Страница:
the silver would hold onto the surface very nicely.
But it worked only on a few plastics, and new kinds of plastics were
coming out all the time, such as methylmethacrylate (which we call
plexiglass, now), that we couldn't plate, directly, at first. And cellulose
acetate, which was very cheap, was another one we couldn't plate at first,
though we finally discovered that putting it in sodium hydroxide for a
little while before using the stannous chloride made it plate very well.
I was pretty successful as a "chemist" in the company. My advantage was
that my pal had done no chemistry at all; he had done no experiments; he
just knew how to do something once. I set to work putting lots of different
knobs in bottles, and putting all kinds of chemicals in. By trying
everything and keeping track of everything I found ways of plating a wider
range of plastics than he had done before.
I was also able to simplify his process. From looking in books I
changed the reducing agent from glucose to formaldehyde, and was able to
recover 100 percent of the silver immediately, instead of having to recover
the silver left in solution at a later time.
I also got the stannous hydroxide to dissolve in water by adding a
little bit of hydrochloric acid -- something I remembered from a college
chemistry course -- so a step that used to take hours now took about five
minutes.
My experiments were always being interrupted by the salesman, who would
come back with some plastic from a prospective customer. I'd have all these
bottles lined up, with everything marked, when all of a sudden, "You gotta
stop the experiment to do a 'super job' for the sales department!" So, a lot
of experiments had to be started more than once.
One time we got into one hell of a lot of trouble. There was some
artist who was trying to make a picture for the cover of a magazine about
automobiles. He had very carefully built a wheel out of plastic, and somehow
or other this salesman had told him we could plate anything, so the artist
wanted us to metal-plate the hub, so it would be a shiny, silver hub. The
wheel was made of a new plastic that we didn't know very well how to plate
-- the fact is, the salesman never knew what we could plate, so he was
always promising things -- and it didn't work the first time. So, to fix it
up we had to get the old silver off, and we couldn't get it off easily. I
decided to use concentrated nitric acid on it, which took the silver off all
right, but also made pits and holes in the plastic. We were really in hot
water that time! In fact, we had lots of "hot water" experiments.
The other fellas in the company decided we should run advertisements in
Modern Plastics magazine. A few things we metal-plated were very pretty.
They looked good in the advertisements. We also had a few things out in a
showcase in front, for prospective customers to look at, but nobody could
pick up the things in the advertisements or in the showcase to see how well
the plating stayed on. Perhaps some of them were, in fact, pretty good jobs.
But they were made specially; they were not regular products.
Right after I left the company at the end of the summer to go to
Princeton, they got a good offer from somebody who wanted to metal-plate
plastic pens. Now people could have silver pens that were light, and easy,
and cheap. The pens immediately sold, all over, and it was rather exciting
to see people walking around everywhere with these pens -- and you knew
where they came from.
But the company hadn't had much experience with the material -- or
perhaps with the filler that was used in the plastic (most plastics aren't
pure; they have a "filler," which in those days wasn't very well controlled)
-- and the darn things would develop a blister. When you have something in
your hand that has a little blister that starts to peel, you can't help
fiddling with it. So everybody was fiddling with all the peelings coming off
the pens.
Now the company had this emergency problem to fix the pens, and my pal
decided he needed a big microscope, and so on. He didn't know what he was
going to look at, or why, and it cost his company a lot of money for this
fake research. The result was, they had trouble: They never solved the
problem, and the company failed, because their first big job was such a
failure.
A few years later I was in Los Alamos, where there was a man named
Frederic de Hoffman, who was a sort of scientist; but more, he was also very
good at administrating. Not highly trained, he liked mathematics, and worked
very hard; he compensated for his lack of training by hard work. Later he
became the president or vice president of General Atomics and he was a big
industrial character after that. But at the time he was just a very
energetic, open-eyed, enthusiastic boy, helping along with the Project as
best he could.
One day we were eating at the Fuller Lodge, and he told me he had been
working in England before coming to Los Alamos.
"What kind of work were you doing there?" I asked.
"I was working on a process for metal-plating plastics. I was one of
the guys in the laboratory."
"How did it go?"
"It was going along pretty well, but we had our problems."
"Oh?"
"Just as we were beginning to develop our process, there was a company
in New York..."
"What company in New York?"
"It was called the Metaplast Corporation. They were developing further
than we were."
"How could you tell?"
"They were advertising all the time in Modern Plastics with full-page
advertisements showing all the things they could plate, and we realized that
they were further along than we were."
"Did you have any stuff from them?"
