Страница:
Достижения нанотехнологии
В Стэнфордском университете удалось создать транзистор из одностенных углеродных нанотрубок и некоторых органических материалов. Эриком Дрекслером был предложен проект механокомпьютера – компьютера, в котором все логические операции, хранение и обработка информации производятся с помощью последовательных движений системы стержней (как в первых счетных машинах Блеза Паскаля). Размеры нанокомпьютера на механотранзисторах составляют всего 400х400х400 нм. Если представить себе такой механокомпьютер в сравнении с красной кровяной клеткой (эритроцитом), то последняя будет больше в 10–15 раз! При этом вычислительная мощность нанокомпьютера – 1016 операций в секунду, что можно сравнить с производительностью персоналки на Pentium II с тактовой частотой 1–1,3 ГГц.
В перспективе нас ждет появление гибких компьютеров, которые можно складывать как угодно, и пленочных экранов на нанотрубках. Симбиоз наноэлектроники и достижений биотехнологии позволит делать такие имплантаты, что не снились даже фантастам. Формы жизни, созданные на биоэлектронной основе, будут, в принципе, универсальны – они смогут приспособиться как к вакууму, так и к агрессивным средам, и при этом размножаться. Искусственный интеллект, скорее всего, будет реализован именно в наноэру.
Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы дисплеи, работающие на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя.
В университете Райса построили модель автомобиля, состоящую из одной молекулы. Шасси автомобиля имеет две пары колес в виде сферических молекул фуллерена. На них наномашина может перемещаться по идеально гладкой поверхности золотого кристалла. Ее диаметр – около 4 нанометров, роль «колес» выполняют фрагменты фуллерена-60, а «шасси» и «ось» – химические связи, которые содержат атомы углерода и водорода. Синтез автомобиля длился около полугода. Размер автомобиля составляет всего 4 нанометра. Исследователи снабдили этот автомобиль двигателем, который состоит из молекулы, меняющей свою форму, когда на нее падает квант света. За счет этих изменений автомобиль может самостоятельно двигаться по поверхности. За движением автомобиля наблюдали с помощью туннельного микроскопа. Это не просто экзотика науки. Это прототипы нанороботов. Ожидается, что уже к 2025 году появятся первые нанороботы.
В перспективе нас ждет появление гибких компьютеров, которые можно складывать как угодно, и пленочных экранов на нанотрубках. Симбиоз наноэлектроники и достижений биотехнологии позволит делать такие имплантаты, что не снились даже фантастам. Формы жизни, созданные на биоэлектронной основе, будут, в принципе, универсальны – они смогут приспособиться как к вакууму, так и к агрессивным средам, и при этом размножаться. Искусственный интеллект, скорее всего, будет реализован именно в наноэру.
Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы дисплеи, работающие на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя.
В университете Райса построили модель автомобиля, состоящую из одной молекулы. Шасси автомобиля имеет две пары колес в виде сферических молекул фуллерена. На них наномашина может перемещаться по идеально гладкой поверхности золотого кристалла. Ее диаметр – около 4 нанометров, роль «колес» выполняют фрагменты фуллерена-60, а «шасси» и «ось» – химические связи, которые содержат атомы углерода и водорода. Синтез автомобиля длился около полугода. Размер автомобиля составляет всего 4 нанометра. Исследователи снабдили этот автомобиль двигателем, который состоит из молекулы, меняющей свою форму, когда на нее падает квант света. За счет этих изменений автомобиль может самостоятельно двигаться по поверхности. За движением автомобиля наблюдали с помощью туннельного микроскопа. Это не просто экзотика науки. Это прототипы нанороботов. Ожидается, что уже к 2025 году появятся первые нанороботы.
Нанотехнологи и армия
Нанотехнологии произведут переворот в военном деле. Огнестрельное оружие будет иметь самонаводящиеся (умные) пули. Появятся сверхмалые летающие аппараты размером с пчелу или муху. Средствам обычных ПВО будет невозможно уследить за такими аппаратами. Кроме того, в мире интенсивно ведутся работы по созданию интеллектуальной, непромокаемой и бактерицидной ткани с нанопокрытием, нанобронежилетов, искусственных мускулов.
Гуманитарные последствия
Сегодня каждый покупатель товара платит за его проектирование, материалы, труд рабочих, стоимость производства, транспортировку, хранение и организацию продаж. Наномашины будут производить основной диапазон продукции в любое время и в любом месте. Многие производства будут неконкурентоспособными и отомрут, возрастет безработица. Гибкость нанотехнологического производства и возможность выпуска высококачественной продукции означает, что обычные товары не смогут конкурировать с продукцией нанофабрик. Нанотехнологии позволят организовать промышленное производство даже в регионах, где нет минеральных ресурсов.
По прогнозам специалистов, уже в ближайшем будущем появятся медицинские устройства размером с горошину. Такое устройство достаточно будет наложить на рану, и оно проведет анализ крови, определит, какие медикаменты необходимо использовать, и впрыснет их в кровь. Медицинские нанороботы будут доставлять лекарства в пораженные болезнью клетки организма, очищать сосуды и капилляры, делать операции. Теоретически нанотехнологии способны обеспечить человеку неограниченное долголетие и бессмертие за счет того, что наномедицина сможет бесконечно восстанавливать отмирающие клетки.
