Другими словами, далекое прошлое в принципе не может быть оценено с позиций тех объективных законов природы, которые действуют в настоящее время, и поступать вопреки этому – значит совершать серьезную методологическую ошибку, которая может привести к искажению всех представлений о реальной действительности. Другими словами, это может означать, что все сегодняшние представления о мире, включая и саму концепцию поступательного эволюционного развития природы от простого к сложному, – принципиально неверны. Между тем нелишне напомнить, что одним из тех постулатов, которыми руководствуемся в своем постижении действительности мы, является утверждение того, что все процессы, доступные нашему наблюдению сегодня, в прошлом развивались точно так же, как они развиваются сейчас. Ничто в истекших миллиардолетиях, на которые простирается наш теоретический взор, было не в состоянии хотя бы что-то изменить во всем ходе вещей.
   Каждая из этих гипотез обладает определенными достоинствами, но в то же время ни одна из них не в состоянии удовлетворительно объяснить все факты, имеющиеся в нашем распоряжении. Поэтому решение вообще не может базироваться на простом выборе между ними. Скорее всего, обе они свидетельствую о необходимости поиска чего-то третьего (четвертого, пятого и так далее) или выработки какого-то синтетического подхода, способного объединить их и устранить имеющиеся между ними противоречия.
 
   Между тем последовательное снижение роли причинности и столь же неуклонное возрастание случайности свидетельствует о том, что вовсе не причинность лежит в основании всеобщего развития, в основании появления все более и более высоких форм организации материи. Но ведь и случайность, если именно она на самом деле направляет неуклонное восхождение всего сущего от неразвитых примитивных форм к каким-то вершинам организации, обязана подчиняться чему-то. Иными словами, и в основе случайности должен лежать какой-то свой, альтернативный причинному ряду, механизм детерминации. В противном случае самый факт гармонии мира становится в принципе необъяснимым.
   Ничем.
 
Заключение.
   1. Развитие всех явлений реальной действительности (включая и развитие всего мира в целом) подчинено совокупному влиянию двух фундаментальных факторов: причинности и случайности. Ни один из этих факторов не может быть полностью исключен из полного перечня оснований любых изменений, которые происходят в окружающей нас природе.
   2. В долговременной перспективе действие строгой причинности неуклонно снижается, роль случайности, напротив, возрастает. Поэтому в долговременной перспективе решающую роль играет уже не принцип причинности явлений, но именно случайность; в свою очередь, причинность с наибольшей отчетливостью проявляет себя только в ограниченном временном интервале.
   3. Если мы принимаем, что развитие – это постоянная смена форм движения, поступательное восхождение к каким-то новым, более высоким, ступеням организации, а не монотонное круговращение в рамках от века заданных форм, то встает вопрос: что именно лежит в глубинной основе развития? Другими словами, что на самом деле лежит в основе того механизма, действием которого обеспечивается переход любого объекта в каждое новое качественное состояние?

2. Вероятность макроэволюционных событий.