"No, but you could tell from the advertisements that they were way
ahead of what we could do. Our process was pretty good, but it was no use
trying to compete with an American process like that."
"How many chemists did you have working in the lab?"
"We had six chemists working."
"How many chemists do you think the Metaplast Corporation had?"
"Oh! They must have had a real chemistry department!"
"Would you describe for me what you think the chief research chemist at
the Metaplast Corporation might look like, and how his laboratory might
work?"
"I would guess they must have twenty-five or fifty chemists, and the
chief research chemist has his own office -- special, with glass. You know,
like they have in the movies -- guys coming in all the time with research
projects that they're doing, getting his advice, and rushing off to do more
research, people coming in and out all the time. With twenty-five or fifty
chemists, how the hell could we compete with them?"
"You'll be interested and amused to know that you are now talking to
the chief research chemist of the Metaplast Corporation, whose staff
consisted of one bottle-washer!"
--------
--------
When I was an undergraduate at MIT I loved it. I thought it was a great
place, and I wanted to go to graduate school there too, of course. But when
I went to Professor Slater and told him of my intentions, he said, "We won't
let you in here."
I said, "What?"
Slater said, "Why do you think you should go to graduate school at
MIT?"
"Because MIT is the best school for science in the country."
"You think that?"
"Yeah."
"That's why you should go to some other school. You should find out how
the rest of the world is."
So I decided to go to Princeton. Now Princeton had a certain aspect of
elegance. It was an imitation of an English school, partly. So the guys in
the fraternity, who knew my rather rough, informal manners, started making
remarks like "Wait till they find out who they've got coming to Princeton!
Wait till they see the mistake they made!" So I decided to try to be nice
when I got to Princeton.
My father took me to Princeton in his car, and I got my room, and he
left. I hadn't been there an hour when I was met by a man: "I'm the Mahstah
of Residences heah, and I should like to tell you that the Dean is having a
Tea this aftanoon, and he should like to have all of you come. Perhaps you
would be so kind as to inform your roommate, Mr. Serette."
That was my introduction to the graduate "College" at Princeton, where
all the students lived. It was like an imitation Oxford or Cambridge --
complete with accents (the master of residences was a professor of "French
littrachaw"). There was a porter downstairs, everybody had nice rooms, and
we ate all our meals together, wearing academic gowns, in a great hall which
had stained-glass windows.
So the very afternoon I arrived in Princeton I'm going to the dean's
tea, and I didn't even know what a "tea" was, or why! I had no social
abilities whatsoever; I had no experience with this sort of thing.
So I come up to the door, and there's Dean Eisenhart, greeting the new
students: "Oh, you're Mr. Feynman," he says. "We're glad to have you." So
that helped a little, because he recognized me, somehow.
I go through the door, and there are some ladies, and some girls, too.
It's all very formal and I'm thinking about where to sit down and should I
sit next to this girl, or not, and how should I behave, when I hear a voice
behind me.
"Would you like cream or lemon in your tea, Mr. Feynman?" It's Mrs.
Eisenhart, pouring tea.
"I'll have both, thank you," I say, still looking for where I'm going
to sit, when suddenly I hear "Heh-heh-heh-heh-heh. Surely you're joking, Mr.
Feynman."
Joking? Joking? What the hell did I just say? Then I realized what I
had done. So that was my first experience with this tea business.
Later on, after I had been at Princeton longer, I got to understand
this "Heh-heh-heh-heh-heh." In fact it was at that first tea, as I was
leaving, that I realized it meant "You're making a social error." Because
the next time I heard this same cackle, "Heh-heh-heh-heh-heh," from Mrs.
Eisenhart, somebody was kissing her hand as he left.
Another time, perhaps a year later, at another tea, I was talking to
Professor Wildt, an astronomer who had worked out some theory about the
clouds on Venus. They were supposed to be formaldehyde (it's wonderful to
know what we once worried about) and he had it all figured out, how the
formaldehyde was precipitating, and so on. It was extremely interesting. We
were talking about all this stuff, when a little lady came up and said, "Mr.
Feynman, Mrs. Eisenhart would like to see you."
"OK, just a minute..." and I kept talking to Wildt.
The little lady came back again and said, "Mr. Feynman, Mrs. Eisenhart
would like to see you."
"OK, OK!" and I go over to Mrs. Eisenhart, who's pouring tea.
"Would you like to have some coffee or tea, Mr. Feynman?"
"Mrs. So-and-so says you wanted to talk to me."
"Heh-heh-heh-heh-heh. Would you like to have coffee, or tea, Mr.