Теоретически возможно, что нанороботы будут способны конструировать из готовых атомов любой предмет. Нанотехнологии произведут революцию в сельском хозяйстве. Молекулярные роботы способны будут производить пищу, заменив сельскохозяйственные растения и животных. К примеру, теоретически возможно производить молоко и масло прямо из травы, минуя корову, производить мясо без животных из природного растительного сырья. Нанотехнологии улучшат состояние окружающей среды, так как практически безотходны. Неограниченные перспективы открываются в области космических технологий. Нанороботы способны реализовать мечту людей о колонизации иных планет. Они будут преобразовывать атмосферу и почву, создавать среду обитания, необходимую для жизни человека.
По прогнозам специалистов, уже в ближайшем будущем появятся медицинские устройства размером с горошину. Такое устройство достаточно будет наложить на рану, и оно проведет анализ крови, определит, какие медикаменты необходимо использовать, и впрыснет их в кровь. Медицинские нанороботы будут доставлять лекарства в пораженные болезнью клетки организма, очищать сосуды и капилляры, делать операции. Теоретически нанотехнологии способны обеспечить человеку неограниченное долголетие и бессмертие за счет того, что наномедицина сможет бесконечно восстанавливать отмирающие клетки.
Теоретически возможно, что нанороботы будут способны конструировать из готовых атомов любой предмет. Нанотехнологии произведут революцию в сельском хозяйстве. Молекулярные роботы способны будут производить пищу, заменив сельскохозяйственные растения и животных. К примеру, теоретически возможно производить молоко и масло прямо из травы, минуя корову, производить мясо без животных из природного растительного сырья. Нанотехнологии улучшат состояние окружающей среды, так как практически безотходны. Неограниченные перспективы открываются в области космических технологий. Нанороботы способны реализовать мечту людей о колонизации иных планет. Они будут преобразовывать атмосферу и почву, создавать среду обитания, необходимую для жизни человека.
Тревоги и опасности
Ученые всего мира пытаются оценить риск применения и совершенствования нанотехнологий. Специалисты считают, что расходы на выяснение экологических и медицинских аспектов применения наноматериалов должны составлять от 10 до 20 процентов всех государственных затрат на нанотехнологии. По мнению медиков и экологов, наночастицы легко проникают в организм человека и животных через кожу, органы дыхания, желудочно-кишечный тракт. Установлено, что нанообъекты могут оказывать токсичное действие на клетки различных тканей. Например, вдыхание наночастиц полистирола не только вызывает воспаление легочной ткани, но также провоцирует тромбоз кровеносных сосудов. Есть сведения, что углеродные наночастицы могут вызывать расстройства сердечной деятельности и подавлять активность иммунной системы. Опыты на рыбах и собаках показали, что фуллерены, многоатомные шаровидные молекулы углерода поперечником в несколько нанометров могут разрушать ткани мозга.
Террористы и иные преступники через доступ к нанотехнологиям могут нанести обществу огромный урон. Химическое и биологическое оружие будет более опасным, а скрыть его будет значительно проще. Станет возможным создание новых типов оружия для убийства на расстоянии, которые будет очень тяжело обнаружить или нейтрализовать. Поимка преступника после совершения им подобного преступления также усложнится.
Изменение природы человека – одно из последствий нанотехнологий. Появление нанокомпьютеров и их вживление в человека может, с одной стороны, дать ему огромные возможности, с другой стороны – превратить его в управляемого киборга. Вред обществу может нанести наномедицина. Например, медицинские устройства, которые позволят относительно легко модифицировать структуру мозга или осуществлять стимуляцию определенных его отделов для получения эффектов, имитирующих любые формы психической активности, могут стать основой «нанотехнологической наркомании».
Террористы и иные преступники через доступ к нанотехнологиям могут нанести обществу огромный урон. Химическое и биологическое оружие будет более опасным, а скрыть его будет значительно проще. Станет возможным создание новых типов оружия для убийства на расстоянии, которые будет очень тяжело обнаружить или нейтрализовать. Поимка преступника после совершения им подобного преступления также усложнится.
Изменение природы человека – одно из последствий нанотехнологий. Появление нанокомпьютеров и их вживление в человека может, с одной стороны, дать ему огромные возможности, с другой стороны – превратить его в управляемого киборга. Вред обществу может нанести наномедицина. Например, медицинские устройства, которые позволят относительно легко модифицировать структуру мозга или осуществлять стимуляцию определенных его отделов для получения эффектов, имитирующих любые формы психической активности, могут стать основой «нанотехнологической наркомании».
Это уже реальность…
(«Новая экономическая газета», № 23 (375), 09–15.06.07; «Истоки», № 06, 07.02.07)
«Нейрокомпьютеры и их применение» – такова тема доклада заведующего кафедрой вычислительной техники и защиты информации УГАТУ, доктора технических наук, профессора Владимира Ивановича Васильева, прочитанного им на очередном заседании Башкирского отделения Научного совета РАН по методологии искусственного интеллекта. В. И. Васильев – заслуженный деятель науки РФ, автор свыше 300 научных работ в области кибернетики и информатики.