   В течение последних десятилетий наибольшей популярностью среди эволюционистов пользовалась гипотеза абиотического зарождения жизни, (то есть возникновения жизни из неживой материи), которая была еще в 20-е годы выдвинута советским биохимиком, одним из организаторов и директором (с 1946) Института биохимии АН СССР Александром Ивановичем Опариным (1894—1980).
   Согласно этой гипотезе, жизнь (начальными формами которой являлись так называемые «коацерватные капли») развилась в первичном «бульоне» из сложных химических соединений под воздействием электрических разрядов в условиях лишенной кислорода первозданной атмосферы. Процесс естественного возникновения (зарождения) живой материи подразделяется им на три этапа: на первом появляются углеводороды и из них формируются простейшие органические вещества; на втором образуются сложные органические соединения (преимущественно белков); наконец, на третьем возникают сложные белковые системы[7].
   Гипотеза возникла, что говорится, «на кончике пера», и, как всякое умозрительное построение, требовала экспериментального подтверждения. Знаменитые опыты Стенли Миллера, результаты которых были опубликованы в 1953 году, казалось, подтвердили ее, и с тех пор на долгое время это объяснение стало едва ли не общепринятым. В лабораторном опыте Миллера через смесь подогретых газов (водяного пара, метана, аммиака и водорода) неоднократно пропускался электрический разряд, ультрафиолетовое или рентгеновское излучение. Каждый цикл приводил к образованию какого-то количества жидкости, содержащей аминокислоты и другие органические соединения. В принципе, опыты подтверждали возможность искусственного синтеза всех известных аминокислот, необходимых для жизни. Больше того, встречались даже такие соединения, которых нельзя найти в живой природе.
   Казалось, идея самопроизвольного зарождения жизни из каких-то абиотических элементов полностью подтверждалась. Но дело в том, что полученные Миллером продукты синтеза – это все еще были далеко не те белковые молекулы, которые способны к самовоспроизводству, а значит, и к зарождению жизни. Кроме того, обнаружилось, что каждый раз из 20 встречающихся в живых организмах аминокислот синтезируется лишь ограниченная часть, все вместе они не выявлялись. Поэтому сценарий самозарождения жизни значительно усложнялся: образующиеся в разных местах разные аминокислоты должны были еще встретиться в каком-то одном месте, чтобы, образовав полный набор, слиться воедино. Словом, разгадка тайны зарождения жизни оказалась не более чем иллюзией.
   Впрочем, в последние годы были выявлены многие дополнительные тонкие детали общей системы кодирования информации в живой клетке, и стало ясно, что одного только сложения белковых молекул (даже если забыть о парадоксе их оптической активности, который не проявлялся в результатах Миллера[8]) явно недостаточно для запуска того глобального механизма, которому предстояло изменить весь облик нашей планеты. Для «запуска» механизма зарождения и воспроизводства жизни необходимо, чтобы в этом же первичном бульоне одновременно сформировались не только исходные аминокислоты, но и без исключения все элементы его устройства, ведь отсутствие хотя бы одного из конструктивных его узлов означает абсолютную ненужность и всех остальных. Другими словами, требовалось практически одновременное (то есть измеряемое коротким периодом существования всего лишь одного поколени я первичных молекул, организмов) стечение в одном и том же месте очень большого числа факторов, каждый из которых обладает сравнительно низкой, если не сказать ничтожной, вероятностью.
   Расчеты вероятности самопроизвольного формирования такой целостной системы, выполненные специалистом по информатике Марселем Голэ[9], показывают, что для ее становления необходимо выполнение в строгой последовательности 1500 событий, вероятность каждого из которых равна 1/2. Отсюда общая вероятность зарождения простейших форм жизни составит 0,5^1500, или один шанс из 10^450.
   Это чудовищно малая вероятность, по сути равная нулю.
   Куда более простой процесс, в результате которого из уже существующей бактерии брожения развивается первая клетка, которая приобретает энергию за счет градиента протонов, предположительно требует всего 23 (то есть несопоставимо меньше, чем приведенная выше цепь событий) независимых мутационных изменения ДНК[10]. Однако, как и в случае абиогенеза, основная сложность состоит в том, что все эти мутации должны произойти на протяжении жизни всего одного поколения бактерий.
 
   Состав изменений / Число необходимых мутаций
 
   Образование АТФ-синтетазы:
   – дупликация гена 1
   – инактивация стартового кодона 1
   – изменение двух аминокислот 2
 
   Образование дегидрогеназы муравьиной кислоты:
   – дупликация гена 1
   – инактивация стартового кодона 1
   – образование активной части фермента для расщепления муравьиной кислоты 3
   – образование активной части для редуцирования фумаровой кислоты 3
 
   Преобразование редуктазы фумаровой кислоты
   – дупликация гена 1
   – инактивация стартового кодона 1
   – образование протеина мембраны 3
   – образование активной части, которая может принимать электроны из муравьиной кислоты 3
   – активация стартовых сигналов для транскрипции 3
 