Feynman?"
"Tea," I said, "thank you."
A few moments later Mrs. Eisenhart's daughter and a schoolmate came
over, and we were introduced to each other. The whole idea of this
"heh-heh-heh" was: Mrs. Eisenhart didn't want to talk to me, she wanted me
over there getting tea when her daughter and friend came over, so they would
have someone to talk to. That's the way it worked. By that time I knew what
to do when I heard "Heh-heh-heh-heh-heh." I didn't say, "What do you mean,
'Heh-heh-heh-heh-heh'?"; I knew the "heh-heh-heh" meant "error," and I'd
better get it straightened out.
Every night we wore academic gowns to dinner. The first night it scared
the life out of me, because I didn't like formality. But I soon realized
that the gowns were a great advantage. Guys who were out playing tennis
could rush into their room, grab their academic gown, and put it on. They
didn't have to take time off to change their clothes or take a shower. So
underneath the gowns there were bare arms, T-shirts, everything.
Furthermore, there was a rule that you never cleaned the gown, so you could
tell a first-year man from a second-year man, from a third-year man, from a
pig! You never cleaned the gown and you never repaired it, so the first-year
men had very nice, relatively clean gowns, but by the time you got to the
third year or so, it was nothing but some kind of cardboard thing on your
shoulders with tatters hanging down from it.
So when I got to Princeton, I went to that tea on Sunday afternoon and
had dinner that evening in an academic gown at the "College." But on Monday,
the first thing I wanted to do was to see the cyclotron.
MIT had built a new cyclotron while I was a student there, and it was
just beautiful! The cyclotron itself was in one room, with the controls in
another room. It was beautifully engineered. The wires ran from the control
room to the cyclotron underneath in conduits, and there was a whole console
of buttons and meters. It was what I would call a gold-plated cyclotron.
Now I had read a lot of papers on cyclotron experiments, and there
weren't many from MIT. Maybe they were just starting. But there were lots of
results from places like Cornell, and Berkeley, and above all, Princeton.
Therefore what I really wanted to see, what I was looking forward to, was
the PRINCETON CYCLOTRON. That must be something.
So first thing on Monday, I go into the physics building and ask,
"Where is the cyclotron -- which building?"
"It's downstairs, in the basement -- at the end of the hall."
In the basement? It was an old building. There was no room in the
basement for a cyclotron. I walked down to the end of the hall, went through
the door, and in ten seconds I learned why Princeton was right for me -- the
best place for me to go to school. In this room there were wires strung all
over the place! Switches were hanging from the wires, cooling water was
dripping from the valves, the room was full of stuff, all out in the open.
Tables piled with tools were everywhere; it was the most godawful mess you
ever saw. The whole cyclotron was there in one room, and it was complete,
absolute chaos!
It reminded me of my lab at home. Nothing at MIT had ever reminded me
of my lab at home. I suddenly realized why Princeton was getting results.
They were working with the instrument. They built the instrument; they knew
where everything was, they knew how everything worked, there was no engineer
involved, except maybe he was working there too. It was much smaller than
the cyclotron at MIT, and "gold-plated"? -- it was the exact opposite. When
they wanted to fix a vacuum, they'd drip glyptal on it, so there were drops
of glyptal on the floor. It was wonderful! Because they worked with it. They
didn't have to sit in another room and push buttons! (Incidentally, they had
a fire in that room, because of all the chaotic mess that they had -- too
many wires -- and it destroyed the cyclotron. But I'd better not tell about
that!)
(When I got to Cornell I went to look at the cyclotron there. This
cyclotron hardly required a room: It was about a yard across -- the diameter
of the whole thing. It was the world's smallest cyclotron, but they had got
fantastic results. They had all kinds of special techniques and tricks. If
they wanted to change something in the "D's" -- the D-shaped half circles
that the particles go around -- they'd take a screwdriver, and remove the
D's by hand, fix them, and put them back. At Princeton it was a lot harder,
and at MIT you had to take a crane that came rolling across the ceiling,
lower the hooks, and it was a hellllll of a job.)
I learned a lot of different things from different schools. MIT is a
very good place; I'm not trying to put it down. I was just in love with it.
It has developed for itself a spirit, so that every member of the whole
place thinks that it's the most wonderful place in the world -- it's the
center, somehow, of scientific and technological development in the United
States, if not the world. It's like a New Yorker's view of New York: they
forget the rest of the country. And while you don't get a good sense of
proportion there, you do get an excellent sense of being with it and in it,
and having motivation and desire to keep on -- that you're specially chosen,
and lucky to be there.