Для справки
История компьютеров насчитывает свыше 60 лет, но она неотделима от истории логических машин, первые попытки создания которых имели место еще в древней Греции. Например, эллины сумели сконструировать механические приспособления для решения отдельных арифметических задач и операций.
Прошли века, и вновь сведения о подобных устройствах появляются лишь в средневековье. В XIII веке испанский философ-теолог Раймунд Луллий сконструировал «логическую машину», состоящую из семи вращающихся вокруг центра кругов, на каждом из которых были написаны слова, обозначающие различные понятия и логические операции. С помощью вращения этих кругов получали всевозможные сочетания понятий.
Спустя четыре века французский философ, математик и логик Блез Паскаль создал суммирующую машину – для выполнения арифметических операций. Через несколько десятилетий великий немецкий ученый и философ, один из создателей дифференциальных исчислений Готфрид Вильгельм Лейбниц в своем исчислении умозаключений (calculus rationator) заложил идею создания думающей машины (machina rationatrix). При этом Лейбниц весьма интересовался созданием вычислительных машин в металле.
Но все-таки настоящей логической машиной является появившийся во 2-й половине XVIII века «демонстратор» Ч. Стенхопа, который решал элементарные задачи формальной логики, выводил следствия из количественно определенных посылок. А уже в середине XIX века сконструированная Беббиджем цифровая автоматическая машина оперировала с десятичными цифрами.
В 1869 г. английский логик и экономист Уильям Стэнли Джевонс построил «логические счеты» и свой вариант «логической машины», имевшей вид фортепиано с клавишами. На одних клавишах буквы обозначали субъекты суждения (предметы мысли), на других – предикаты суждения (высказывания о предметах мысли). Остальные клавиши выполняли различные команды. Машина Джевонса решала задачи быстрее человека.
Но не прошло и полутора десятилетия, как была создана еще более совершенная вычислительная машина А. Маркванда, которая выполняла логические операции уже с четырьмя независимыми переменными.
В 1904 г. выдающийся русский математик, механик и кораблестроитель академик А. Н. Крылов сконструировал первую механическую вычислительную машину для решения дифференциальных уравнений. Дело Джевонса и Крылова продолжили русские ученые П. Д. Хрущов и А. Н. Щукарев. Первому из них удалось построить логическую машину, которая производила разложение булевых (логико-математических) функций четырех переменных на конституэнты логической единицы. Щукарев же усовершенствовал машину Хрущова, введя электрическую индикацию ответа.
С середины 40-х годов XX века началась эра кибернетики и ЭВМ.
Прошли века, и вновь сведения о подобных устройствах появляются лишь в средневековье. В XIII веке испанский философ-теолог Раймунд Луллий сконструировал «логическую машину», состоящую из семи вращающихся вокруг центра кругов, на каждом из которых были написаны слова, обозначающие различные понятия и логические операции. С помощью вращения этих кругов получали всевозможные сочетания понятий.
Спустя четыре века французский философ, математик и логик Блез Паскаль создал суммирующую машину – для выполнения арифметических операций. Через несколько десятилетий великий немецкий ученый и философ, один из создателей дифференциальных исчислений Готфрид Вильгельм Лейбниц в своем исчислении умозаключений (calculus rationator) заложил идею создания думающей машины (machina rationatrix). При этом Лейбниц весьма интересовался созданием вычислительных машин в металле.
Но все-таки настоящей логической машиной является появившийся во 2-й половине XVIII века «демонстратор» Ч. Стенхопа, который решал элементарные задачи формальной логики, выводил следствия из количественно определенных посылок. А уже в середине XIX века сконструированная Беббиджем цифровая автоматическая машина оперировала с десятичными цифрами.
В 1869 г. английский логик и экономист Уильям Стэнли Джевонс построил «логические счеты» и свой вариант «логической машины», имевшей вид фортепиано с клавишами. На одних клавишах буквы обозначали субъекты суждения (предметы мысли), на других – предикаты суждения (высказывания о предметах мысли). Остальные клавиши выполняли различные команды. Машина Джевонса решала задачи быстрее человека.
Но не прошло и полутора десятилетия, как была создана еще более совершенная вычислительная машина А. Маркванда, которая выполняла логические операции уже с четырьмя независимыми переменными.
В 1904 г. выдающийся русский математик, механик и кораблестроитель академик А. Н. Крылов сконструировал первую механическую вычислительную машину для решения дифференциальных уравнений. Дело Джевонса и Крылова продолжили русские ученые П. Д. Хрущов и А. Н. Щукарев. Первому из них удалось построить логическую машину, которая производила разложение булевых (логико-математических) функций четырех переменных на конституэнты логической единицы. Щукарев же усовершенствовал машину Хрущова, введя электрическую индикацию ответа.
С середины 40-х годов XX века началась эра кибернетики и ЭВМ.