   Всего: 23
 
   Если предположить, что в первичном океане имеется 10^35 бактерий (другими словами, предположить, что весь мировой океан чуть ли не целиком заполнен только ими[11]) то при частоте мутаций 10^– 5 вероятность стечения всего комплекса мутационных изменений составит 10^– 80.
   Для того, чтобы оценить эту до чрезвычайности малую величину, напомним, что по приблизительным оценкам во всей Вселенной общее число элементарных частиц составляет порядка 10^80. Этот результат был получен Артуром Эддингтоном (Eddington), английским астрофизиком, членом Лондонского королевского общества, еще в тридцатые годы. Диаметр Вселенной по тогдашним представлениям составлял около 10^28 сантиметров, а общий ее объем – примерно 10^84 кубических сантиметров. Средняя плотность вещества тогда принималась приблизительно равной 10^– 28 г/см3. Отсюда вытекало, что общая масса вселенной должна была составить 10^56 граммов. Между тем масса одно нуклона составляет около 10– 24 грамма, следовательно, общее количество частиц можно было найти простым делением: 10^56 /10^–24 = 10^80. Конечно, с тех пор некоторые оценки размеров нашего мира поменялись, но все же не настолько, чтобы радикально повлиять на этот итог.
   Иными словами, для того, чтобы в результате случайного совпадения мутационных процессов появился хотя бы один единственный организм, который отвечал бы выдвинутым здесь требованиям, необходимо примерно столько Вселенных, подобных нашей, сколько элементарных частиц содержится в структурах одной бактерии. Это чудовищно много, ибо даже одна бактерия состоит из астрономического количества частиц. Но беда в том, что нам-то в действительности дан всего один мир… Поэтому не будет преувеличением сказать, что и этот результат вполне может быть приравнен к нулю.
   Отсюда вовсе не удивительно, что Ф. Крик выдвинул гипотезу о том, что жизнь, вероятно, зародилась где-то в далеких глубинах Космоса и была занесена на Землю совершенно случайно. Правда, в действительности такая гипотеза не объясняла решительно ничего, ведь вопрос о том, как живая материя зарождается в тех же глубинах, все равно остается (причем остается неразрешенным); скорее, это был просто жест отчаяния. Между тем Френсис Крик вовсе не случайная фигура в биохимии. Ведь именно он, английский биофизик и генетик, в 1953 совместно с американцем биохимиком Джеймсом Уотсоном создал знаменитую модель структуры ДНК (так называемую двойную спираль), что позволило объяснить многие ее свойства и биологические функции и положило начало молекулярной генетике. За это открытие оба они были увенчаны нобелевской премией 1962 года.
   Однако заметим два принципиально важных обстоятельства.
   Первое. Все подобные расчеты – пусть и не всегда явно – исходят из того, что каждый шанс из фигурирующих здесь количеств – абсолютно равновероятен. Но зададимся другим вопросом: каким должно быть устройство всего окружающего нас мира, чтобы обеспечить равную вероятность каждому из всех возможных варианту перебора? Ведь любая нерегулярность внешней среды повышает вероятность одних событий и существенно понижает возможность других. Кроме того, в этом нерегулярном мире действует большая совокупность строгих физических законов, разрешающих одни события и, напротив, запрещающих другие. А это, в свою очередь, означает, что далеко не все изменения в равной степени возможны.
   Пример? Пожалуйста. Если мы встанем где-нибудь на перекрестке и начнем подсчитывать снующих там прохожих, то доля мужчин и женщин в общей их сумме с последовательным ее увеличением должна будет стремиться к одной второй. Но это справедливо только в отвлеченной от реальной жизни теории, в действительности же все будет зависеть от того, когда и где проводится подобное наблюдение. Так, известно, что каждый год в один и тот же день, в один и тот же час на Красной площади проходит военный парад. Здесь в единый строй встает не одна тысяча молодых мужчин одетых в совершенно одинаковую одежду. Между тем статистическая вероятность этого события намного ниже той величины, которая приводилась нами выше. Но даже если и не прибегать к подобным исключениям, общее правило будет все тем же: доля мужчин и женщин будет распределяться в зависимости от того, куда именно обращен наш взор. Прибегая к некоторой условности, мы вправе утверждать, что там, откуда доносится пение ангелов и аромат цветов, распределение будет одним, где развеваются знамена и раздается гром барабанов – совершенно иным, и не считаться с этим нельзя.
   Словом, если мы поставим встречный вопрос: какова вероятность существования такой действительности, в рамках которой обеспечивается абсолютно равный шанс для реализации каждого отдельного события из приведенных выше чудовищных более чем астрономических их совокупностей, то обнаружим, что она будет едва ли не сопоставима с приведенной.