So MIT was good, but Slater was right to warn me to go to another
school for my graduate work. And I often advise my students the same way.
Learn what the rest of the world is like. The variety is worthwhile.
I once did an experiment in the cyclotron laboratory at Princeton that
had some startling results. There was a problem in a hydrodynamics book that
was being discussed by all the physics students. The problem is this: You
have an S-shaped lawn sprinkler -- an S-shaped pipe on a pivot -- and the
water squirts out at right angles to the axis and makes it spin in a certain
direction. Everybody knows which way it goes around; it backs away from the
outgoing water. Now the question is this: If you had a lake, or swimming
pool -- a big supply of water -- and you put the sprinkler completely under
water, and sucked the water in, instead of squirting it out, which way would
it turn? Would it turn the same way as it does when you squirt water out
into the air, or would it turn the other way?
The answer is perfectly clear at first sight. The trouble was, some guy
would think it was perfectly clear one way, and another guy would think it
was perfectly clear the other way. So everybody was discussing it. I
remember at one particular seminar, or tea, somebody went up to Prof. John
Wheeler and said, "Which way do you think it goes around?"
Wheeler said, "Yesterday, Feynman convinced me that it went backwards.
Today, he's convinced me equally well that it goes around the other way. I
don't know what he'll convince me of tomorrow!"
I'll tell you an argument that will make you think it's one way, and
another argument that will make you think it's the other way, OK?
One argument is that when you're sucking water in, you're sort of
pulling the water with the nozzle, so it will go forward, towards the
incoming water.
But then another guy comes along and says, "Suppose we hold it still
and ask what kind of a torque we need to hold it still. In the case of the
water going out, we all know you have to hold it on the outside of the
curve, because of the centrifugal force of the water going around the curve.
Now, when the water goes around the same curve the other way, it still makes
the same centrifugal force toward the outside of the curve. Therefore the
two cases are the same, and the sprinkler will go around the same way,
whether you're squirting water out or sucking it in."
After some thought, I finally made up my mind what the answer was, and
in order to demonstrate it, I wanted to do an experiment.
In the Princeton cyclotron lab they had a big carboy -- a monster
bottle of water. I thought this was just great for the experiment. I got a
piece of copper tubing and bent it into an S-shape. Then in the middle I
drilled a hole, stuck in a piece of rubber hose, and led it up through a
hole in a cork I had put in the top of the bottle. The cork had another
hole, into which I put another piece of rubber hose, and connected it to the
air pressure supply of the lab. By blowing air into the bottle, I could
force water into the copper tubing exactly as if I were sucking it in. Now,
the S-shaped tubing wouldn't turn around, but it would twist (because of the
flexible rubber hose), and I was going to measure the speed of the water
flow by measuring how far it squirted out of the top of the bottle.
I got it all set up, turned on the air supply, and it went "Puup!" The
air pressure blew the cork out of the bottle. I wired it in very well, so it
wouldn't jump out. Now the experiment was going pretty good. The water was
coming out, and the hose was twisting, so I put a little more pressure on
it, because with a higher speed, the measurements would be more accurate. I
measured the angle very carefully, and measured the distance, and increased
the pressure again, and suddenly the whole thing just blew glass and water
in all directions throughout the laboratory. A guy who had come to watch got
all wet and had to go home and change his clothes (it's a miracle he didn't
get cut by the glass), and lots of cloud chamber pictures that had been
taken patiently using the cyclotron were all wet, but for some reason I was
far enough away, or in some such position that I didn't get very wet. But
I'll always remember how the great Professor Del Sasso, who was in charge of
the cyclotron, came over to me and said sternly, "The freshman experiments
should be done in the freshman laboratory!"
--------
On Wednesdays at the Princeton Graduate College, various people would
come in to give talks. The speakers were often interesting, and in the
discussions after the talks we used to have a lot of fun. For instance, one
guy in our school was very strongly anti-Catholic, so he passed out
questions in advance for people to ask a religious speaker, and we gave the
speaker a hard time.
Another time somebody gave a talk about poetry. He talked about the
structure of the poem and the emotions that come with it; he divided
everything up into certain kinds of classes. In the discussion that came
afterwards, he said, "Isn't that the same as in mathematics, Dr. Eisenhart?"
Dr. Eisenhart was the dean of the graduate school and a great professor
of mathematics. He was also very clever. He said, "I'd like to know what
Dick Feynman thinks about it in reference to theoretical physics." He was
always putting me on in this kind of situation.