От АВМ к нейрокомпьютерам
Как уже указывалось, вся история вычислительной техники в современном смысле укладывается в немногим более полвека. В 1944 г. в США была создана автоматическая вычислительная машина «Марк-1», имевшая электромагнитное реле и перфоленту, на которой записывались числа и операции с ними. Затем в 1945 г. американский математик венгерского происхождения Джон (Янош) фон Нейман предложил помещать программу вычислений, записанную двоичным кодом (системой двухсимвольных алгоритмов), в запоминающее устройство самой ЦВМ (цифровой вычислительной машины). Отсюда берут старт настоящие ЭВМ (электронные вычислительные машины). Годом позже в СССР была разработана первая АВМ (аналоговая вычислительная машина). А четырьмя годами позже под руководством советского электротехника академика С. А. Лебедева была создана первая ламповая ЦВМ «МЭСМ». Эти машины уже могли осуществлять до 20 тысяч операций в секунду.
Первая американская ЭВМ «ЭНИАК» была создана в 1945 г. по заказу ВМС США. Над ней работали специалисты из Пенсильванского университета – Голдстайн, Моучли и Эккерт. Эта машина имела 18 тысяч электронных ламп и в тысячу раз превосходила по быстродействию релейные вычислительные машины. Затем была сконструирована вторая американская ЭВМ «ЭДВАК» – в том же Пенсильванском университете.
За шестьдесят с небольшим лет последовательно сменилось пять поколений ЭВМ. Первое поколение ЭВМ – ламповые (1951–1960 гг.), всего их было выпущено около шести с половиной тысяч. Эти машины могли хранить большие запасы информации, автоматически выбирать из них необходимые сведения и производить не только математическую и статистическую обработку информации, но и логические операции.
Затем пошло второе поколение ЭВМ – полупроводниковые (конец 50-х – середина 60-х гг.). Эти машины на транзисторах могли производить до 1 млн. операций в секунду, у них были меньшие габариты и большая надежность.
Машины третьего поколения (середина 60-х – середина 70-х гг.) имели память уже в электронном исполнении – на интегральных схемах, представляющих собой маленькие пластинки из кристаллического вещества (кремния, германия), заменяющие громоздкие блоки из тысяч элементов. Это придало им еще большую надежность. Быстродействие достигло нескольких десятков миллионов операций в секунду.
Четвертое поколение ЭВМ на больших и сверхбольших интегральных схемах (середина 70-х гг. – по настоящее время) отличается быстродействием в десятки и сотни миллиардов операций в секунду. На их основе были созданы первые персональные компьютеры: в 1971 г. был изготовлен первый микропроцессор «INTEL-4004», а в 1974 г. – первая персональная ЭВМ «Альтаир-8080». С начала 80-х годов созданы суперЭВМ, в работе которых используются параллельные алгоритмы и кластеры.
Ожидается, что ЭВМ пятого поколения будут построены с использованием методов и средств искусственного интеллекта (база знаний, подсистема общения с пользователем, речевая связь, непроцедурные языки высокого уровня, эвристические возможности машины). С другой стороны, интеллектуальный интерфейс этих машин требует больших затрат. И вот здесь на первый план выходят принципиально новые вычислительные машины – нейрокомпьютеры (НК).
Отличительной особенностью пяти поколений традиционных ЭВМ было использование разработанной фон Нейманом архитектуры – элементов двоичной системы исчисления (двоичной переменной, принимающей значения единицы и ноля) для компьютеров. Нейрокомпьютеры – это вычислительные системы с архитектурой аппаратного и программного обеспечения, адекватной выполнению алгоритмов, представленных в нейросетевом логическом базисе (со 2-й половины 80-х гг.). То есть в НК используются не элементы двоичной логики, а искусственные нейроны (нервные клетки).
Первая американская ЭВМ «ЭНИАК» была создана в 1945 г. по заказу ВМС США. Над ней работали специалисты из Пенсильванского университета – Голдстайн, Моучли и Эккерт. Эта машина имела 18 тысяч электронных ламп и в тысячу раз превосходила по быстродействию релейные вычислительные машины. Затем была сконструирована вторая американская ЭВМ «ЭДВАК» – в том же Пенсильванском университете.
За шестьдесят с небольшим лет последовательно сменилось пять поколений ЭВМ. Первое поколение ЭВМ – ламповые (1951–1960 гг.), всего их было выпущено около шести с половиной тысяч. Эти машины могли хранить большие запасы информации, автоматически выбирать из них необходимые сведения и производить не только математическую и статистическую обработку информации, но и логические операции.
Затем пошло второе поколение ЭВМ – полупроводниковые (конец 50-х – середина 60-х гг.). Эти машины на транзисторах могли производить до 1 млн. операций в секунду, у них были меньшие габариты и большая надежность.
Машины третьего поколения (середина 60-х – середина 70-х гг.) имели память уже в электронном исполнении – на интегральных схемах, представляющих собой маленькие пластинки из кристаллического вещества (кремния, германия), заменяющие громоздкие блоки из тысяч элементов. Это придало им еще большую надежность. Быстродействие достигло нескольких десятков миллионов операций в секунду.
