодотворения (когда они уже перестают быть гаметами и становятся зиготами) или воздействия фактора, индуцирующего партеногенез.
Несмотря на наличие ряда общих черт, мужские и женские половые клетки значительно отличаются друг от друга, что обусловлено различием в выполняемых функциях.
По сравнению с соматическими клетками (эпителиальными, нервными, мышечными) гаметы имеют ряд характерных особенностей. Первое отличие – наличие в ядре гаплоидного набора хромосом, что обеспечивает воспроизведение в зиготе типичного для организмов данного вида диплоидного набора (гаметы человека, например, содержат по 23 хромосомы; при слиянии гамет после оплодотворения формируется зигота, которая содержит 46 хромосом – нормальное количество для человеческих клеток).
Второе отличие – необычное ядерно-цитоплазматическое соотношение (т. е. отношение объема ядра к объему цитоплазмы). У яйцеклеток оно снижено за счет того, что имеется много цитоплазмы, где содержится питательный материал (желток) для будущего зародыша. В сперматозоидах, наоборот, ядерно-цито-плазматическое соотношение высокое, так как мал объем цитоплазмы (почти вся клетка занята ядром). Этот факт находится в соответствии с основной функцией сперматозоида – доставкой наследственного материала к яйцеклетке.
Третье отличие – низкий уровень обмена веществ в гаметах. Их состояние похоже на анабиоз. Мужские половые клетки вообще не вступают в митоз, а женские гаметы получают эту способность только после оплодотворения (когда они уже перестают быть гаметами и становятся зиготами) или воздействия фактора, индуцирующего партеногенез.
Несмотря на наличие ряда общих черт, мужские и женские половые клетки значительно отличаются друг от друга, что обусловлено различием в выполняемых функциях.
2. Строение и функции яйцеклетки
Яйцеклетка – крупная неподвижная клетка, обладающая за-па-сом питательных веществ. Размеры женской яйцеклетки составляют 150–170 мкм (гораздо больше мужских сперматозоидов, размер которых 50–70 мкм). Функции питательных веществ различны. Их выполняют:
1) компоненты, нужные для процессов биосинтеза белка (ферменты, рибосомы, м-РНК, т-РНК и их предшественники);
2) специфические регуляторные вещества, которые контролируют все процессы, происходящие с яйцеклеткой, например, фактор дезинтеграции ядерной оболочки (с этого процесса начинается профаза 1 мейотического деления), фактор, преобразующий ядро сперматозоида в пронуклеус перед фазой дробления, фактор, ответственный за блок мейоза на стадии метафазы II и др.;
3) желток, в состав которого входят белки, фосфолипиды, различные жиры, минеральные соли. Именно он обеспечивает питание зародыша в эмбриональном периоде.
По количеству желтка в яйцеклетке она может быть алеци-тальной, т. е. содержащей ничтожно малое количество желтка, поли-, мезо– или олиголецитальной. Человеческая яйцеклетка относится к алецитальным. Это обусловлено тем, что человеческий зародыш очень быстро переходит от гистиотрофного типа питания к гематотрофному. Также человеческая яйцеклетка по распределению желтка является изолецитальной: при ничтожно малом количестве желтка он равномерно располагается в клетке, поэтому ядро оказывается примерно в центре.
Яйцеклетка имеет оболочки, которые выполняют защитные функции, препятствуют проникновению в яйцеклетку более одного сперматозоида, способствуют имплантации зародыша в стенку матки и определяют первичную форму зародыша.
Яйцеклетка обычно имеет шарообразную или слегка вытянутую форму, содержит набор тех типичных органелл, что и любая клетка. Как и другие клетки, яйцеклетка отграничена плазматической мембраной, но снаружи она окружена блестящей оболочкой, состоящей из мукополисахаридов (получила свое название за оптические свойства). Блестящая оболочка покрыта лучистым венцом, или фолликулярной оболочкой, которая представляет собой микроворсинки фолликулярных клеток. Она играет защитную роль, питает яйцеклетку.
Яйцеклетка лишена аппарата активного движения. За 4–7 суток она проходит по яйцеводу до полости матки расстояние, которое примерно составляет 10 см. Для яйцеклетки характерна плазматическая сегрегация. Это означает, что после оплодотворения в еще не дробящемся яйце происходит такое равномерное распределение цитоплазмы, что в дальнейшем клетки зачатков будущих тканей получают ее в определенном закономерном количестве.