   Это означает, что подобные, основанные только на статистических законах, оценки возможности самопроизвольного зарождения жизни из какой-то неживой субстанции а также любого (макроэволюционного) изменения ее форм абсолютно неприменимы там, где существует хотя бы какая-нибудь упорядоченность – или даже просто нерегулярность – материи. Кстати сказать, состояние «тепловой смерти» Вселенной, о которой часто упоминается в контексте второго начала термодинамики, – это ведь тоже только одно из всего статистического спектра возможных ее состояний. Но если энергия и в самом деле никуда не исчезает и общее ее количество обязано сохраняться постоянным, движение остается даже при максимальном уровне энтропии. При этом застыть в такой позиции никакая система не может; справедливо говорить лишь о ее колебании около этого уровня. Предельное же состояние, при котором достигается абсолютный уровень энтропии, в статистическом смысле столь же маловероятно, сколь и любое другое, не исключая и прямо противоположное ему, ибо во всех случаях в знаменателе обязана присутствовать одна и та же уравнивающая их величина – бесконечность. Но это значит, что определенная энергетическая нерегулярность даже претерпевшего «тепловую смерть» мира в тех или иных формах обязана воспроизводиться снова и снова. В свою очередь, если уже сама нерегулярность способна порождать какие-то предпочтения, новый цикл развития отнюдь не исключен (если не сказать неизбежен) и в этом случае.
   Другими словами, ответа на вопрос о том, какова действительная математическая вероятность случайного самозарождения жизни в полной совокупности именно тех реальных условий, которые имели место на Земле несколько миллиардов лет тому назад, сегодня на самом деле не существует.
   Второе и, как кажется, главное. Получаемые результаты вообще не вправе интерпретироваться нами таким образом, что то единственное стечение обстоятельств, которое только и делает возможным самопроизвольное зарождение жизни, возникает лишь после реализации всех других, обреченных на неудачу комбинаций. Математическая вероятность любого события, будь то выпадение игральной кости или отказ компьютера, означает собой совершенно иное, – а именно то, что только при многократном (а еще вернее – неограниченно большом) повторениивсей серии событий шанс какого-то одного из них будет стремиться к расчетной величине. Там же, где история материальной действительности реализуется лишь однажды, возможны любые «чудеса». Так, игральная кость выпадает какой-то (заранее определенной) гранью лишь в среднем один раз из шести. Но ничто не мешает этой (заранее определенной) грани выпасть и сразу. Больше того, ничто не мешает ей выпадать одной и той же гранью все шесть (и больше) раз подряд. Таким образом, всегда остается неустранимая логическими средствами возможность утверждать, что именно так (или почти так, ибо все-таки потребовалось несколько миллиардов лет) в действительности и было на нашей Земле. В противном случае Вселенная и по сию пору оставалась бы абсолютно безжизненной и, следовательно, не было бы ни развитых форм сознания, ни, следовательно, сегодняшней дискуссии о механизмах его формирования.
   Таким образом, в строгом смысле ни один из подобных расчетов вообще неверен. Однако принципиальная их несостоятельность проистекает отнюдь не из того, что ими не учитываются реальные условия, которые в действительности исключают равную вероятность всех вариантов (хотя, конечно, и из этого тоже), но имеет своим основанием куда более фундаментальные методологические основания.
   На самом деле слепым механическим перебором вариантов абсолютно невозможно создать решительно ничего нового. Мы еще будем говорить об этом. Здесь же можно было бы привести в пример шахматиста, рассчитывающего победную комбинацию. Общее число вариантов, возникающих при расчете возникающих следствий на глубину всего лишь в несколько ходов, пусть и меньше приведенных выше величин, но все же способно вызвать священный трепет у любого дилетанта. Однако в действительности шахматист никогда не перебирает все варианты; подавляющее большинство из них просто отбрасывается им как априори ошибочные. Именно поэтому гроссмейстер легко переигрывает любой компьютер (и даже «Глубоко голубой» идиот смог одержать победу над Гарри Каспаровым только благодаря тому, что им на протяжении всего состязания управляли не только высококлассные программисты, но и профессиональные шахматисты, предварительно хорошо изучившие и психологию, и характер игры чемпиона мира). Впрочем, даже самым посредственным игрокам, к каким, без сомнения, относится и автор, никогда не придет в голову подставить под бой собственного короля, и уж тем более это не придет в голову гроссмейстеру. Конечно, потенции природы могут быть несопоставимы даже с даром шахматных чемпионов, но все же – а, может быть, именно вследствие этого – многое должно заранее отметаться и ею.