Четвертое поколение ЭВМ на больших и сверхбольших интегральных схемах (середина 70-х гг. – по настоящее время) отличается быстродействием в десятки и сотни миллиардов операций в секунду. На их основе были созданы первые персональные компьютеры: в 1971 г. был изготовлен первый микропроцессор «INTEL-4004», а в 1974 г. – первая персональная ЭВМ «Альтаир-8080». С начала 80-х годов созданы суперЭВМ, в работе которых используются параллельные алгоритмы и кластеры.
Ожидается, что ЭВМ пятого поколения будут построены с использованием методов и средств искусственного интеллекта (база знаний, подсистема общения с пользователем, речевая связь, непроцедурные языки высокого уровня, эвристические возможности машины). С другой стороны, интеллектуальный интерфейс этих машин требует больших затрат. И вот здесь на первый план выходят принципиально новые вычислительные машины – нейрокомпьютеры (НК).
Отличительной особенностью пяти поколений традиционных ЭВМ было использование разработанной фон Нейманом архитектуры – элементов двоичной системы исчисления (двоичной переменной, принимающей значения единицы и ноля) для компьютеров. Нейрокомпьютеры – это вычислительные системы с архитектурой аппаратного и программного обеспечения, адекватной выполнению алгоритмов, представленных в нейросетевом логическом базисе (со 2-й половины 80-х гг.). То есть в НК используются не элементы двоичной логики, а искусственные нейроны (нервные клетки).
Нейрон и персептрон
Первая модель биологического нейрона была предложена еще в 1943 году американскими учеными – нейрофизиологом Уорреном Мак-Каллохом и математиком-кибернетиком Уолтером Питтсом. В то время считалось, что эквивалентом нейронных сетей в вычислительной технике могут послужить вакуумные лампы. При этом принцип работы нейронов (их возбуждение) аналогичен однократному выбору – по типу «да-нет», производимому при определении разряда двоичного числа. То есть синапс (контакт между нейронами) точно так же определяет – будет ли определенная комбинация выходных сигналов от предыдущего элемента служить для возбуждения (передачи информации, данных) следующего элемента.
В настоящее время под искусственным нейроном рассматривают обобщенную модель, состоящую из аналогов дендритов (воспринимателей сигналов, передающих нервные импульсы в тело нейрона) и синапсов, входов сумматора, сумматора (аналога тела нейрона), выходов сумматора (аналогов аксона – проводника импульсов от тела нейрона наружу). Каждый из входов сумматора имеет свой вес, отсюда главная особенность искусственного нейрона – настраиваемость всех его весовых коэффициентов (весов синаптических связей).
Ныне насчитывается около 200 разновидностей архитектур (структурных типов) нейронных сетей, например, радиально-базисные сети, многослойные сети Хопфилда, самоорганизующиеся сети Кохонена, рекуррентные (динамические) сети, когнитроны, неокогнитроны… Наиболее известным является персептрон (восприниматель) Розенблатта, по сути, представляющий собой «черный ящик», который настраивается на решение какой-либо конкретной задачи. В нем реализуются входные, выходные и скрытые слои нейронов. Эта модель была предложена в 1958 г. Ф. Розенблаттом и представляет собой 1-й класс нейронных сетей.
Существует несколько способов программно-аппаратной реализации нейрокомпьютеров (при этом используется любой подходящий материальный носитель). Программная эмуляция нейронных сетей (нейроимитаторы) базируется на реализации алгоритма обучения (нейросетевого алгоритма). На базе супер-ЭВМ (многопроцессорных ЭВМ) строятся нейронные сети большого объема. Следующие типы программно-аппаратной реализации НК: на основе программируемых логических интегральных схем и сверхбольших интегральных схем (нейрочипов), к таким относятся 64-разрядные микропроцессоры со статической суперкалярной архитектурой NM6403 и NM6404 – Neuro Matrix, выпускаемые московской фирмой «Модуль» по технологии Samsung. В оптических НК задачи реализуются на элементах оптики. И, наконец, самые передовые технологии – квантовые НК (нанонейрокомпьютеры), имеющие атомно-молекулярные размеры, в том числе ДНК-компьютеры. Преимущество таких компьютеров в том, что они могут решать задачи, превосходящие по своей сложности в тысячи и более раз задачи, которые способны решать любые цифровые (даже самые продвинутые) ЭВМ. А так как все материальные объекты состоят из наноструктур (элементарных частиц, атомов, молекул, макромолекул), то наиболее перспективным представляются разработки именно в этом направлении.
В настоящее время под искусственным нейроном рассматривают обобщенную модель, состоящую из аналогов дендритов (воспринимателей сигналов, передающих нервные импульсы в тело нейрона) и синапсов, входов сумматора, сумматора (аналога тела нейрона), выходов сумматора (аналогов аксона – проводника импульсов от тела нейрона наружу). Каждый из входов сумматора имеет свой вес, отсюда главная особенность искусственного нейрона – настраиваемость всех его весовых коэффициентов (весов синаптических связей).