1) компоненты, нужные для процессов биосинтеза белка (ферменты, рибосомы, м-РНК, т-РНК и их предшественники);
2) специфические регуляторные вещества, которые контролируют все процессы, происходящие с яйцеклеткой, например, фактор дезинтеграции ядерной оболочки (с этого процесса начинается профаза 1 мейотического деления), фактор, преобразующий ядро сперматозоида в пронуклеус перед фазой дробления, фактор, ответственный за блок мейоза на стадии метафазы II и др.;
3) желток, в состав которого входят белки, фосфолипиды, различные жиры, минеральные соли. Именно он обеспечивает питание зародыша в эмбриональном периоде.
По количеству желтка в яйцеклетке она может быть алеци-тальной, т. е. содержащей ничтожно малое количество желтка, поли-, мезо– или олиголецитальной. Человеческая яйцеклетка относится к алецитальным. Это обусловлено тем, что человеческий зародыш очень быстро переходит от гистиотрофного типа питания к гематотрофному. Также человеческая яйцеклетка по распределению желтка является изолецитальной: при ничтожно малом количестве желтка он равномерно располагается в клетке, поэтому ядро оказывается примерно в центре.
Яйцеклетка имеет оболочки, которые выполняют защитные функции, препятствуют проникновению в яйцеклетку более одного сперматозоида, способствуют имплантации зародыша в стенку матки и определяют первичную форму зародыша.
Яйцеклетка обычно имеет шарообразную или слегка вытянутую форму, содержит набор тех типичных органелл, что и любая клетка. Как и другие клетки, яйцеклетка отграничена плазматической мембраной, но снаружи она окружена блестящей оболочкой, состоящей из мукополисахаридов (получила свое название за оптические свойства). Блестящая оболочка покрыта лучистым венцом, или фолликулярной оболочкой, которая представляет собой микроворсинки фолликулярных клеток. Она играет защитную роль, питает яйцеклетку.
Яйцеклетка лишена аппарата активного движения. За 4–7 суток она проходит по яйцеводу до полости матки расстояние, которое примерно составляет 10 см. Для яйцеклетки характерна плазматическая сегрегация. Это означает, что после оплодотворения в еще не дробящемся яйце происходит такое равномерное распределение цитоплазмы, что в дальнейшем клетки зачатков будущих тканей получают ее в определенном закономерном количестве.
3. Строение и функции сперматозоидов
Сперматозоид – это мужская половая клетка (гамета). Он обладает способностью к движению, чем в известной мере обеспечивается возможность встречи разнополых гамет. Размеры сперматозоида микроскопические: длина этой клетки у человека составляет 50–70 мкм (самые крупные они у тритона – до 500 мкм). Все сперматозоиды несут отрицательный электрический заряд, что препятствует их склеиванию в сперме. Количество сперматозоидов, образующихся у особи мужского пола, всегда колоссально. Например, эякулят здорового мужчины содержит около 200 млн сперматозоидов (жеребец выделяет около 10 млрд сперматозоидов).
Строение сперматозоида
По морфологии сперматозоиды резко отличаются от всех других клеток, но все основные органеллы в них имеются. Каждый сперматозоид имеет головку, шейку, промежуточный отдел и хвост в виде жгутика. Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина. На переднем конце головки (на ее вершине) располагается акро-сома, которая представляет собой видоизмененный комплекс Гольджи. Здесь происходит образование гиалуронидазы – фермента, который способен расщеплять мукополисахариды оболочек яйцеклетки, что делает возможным проникновение сперматозоида внутрь яйцеклетки. В шейке сперматозоида расположена митохондрия, которая имеет спиральное строение. Она необходима для выработки энергии, которая тратится на активные движения сперматозоида по направлению к яйцеклетке. Большую часть энергии сперматозоид получает в виде фруктозы, которой очень богат эякулят. На границе головки и шейки располагается цент-риоль. На поперечном срезе жгутика видны 9 пар микротрубочек, еще 2 пары есть в центре. Жгутик является органоидом активного движения. В семенной жидкости мужская гамета развивает скорость, равную 5 см/ч (что применительно к ее размерам примерно в 1,5 раза быстрее, чем скорость пловца-олимпийца).