   Таким образом, можно и даже необходимо предположить, что и в самой природе существует какой-то особый механизм, способствующий предварительному отбраковыванию больших статистических массивов. Вернее сказать, механизм категорически исключающий необходимость слепого монотонного перебора без исключения всех, даже абсолютно неприемлемых, вариантов.
   В пользу этого предположения можно привести два разных истолкования все тех же фигурирующих в литературе расчетов.
   Первое сводится к следующему. Заглавие настоящей работы, включая знаки препинания и пробелы составляет 29 знаков. Отсюда вероятность чисто случайного его набора из примерно сорока знаков русского языка (включая сюда те же знаки препинания и пробелы) будет равняться примерно 10^-47. Это очень малая величина, практически исключающая подобную случайность. Но текст заголовка мог быть и другим, полностью сохраняя при этом его смысл, скажем, «Креационизм или эволюционизм?». Поэтому обратимся к сочетаниям, где значим буквально каждый звук и недопустимы абсолютно никакие перестановки или замены.
   Обычный сонет в сумме составляет около 300 (и более) знаков. Это означает, что вероятность чисто случайного его написания путем простого перебора всех возможных знаков будет равна примерно 10^-480. (Здесь общее количество знаков так же, как и выше, принимается равным сорока, то есть включает в себя не только все буквы русского алфавита, но и знаки препинания.) Текст Евангелий – это уже многие десятки тысяч знаков. Округлим сумму до 10^-100000.
   Казалось бы, ясно, что никакой сгусток материи не в состоянии самопроизвольно создать все это. Обычно в пример берется безмозглая обезьяна; утверждается, что ей, или даже любому количеству ей подобных, во веки веков не удастся, случайно перебирая, скажем, клавиши пишущей машинки или компьютера, точно воспроизвести не то что текст любого Евангелия, но и небольшой сонет.
   Однако заметим: человек – это именно сгусток материи. И вот этот сгусток берет в руки перо… и создает-таки невозможное! Правда, – возразят нам – он обладает разумом и даже такой тонкой вещью, как поэтическое вдохновение, и только благодаря этому обстоятельству невозможное становится реальностью. Но (для материалистически мыслящего человека, верующего в непогрешимую святость эволюционного происхождения и развития жизни) точная интерпретация этого факта означает, что разумом и вдохновением обладает не что (и даже жестче – ничто) иное, как последовательно развившийся сгусток материи. А значит, в конечном счете, создает-таки все статистически невозможное именно она.
   Словом, в рамках до конца последовательного эволюционизма поступательно развивающейся природе вполне доступно и не такое.
   Второе в сущности столь же очевидно, но еще более парадоксально.
   Посадим за ту же клавиатуру пишущей машинки или компьютера обладающих вполне развитым сознанием и прикосновенных все к тому же творческому вдохновению индивидуумов и поручим им ту же самую, что и нашим обезьянам, задачу – в точности воспроизвести текст какого-то стихотворения (предполагается, что никто из испытуемых не знает его наизусть). При этом разрешается перед тем как приступить к работе подробно описать содержание стиха, его метр, его образный строй, тональность, словом, все, что только можно. Иначе говоря, предоставим в их распоряжение все то, в чем обычно (в подобных примерах) отказывается обезьяне. И все же, несмотря ни на наличие разума, ни даже на заведомо льготные условия эксперимента, наши подопытные вряд ли сумеют справиться с поставленным. Они, разумеется, никогда не станут набирать абсолютно бессмысленные знакосочетания, другими словами, во много раз сократят общий объем возможных переборов, но это им все равно не поможет.
   Подобные примеры дают основание для следующего вывода: такого рода аргументы вообще не имеют права на использование. Они решительно ничего не доказывают, равно как и ничего не опровергают. Больше того: подобное применение статистики – это свидетельство полного непонимания природы случайности (равно, впрочем, как и существа информационных процессов). Или, говоря более академичным языком, все это является свидетельством применения неадекватного понятийного аппарата для описания таких сложных явлений, как природа, жизнь, разум.
   Эти же примеры дают основание и для формулировки уместной в рассматриваемом контексте гипотезы.
   Казалось бы, терриконы стихов, поэм, романов, за века накопленных европейской культурой, перепевают все то, что когда-то уже было сказано о любви в «Песни песней» царя Соломона. Так, может быть, и «поэма жизни» разрешима для разных органомолекулярных «языков», допускает использование далеко не одного строя микробиологических «образов», разной полипептидной «метрики»? В самом ли деле реализовавшийся в условиях Земли вариант жизни был единственно возможным? Ведь стоит только допустить, что вариантов решения могло быть бесконечно много (или даже просто несколько), и проблема принимает совершенно иное измерение.