Ныне насчитывается около 200 разновидностей архитектур (структурных типов) нейронных сетей, например, радиально-базисные сети, многослойные сети Хопфилда, самоорганизующиеся сети Кохонена, рекуррентные (динамические) сети, когнитроны, неокогнитроны… Наиболее известным является персептрон (восприниматель) Розенблатта, по сути, представляющий собой «черный ящик», который настраивается на решение какой-либо конкретной задачи. В нем реализуются входные, выходные и скрытые слои нейронов. Эта модель была предложена в 1958 г. Ф. Розенблаттом и представляет собой 1-й класс нейронных сетей.
Существует несколько способов программно-аппаратной реализации нейрокомпьютеров (при этом используется любой подходящий материальный носитель). Программная эмуляция нейронных сетей (нейроимитаторы) базируется на реализации алгоритма обучения (нейросетевого алгоритма). На базе супер-ЭВМ (многопроцессорных ЭВМ) строятся нейронные сети большого объема. Следующие типы программно-аппаратной реализации НК: на основе программируемых логических интегральных схем и сверхбольших интегральных схем (нейрочипов), к таким относятся 64-разрядные микропроцессоры со статической суперкалярной архитектурой NM6403 и NM6404 – Neuro Matrix, выпускаемые московской фирмой «Модуль» по технологии Samsung. В оптических НК задачи реализуются на элементах оптики. И, наконец, самые передовые технологии – квантовые НК (нанонейрокомпьютеры), имеющие атомно-молекулярные размеры, в том числе ДНК-компьютеры. Преимущество таких компьютеров в том, что они могут решать задачи, превосходящие по своей сложности в тысячи и более раз задачи, которые способны решать любые цифровые (даже самые продвинутые) ЭВМ. А так как все материальные объекты состоят из наноструктур (элементарных частиц, атомов, молекул, макромолекул), то наиболее перспективным представляются разработки именно в этом направлении.
Сухой остаток
Итак подытожим. Отличительными особенностями нейрокомпьютеров являются: 1) в качестве элементного базиса выступают не элементы пороговой логики (триггеры, регистры, счетчики), а искусственные нейроны – простейшие процессорные элементы с настраиваемыми связями (весами); 2) НК не программируются, а обучаются на примерах; 3) НК позволяют решать плохо формализованные задачи; 4) в силу параллельной архитектуры они имеют потенциально высокое быстродействие и отказоустойчивость (нейроны в нейрочипах более продуктивны, так как могут взаимозаменять друг друга); 5) по критерию «эффективность (качество)/стоимость» они превосходят другие типы ЭВМ.
Самое главное, с помощью НК можно решать плохо формализованные задачи, которые трудно алгоритмизируются, но успешно решаются человеком. Например, распознавание образов, классификация (кластеризация) данных, прогнозирование (предсказание), аппроксимация функций – замена сложных математических объектов более простыми и приближенными (нейросеть – универсальный аппроксиматор-заменитель), оптимизация (решение сложных линейных уравнений) и многое другое.
Практически НК будут использоваться в авиации (управление, навигация, контроль, диагностика, выбор оптимального маршрута), медицине (диагностика, прогнозирование, «кибернетический двойник» – нейросетевая модель человека, на которой проигрываются варианты лечения), бизнесе, финансах, политике (прогнозирование ситуаций, выбор решений – альтернатив), информационной безопасности (биометрические системы идентификации, распознавание лиц и изображений, системы обнаружения атак), энергетике (прогнозирование потребления электроэнергии, диагностика режимов и технического состояния агрегатов), строительстве (виброзащита, управление колебаниями – защита от землетрясений), космосвязи (обработка изображений со спутников) и во многих других областях экономики, политики и социокультурной жизни общества.
Прогнозируется, что к 2030 г. НК сравнятся с человеческим интеллектом. Уже сейчас разработкой и внедрением нейрокомпьютерной техники в мире занимаются свыше 300 фирм и фактически все университеты. Американцы, например, тратят на развитие информационно-вычислительной техники, значительную часть в котором ныне уделяют НК, порядка 2 миллиардов долларов в год. В России, к сожалению, цифры на несколько порядков ниже.
Настало время, когда сама национальная безопасность страны зависит от успешных разработок и скорейшего внедрения новейших информационных и биологических технологий. Нанотехнологии и нейрокомпьютеры в своем влиянии на общественный прогресс приобретают все большее значение. Научно-исследовательский и опытно-конструкторский потенциал нашей страны еще достаточно велик, необходимо задействовать его полностью, а для этого нужна поддержка властей, и прежде всего – адекватные финансовые вливания в эту сферу.
Самое главное, с помощью НК можно решать плохо формализованные задачи, которые трудно алгоритмизируются, но успешно решаются человеком. Например, распознавание образов, классификация (кластеризация) данных, прогнозирование (предсказание), аппроксимация функций – замена сложных математических объектов более простыми и приближенными (нейросеть – универсальный аппроксиматор-заменитель), оптимизация (решение сложных линейных уравнений) и многое другое.