При электронной микроскопии сперматозоида обнаружено, что цитоплазма головки имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоида к неблагоприятным условиям внешней среды (например, к кислой среде женских половых путей). Установлено, что сперматозоиды более устойчивы к воздействию ионизирующей радиации, чем незрелые яйцеклетки.
Сперматозоиды некоторых видов животных имеют акросом-ный аппарат, который выбрасывает длинную и тонкую нить для захвата яйцеклетки.
Установлено, что оболочка сперматозоида имеет специфические рецепторы, которые узнают химические вещества, выделяемые яйцеклеткой. Поэтому сперматозоиды человека способны к направленному движению по направлению к яйцеклетке (это называется положительным хемотаксисом).
При оплодотворении в яйцеклетку проникает только головка сперматозоида, несущая наследственный аппарат, а остальные части остаются снаружи.
Строение сперматозоида
По морфологии сперматозоиды резко отличаются от всех других клеток, но все основные органеллы в них имеются. Каждый сперматозоид имеет головку, шейку, промежуточный отдел и хвост в виде жгутика. Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина. На переднем конце головки (на ее вершине) располагается акро-сома, которая представляет собой видоизмененный комплекс Гольджи. Здесь происходит образование гиалуронидазы – фермента, который способен расщеплять мукополисахариды оболочек яйцеклетки, что делает возможным проникновение сперматозоида внутрь яйцеклетки. В шейке сперматозоида расположена митохондрия, которая имеет спиральное строение. Она необходима для выработки энергии, которая тратится на активные движения сперматозоида по направлению к яйцеклетке. Большую часть энергии сперматозоид получает в виде фруктозы, которой очень богат эякулят. На границе головки и шейки располагается цент-риоль. На поперечном срезе жгутика видны 9 пар микротрубочек, еще 2 пары есть в центре. Жгутик является органоидом активного движения. В семенной жидкости мужская гамета развивает скорость, равную 5 см/ч (что применительно к ее размерам примерно в 1,5 раза быстрее, чем скорость пловца-олимпийца).
При электронной микроскопии сперматозоида обнаружено, что цитоплазма головки имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоида к неблагоприятным условиям внешней среды (например, к кислой среде женских половых путей). Установлено, что сперматозоиды более устойчивы к воздействию ионизирующей радиации, чем незрелые яйцеклетки.
Сперматозоиды некоторых видов животных имеют акросом-ный аппарат, который выбрасывает длинную и тонкую нить для захвата яйцеклетки.
Установлено, что оболочка сперматозоида имеет специфические рецепторы, которые узнают химические вещества, выделяемые яйцеклеткой. Поэтому сперматозоиды человека способны к направленному движению по направлению к яйцеклетке (это называется положительным хемотаксисом).
При оплодотворении в яйцеклетку проникает только головка сперматозоида, несущая наследственный аппарат, а остальные части остаются снаружи.
4. Оплодотворение
Оплодотворение – это процесс слияния половых клеток. В результате оплодотворения образуется диплоидная клетка – зигота, это начальный этап развития нового организма. Оплодотворению предшествует выделение половых продуктов, т. е. осеменение. Существует два типа осеменения:
1) наружное. Половые продукты выделяются во внешнюю среду (у многих пресноводных и морских животных);
2) внутреннее. Самец выделяет половые продукты в половые пути самки (у млекопитающих, человека).
Оплодотворение состоит из трех последовательных стадий: сближения гамет, активации яйцеклетки, слияния гамет (синга-мии), акросомной реакции.
Сближение гамет
С)бусловлено совокупностью факторов, повышающих вероятность встречи гамет: половой активностью самцов и самок, скоординированной во времени, соответствующим половым поведением, избыточной продукцией сперматозоидов, крупными размерами яйцеклеток. Ведущий фактор – выделение гаметами гамонов (специфических веществ, способствующих сближению и слиянию половых клеток). Яйцеклетка выделяет гиногамоны, которые обусловливают направленное движение к ней сперматозоидов (хемотаксис), а сперматозоиды выделяют андрогамоны.
Для млекопитающих также важна длительность пребывания гамет в половых путях самки. Это необходимо для того, чтобы сперматозоиды приобрели оплодотворяющую способность (происходит так называемая капацитация, т. е. способность к акросом-ной реакции).
Акросомная реакция
Акросомная реакция – это выброс протеолитических ферментов (главным образом, гиалуронидазы), которые содержатся в акросоме сперматозоида. Под их влиянием происходит растворение оболочек яйцеклетки в месте наибольшего скопления сперматозоидов. Снаружи оказывается участок цитоплазмы яйцеклетки (так называемый бугорок оплодотворения), к которому прикрепляется только один из сперматозоидов. После этого плазматические мембраны яйцеклетки и сперматозоида сливаются, образуется цитоплазматический мостик, сливаются цитоплазмы обеих половых клеток. Далее в цитоплазму яйцеклетки проникают ядро и центриоль сперматозоида, а его мембрана встраивается в мембрану яйцеклетки. Хвостовая часть сперматозоида отделяется и рассасывается, не играя какой-либо существенной роли в дальнейшем развитии зародыша.
Активация яйцеклетки
Активация яйцеклетки происходит закономерно в результате контакта ее со сперматозоидом. Имеет место кортикальная реакция, защищающая яйцеклетку от полиспермии, т. е. проникновения в нее более одного сперматозоида. Она заключается в том, что происходят отслойка и затвердевание желточной оболочки под влиянием специфических ферментов, выделяющихся из кортикальных гранул.
В яйцеклетке изменяется обмен веществ, повышается потребность в кислороде, начинается активный синтез питательных веществ. Завершается активация яйцеклетки началом трансляционного этапа биосинтеза белка (так как м-РНК, т-РНК, рибосомы и энергия в виде макроэргов были запасены еще в овогенезе).
Слияние гамет
У большинства млекопитающих на момент встречи яйцеклетки со сперматозоидом она находится в метафазе II, так как процесс мейоза в ней заблокирован с помощью специфического фактора. У трех родов млекопитающих (лошадей, собак и лисиц) блок осуществляется на стадии диакинеза. Этот блок снимается только после того, как в яйцеклетку проникает ядро сперматозоида. В то время как в яйцеклетке завершается мейоз, ядро проникшего в нее сперматозоида приобретает другой вид – сначала интерфазного, а затем и профазного ядра. Ядро сперматозоида превращается в мужской пронуклеус: в нем удваивается количество ДНК, набор хромосом в нем соответствует n2c (содержит гаплоидный набор редуплицированных хромосом).
После завершения мейоза ядро превращается в женский про-нуклеус и также содержит количество наследственного материала, соответствующее n2c.
Оба пронуклеуса проделывают сложные перемещения внутри будущей зиготы, сближаются и сливаются, образуя синкарион (содержит диплоидный набор хромосом) с общей метафазной пластинкой. Затем формируется общая мембрана, возникает зигота. Первое митотическое деление зиготы приводит к образованию двух первых клеток зародыша (бластомеров), каждая из которых несет диплоидный набор хромосом 2n2c.
1) наружное. Половые продукты выделяются во внешнюю среду (у многих пресноводных и морских животных);
2) внутреннее. Самец выделяет половые продукты в половые пути самки (у млекопитающих, человека).
Оплодотворение состоит из трех последовательных стадий: сближения гамет, активации яйцеклетки, слияния гамет (синга-мии), акросомной реакции.
Сближение гамет
С)бусловлено совокупностью факторов, повышающих вероятность встречи гамет: половой активностью самцов и самок, скоординированной во времени, соответствующим половым поведением, избыточной продукцией сперматозоидов, крупными размерами яйцеклеток. Ведущий фактор – выделение гаметами гамонов (специфических веществ, способствующих сближению и слиянию половых клеток). Яйцеклетка выделяет гиногамоны, которые обусловливают направленное движение к ней сперматозоидов (хемотаксис), а сперматозоиды выделяют андрогамоны.
Для млекопитающих также важна длительность пребывания гамет в половых путях самки. Это необходимо для того, чтобы сперматозоиды приобрели оплодотворяющую способность (происходит так называемая капацитация, т. е. способность к акросом-ной реакции).