Практически НК будут использоваться в авиации (управление, навигация, контроль, диагностика, выбор оптимального маршрута), медицине (диагностика, прогнозирование, «кибернетический двойник» – нейросетевая модель человека, на которой проигрываются варианты лечения), бизнесе, финансах, политике (прогнозирование ситуаций, выбор решений – альтернатив), информационной безопасности (биометрические системы идентификации, распознавание лиц и изображений, системы обнаружения атак), энергетике (прогнозирование потребления электроэнергии, диагностика режимов и технического состояния агрегатов), строительстве (виброзащита, управление колебаниями – защита от землетрясений), космосвязи (обработка изображений со спутников) и во многих других областях экономики, политики и социокультурной жизни общества.
Прогнозируется, что к 2030 г. НК сравнятся с человеческим интеллектом. Уже сейчас разработкой и внедрением нейрокомпьютерной техники в мире занимаются свыше 300 фирм и фактически все университеты. Американцы, например, тратят на развитие информационно-вычислительной техники, значительную часть в котором ныне уделяют НК, порядка 2 миллиардов долларов в год. В России, к сожалению, цифры на несколько порядков ниже.
Настало время, когда сама национальная безопасность страны зависит от успешных разработок и скорейшего внедрения новейших информационных и биологических технологий. Нанотехнологии и нейрокомпьютеры в своем влиянии на общественный прогресс приобретают все большее значение. Научно-исследовательский и опытно-конструкторский потенциал нашей страны еще достаточно велик, необходимо задействовать его полностью, а для этого нужна поддержка властей, и прежде всего – адекватные финансовые вливания в эту сферу.
Небесный кредит
Ветроэнергетика в Башкортостана: эколого-экономические аспекты и перспективы развития
(«Предприниматель Башкортостана», № 10 (97), 22.06.07; «Истоки», № 50, 13.12.06)
На конференции в Киото (декабрь, 1997) была принята Конвенция по климату, согласно которой страны должны стремиться к сокращению выбросов парниковых газов в атмосферу. Значительную долю подобных выбросов, ведущих к парниковому эффекту, дает традиционная энергетика, основанная на сжигании углеводородного топлива.
Очень важным на современном этапе, при сложившейся экологической обстановке, представляется переход на альтернативные, возобновляемые источники энергии. Речь идет об энергии ветра (ветряные электростанции и ветроэнергетические установки), солнца (солнечные батареи и гелиостанции), морских приливов и отливов, внутреннего тепла Земли, геотермальных вод, отходов сельхозпроизводства (биомассы).
Необходимо отметить, что именно ветроэнергетика представляется одним из наиболее перспективных направлений в разработке и внедрении альтернативных источников энергии. В мире темпы развития ветроэнергетики в последние годы составляли около 30 % в год, что превышает темпы роста других энергетических технологий. Исследования долгосрочных перспектив показывают, что энергия ветра может стать одним из наиболее эффективных возобновляемых «чистых» энергоресурсов.
Странами ЕЭС за счет нетрадиционных и возобновляемых источников энергии планируется обеспечить 22 % своих энергетических потребностей к 2010 г. и 50 % к 2050 г. В настоящее время наибольшие практические успехи в этом направлении достигнуты в области ветроэнергетики. В ряде стран Европы, США, Канаде перешли от внедрения отдельных ветроэнергетических установок (ВЭУ) мощностью в десятки и сотни киловатт к строительству наземных и морских парков таких ВЭУ – ветроферм суммарной мощностью в десятки и сотни мегаватт с целью использования энергии ветра в промышленных объемах.
Правительство РБ и Президент Башкортостана уделяют самое пристальное внимание развития нетрадиционной энергетики. При прямой поддержке руководства республики уже построены и введены в эксплуатацию несколько газотурбинных электростанций и мини-ГЭС на малых реках. Начала работать первая ветроэлектростанция «Тюпкильды» мощностью 2200 кВт. Персоналом Октябрьских электросетей ОАО «Башкирэнерго» уже накоплен достаточный опыт эксплуатации ВЭУ.
Но здесь есть свои преодолимые недостатки. Значительно больший экономический эффект даст размещение ветроустановок в районах повышенной ветровой активности. Как верно заметил профессор БГУ и РГТЭУ, академик М. Г. Муталов («Истоки», № 2, 10.01.07), в любой точке башкирского Зауралья ВЭУ будут работать круглогодично, так как безветренных дней в этих районах почти не наблюдается. Минниахмет Гильметдинович подчеркнул, что «по большей части в бездействии стоят ветряки у деревни Тюпкильды в Туймазинском районе», и выразил надежду, что энергетики и предприниматели Башкортостана прислушаются к рекомендациям автора данной статьи и начнут активно внедрять технические разработки наших земляков, о которых речь пойдет ниже.
Известно, что все ВЭУ как в нашей стране, так и за рубежом вырабатывают только переменный электрический ток. Большие трудности при этом возникают в связи с необходимостью удержания постоянства уровня напряжения и особенно поддержание частоты (50 периодов в секунду). Это вызвано непостоянством и периодическими колебаниями ветра. Поэтому создаются технические трудности при параллельной работе с энергосистемой.