Акросомная реакция
Акросомная реакция – это выброс протеолитических ферментов (главным образом, гиалуронидазы), которые содержатся в акросоме сперматозоида. Под их влиянием происходит растворение оболочек яйцеклетки в месте наибольшего скопления сперматозоидов. Снаружи оказывается участок цитоплазмы яйцеклетки (так называемый бугорок оплодотворения), к которому прикрепляется только один из сперматозоидов. После этого плазматические мембраны яйцеклетки и сперматозоида сливаются, образуется цитоплазматический мостик, сливаются цитоплазмы обеих половых клеток. Далее в цитоплазму яйцеклетки проникают ядро и центриоль сперматозоида, а его мембрана встраивается в мембрану яйцеклетки. Хвостовая часть сперматозоида отделяется и рассасывается, не играя какой-либо существенной роли в дальнейшем развитии зародыша.
Активация яйцеклетки
Активация яйцеклетки происходит закономерно в результате контакта ее со сперматозоидом. Имеет место кортикальная реакция, защищающая яйцеклетку от полиспермии, т. е. проникновения в нее более одного сперматозоида. Она заключается в том, что происходят отслойка и затвердевание желточной оболочки под влиянием специфических ферментов, выделяющихся из кортикальных гранул.
В яйцеклетке изменяется обмен веществ, повышается потребность в кислороде, начинается активный синтез питательных веществ. Завершается активация яйцеклетки началом трансляционного этапа биосинтеза белка (так как м-РНК, т-РНК, рибосомы и энергия в виде макроэргов были запасены еще в овогенезе).
Слияние гамет
У большинства млекопитающих на момент встречи яйцеклетки со сперматозоидом она находится в метафазе II, так как процесс мейоза в ней заблокирован с помощью специфического фактора. У трех родов млекопитающих (лошадей, собак и лисиц) блок осуществляется на стадии диакинеза. Этот блок снимается только после того, как в яйцеклетку проникает ядро сперматозоида. В то время как в яйцеклетке завершается мейоз, ядро проникшего в нее сперматозоида приобретает другой вид – сначала интерфазного, а затем и профазного ядра. Ядро сперматозоида превращается в мужской пронуклеус: в нем удваивается количество ДНК, набор хромосом в нем соответствует n2c (содержит гаплоидный набор редуплицированных хромосом).
После завершения мейоза ядро превращается в женский про-нуклеус и также содержит количество наследственного материала, соответствующее n2c.
Оба пронуклеуса проделывают сложные перемещения внутри будущей зиготы, сближаются и сливаются, образуя синкарион (содержит диплоидный набор хромосом) с общей метафазной пластинкой. Затем формируется общая мембрана, возникает зигота. Первое митотическое деление зиготы приводит к образованию двух первых клеток зародыша (бластомеров), каждая из которых несет диплоидный набор хромосом 2n2c.
ЛЕКЦИЯ № 7. Бесполое размножение. Формы и биологическая роль
Размножение – универсальное свойство всех живых организмов, способность воспроизводить себе подобных. С его помощью происходит сохранение во времени видов и жизни в целом. Оно обеспечивает смену поколений. Жизнь клеток, составляющих организм, намного короче жизни самого организма, поэтому его существование поддерживается только за счет размножения клеток. Различают два способа размножения – бесполое и половое. При бесполом размножении главным клеточным механизмом, обеспечивающим увеличение числа клеток, является митоз. Родителем является одна особь. Потомство представляет собой точную генетическую копию родительского материала.
1. Биологическая роль бесполого размножения
Поддержание наибольшей приспособленности в малоизменяю-щихся условиях окружающей среды. Оно усиливает значение стабилизирующего естественного отбора; обеспечивает быстрые темпы размножения; используется в практической селекции. Бесполое размножение встречается как у одно-, так и у многоклеточных организмов. У одноклеточных эукариот бесполое размножение представляет собой митотическое деление, у прокариот – деление ну-клеоида, у многоклеточных форм – вегетативное размножение.
2. Формы бесполого размножения
У одноклеточных организмов выделяют следующие формы бесполого размножения: деление, эндогонию, шизогонию (множественное деление) и почкование, спорообразование.
Деление характерно для таких одноклеточных, как амебы, инфузории, жгутиковые. Сначала происходит митотическое деление ядра, затем цитоплазма делится пополам все более углубляющейся перетяжкой. При этом дочерние клетки получают примерно одинаковое количество цитоплазмы и органоидов.
Эндогония (внутреннее почкование) характерно для токсо-плазмы. При образовании двух дочерних особей материнская дает лишь двух потомков. Но может быть внутреннее множественное почкование, что приведет к шизогонии.
Шизогония развивается на основе предыдущей формы. Встречается у споровиков (малярийного плазмодия) и др. Происходит многократное деление ядра без цитокинеза. Затем вся цитоплазма разделяется на части, которые обособляются вокруг новых ядер. Из одной клетки образуется очень много дочерних.
Почкование (у бактерий, дрожжевых грибов и др.). При этом на материнской клетке первоначально образуется небольшой бугорок, содержащий дочернее ядро (нуклеоид). Почка растет, достигает размеров материнской особи, а затем отделяется от нее.
Спорообразование (у высших споровых растений: мхов, папоротников, плаунов, хвощей, водорослей). Дочерний организм развивается из специализированных клеток – спор, содержащих гаплоидный набор хромосом. В царстве бактерий тоже встречается спорообразование. Cпоры, покрытые плотной оболочкой, защищающей ее от неблагоприятных воздействий окружающей среды, не способ размножения, а способ переживания неблагоприятных условий.
Деление характерно для таких одноклеточных, как амебы, инфузории, жгутиковые. Сначала происходит митотическое деление ядра, затем цитоплазма делится пополам все более углубляющейся перетяжкой. При этом дочерние клетки получают примерно одинаковое количество цитоплазмы и органоидов.
Эндогония (внутреннее почкование) характерно для токсо-плазмы. При образовании двух дочерних особей материнская дает лишь двух потомков. Но может быть внутреннее множественное почкование, что приведет к шизогонии.
Шизогония развивается на основе предыдущей формы. Встречается у споровиков (малярийного плазмодия) и др. Происходит многократное деление ядра без цитокинеза. Затем вся цитоплазма разделяется на части, которые обособляются вокруг новых ядер. Из одной клетки образуется очень много дочерних.
Почкование (у бактерий, дрожжевых грибов и др.). При этом на материнской клетке первоначально образуется небольшой бугорок, содержащий дочернее ядро (нуклеоид). Почка растет, достигает размеров материнской особи, а затем отделяется от нее.
Спорообразование (у высших споровых растений: мхов, папоротников, плаунов, хвощей, водорослей). Дочерний организм развивается из специализированных клеток – спор, содержащих гаплоидный набор хромосом. В царстве бактерий тоже встречается спорообразование. Cпоры, покрытые плотной оболочкой, защищающей ее от неблагоприятных воздействий окружающей среды, не способ размножения, а способ переживания неблагоприятных условий.
3. Вегетативная форма размножения
Характерна для многоклеточных организмов. При этом новый организм образуется из группы клеток, отделяющихся от материнского организма. Растения размножаются клубнями, корневищами, луковицами, корнеклубнями, корнеплодами, корневой порослью, отводками, черенками, выводковыми почками, листьями. У животных вегетативное размножение встречается у самых низкоорганизованных форм. У губок и гидр оно идет путем почкования. За счет размножения группы клеток на материнском теле образуется выпячивание (почка), состоящее из клеток экто– и эндодермы. Почка постепенно увеличивается, на ней возникают щупальца, и отделяется от материнского организма. Ресничные черви делятся на две части, и в каждой из них восстанавливаются недостающие органы за счет неупорядоченного деления клеток. Кольчатые черви могут восстанавливать целый организм из одного членика. Этот вид деления лежит в основе регенерации – восстановления утраченных тканей и частей тела (у кольчатых червей, ящериц, саламандр). Особая форма бесполого размножения – стробиляция (у полипов). Полипоид-ный организм довольно интенсивно растет, при достижении определенных размеров начинает делиться на дочерние особи. В это время он напоминает стопку тарелок. Образовавшиеся медузы отрываются и начинают самостоятельную жизнь.
Конец бесплатного ознакомительного фрагмента