По технико-экономической целесообразности возникает необходимость создания таких технических устройств генераторов, которые могли бы производить постоянный электрический ток с исключением резких колебаний уровня напряжения и с отсутствием сложных технических устройств по контролю за частотой колебательных процессов.
При этом существующие электроприемники без вращающихся частей будут успешно работать и на постоянном токе с увеличенным техническим ресурсом, а устройства с вращающимися частями, как, например, двигатели, будут изготовляться униполярными и также работать на постоянном токе. Автономная малая энергосистема, как правило, будет работать на одном уровне напряжения. При необходимости других уровней напряжения будут использоваться делители напряжения.
В решении вышеозначенных проблем успехов добились наши соотечественники – изобретатели из Уфы Н. Г. Ермилов и А. Н. Филиппов. Им удалось создать принципиально новый образец униполярного многовиткового торцевого генератора с самовозбуждением, а кроме того – устройство генератора постоянного тока с независимым возбуждением для дальних передач больших мощностей. При этом все устройства генераторов являются обратимыми.
Очень важным на современном этапе, при сложившейся экологической обстановке, представляется переход на альтернативные, возобновляемые источники энергии. Речь идет об энергии ветра (ветряные электростанции и ветроэнергетические установки), солнца (солнечные батареи и гелиостанции), морских приливов и отливов, внутреннего тепла Земли, геотермальных вод, отходов сельхозпроизводства (биомассы).
Необходимо отметить, что именно ветроэнергетика представляется одним из наиболее перспективных направлений в разработке и внедрении альтернативных источников энергии. В мире темпы развития ветроэнергетики в последние годы составляли около 30 % в год, что превышает темпы роста других энергетических технологий. Исследования долгосрочных перспектив показывают, что энергия ветра может стать одним из наиболее эффективных возобновляемых «чистых» энергоресурсов.
Странами ЕЭС за счет нетрадиционных и возобновляемых источников энергии планируется обеспечить 22 % своих энергетических потребностей к 2010 г. и 50 % к 2050 г. В настоящее время наибольшие практические успехи в этом направлении достигнуты в области ветроэнергетики. В ряде стран Европы, США, Канаде перешли от внедрения отдельных ветроэнергетических установок (ВЭУ) мощностью в десятки и сотни киловатт к строительству наземных и морских парков таких ВЭУ – ветроферм суммарной мощностью в десятки и сотни мегаватт с целью использования энергии ветра в промышленных объемах.
Правительство РБ и Президент Башкортостана уделяют самое пристальное внимание развития нетрадиционной энергетики. При прямой поддержке руководства республики уже построены и введены в эксплуатацию несколько газотурбинных электростанций и мини-ГЭС на малых реках. Начала работать первая ветроэлектростанция «Тюпкильды» мощностью 2200 кВт. Персоналом Октябрьских электросетей ОАО «Башкирэнерго» уже накоплен достаточный опыт эксплуатации ВЭУ.
Но здесь есть свои преодолимые недостатки. Значительно больший экономический эффект даст размещение ветроустановок в районах повышенной ветровой активности. Как верно заметил профессор БГУ и РГТЭУ, академик М. Г. Муталов («Истоки», № 2, 10.01.07), в любой точке башкирского Зауралья ВЭУ будут работать круглогодично, так как безветренных дней в этих районах почти не наблюдается. Минниахмет Гильметдинович подчеркнул, что «по большей части в бездействии стоят ветряки у деревни Тюпкильды в Туймазинском районе», и выразил надежду, что энергетики и предприниматели Башкортостана прислушаются к рекомендациям автора данной статьи и начнут активно внедрять технические разработки наших земляков, о которых речь пойдет ниже.
Известно, что все ВЭУ как в нашей стране, так и за рубежом вырабатывают только переменный электрический ток. Большие трудности при этом возникают в связи с необходимостью удержания постоянства уровня напряжения и особенно поддержание частоты (50 периодов в секунду). Это вызвано непостоянством и периодическими колебаниями ветра. Поэтому создаются технические трудности при параллельной работе с энергосистемой.
По технико-экономической целесообразности возникает необходимость создания таких технических устройств генераторов, которые могли бы производить постоянный электрический ток с исключением резких колебаний уровня напряжения и с отсутствием сложных технических устройств по контролю за частотой колебательных процессов.
При этом существующие электроприемники без вращающихся частей будут успешно работать и на постоянном токе с увеличенным техническим ресурсом, а устройства с вращающимися частями, как, например, двигатели, будут изготовляться униполярными и также работать на постоянном токе. Автономная малая энергосистема, как правило, будет работать на одном уровне напряжения. При необходимости других уровней напряжения будут использоваться делители напряжения.
В решении вышеозначенных проблем успехов добились наши соотечественники – изобретатели из Уфы Н. Г. Ермилов и А. Н. Филиппов. Им удалось создать принципиально новый образец униполярного многовиткового торцевого генератора с самовозбуждением, а кроме того – устройство генератора постоянного тока с независимым возбуждением для дальних передач больших мощностей. При этом все устройства генераторов являются обратимыми.