I got up and said, "Yes, it's very closely related. In theoretical
physics, the analog of the word is the mathematical formula, the analog of
the structure of the poem is the interrelationship of the theoretical
bling-bling with the so-and-so" -- and I went through the whole thing,
making a perfect analogy. The speaker's eyes were beaming with happiness.
Then I said, "It seems to me that no matter what you say about poetry,
I could find a way of making up an analog with any subject, just as I did
for theoretical physics. I don't consider such analogs meaningful."
In the great big dining hall with stained-glass windows, where we
always ate, in our steadily deteriorating academic gowns, Dean Eisenhart
would begin each dinner by saying grace in Latin. After dinner he would
often get up and make some announcements. One night Dr. Eisenhart got up and
said, "Two weeks from now, a professor of psychology is coming to give a
talk about hypnosis. Now, this professor thought it would be much better if
we had a real demonstration of hypnosis instead of just talking about it.
Therefore he would like some people to volunteer to be hypnotized..."
I get all excited: There's no question but that I've got to find out
about hypnosis. This is going to be terrific!
Dean Eisenhart went on to say that it would be good if three or four
people would volunteer so that the hypnotist could try them out first to see
which ones would be able to be hypnotized, so he'd like to urge very much
that we apply for this. (He's wasting all this time, for God's sake!)
Eisenhart was down at one end of the hall, and I was way down at the
other end, in the back. There were hundreds of guys there. I knew that
everybody was going to want to do this, and I was terrified that he wouldn't
see me because I was so far back. I just had to get in on this
demonstration!
Finally Eisenhart said, "And so I would like to ask if there are going
to be any volunteers..."
I raised my hand and shot out of my seat, screaming as loud as I could,
to make sure that he would hear me: "MEEEEEEEEEEE!"
He heard me all right, because there wasn't another soul. My voice
reverberated throughout the hall -- it was very embarrassing. Eisenhart's
immediate reaction was, "Yes, of course, I knew you would volunteer, Mr.
Feynman, but I was wondering if there would be anybody else."
Finally a few other guys volunteered, and a week before the
demonstration the man came to practice on us, to see if any of us would be
good for hypnosis. I knew about the phenomenon, but I didn't know what it
was like to be hypnotized.
He started to work on me and soon I got into a position where he said,
"You can't open your eyes."
I said to myself, "I bet I could open my eyes, but I don't want to
disturb the situation: Let's see how much further it goes." It was an
interesting situation: You're only slightly fogged out, and although you've
lost a little bit, you're pretty sure you could open your eyes. But of
course, you're not opening your eyes, so in a sense you can't do it.
He went through a lot of stuff and decided that I was pretty good.
When the real demonstration came he had us walk on stage, and he
hypnotized us in front of the whole Princeton Graduate College. This time
the effect was stronger; I guess I had learned how to become hypnotized. The
hypnotist made various demonstrations, having me do things that I couldn't
normally do, and at the end he said that after I came out of hypnosis,
instead of returning to my seat directly, which was the natural way to go, I
would walk all the way around the room and go to my seat from the back.
All through the demonstration I was vaguely aware of what was going on,
and cooperating with the things the hypnotist said, but this time I decided,
"Damn it, enough is enough! I'm gonna go straight to my seat."
When it was time to get up and go off the stage, I started to walk
straight to my seat. But then an annoying feeling came over me: I felt so
uncomfortable that I couldn't continue. I walked all the way around the
hall.
I was hypnotized in another situation some time later by a woman. While
I was hypnotized she said, "I'm going to light a match, blow it out, and
immediately touch the back of your hand with it. You will feel no pain."
I thought, "Baloney!" She took a match, lit it, blew it out, and
touched it to the back of my hand. It felt slightly warm. My eyes were
closed throughout all of this, but I was thinking, "That's easy. She lit one
match, but touched a different match to my hand. There's nothin' to that;
it's a fake!"
When I came out of the hypnosis and looked at the back of my hand, I
got the biggest surprise: There was a burn on the back of my hand. Soon a
blister grew, and it never hurt at all, even when it broke.
So I found hypnosis to be a very interesting experience. All the time
you're saying to yourself, "I could do that, but I won't" -- which is just
another way of saying that you can't.
--------
In the Graduate College dining room at Princeton everybody used to sit
with his own group. I sat with the physicists, but after a bit I thought: It
would be nice to see what the rest of the world is doing, so I'll sit for a
week or two in each of the other groups.
When I sat with the philosophers I listened to them discuss very
seriously a book called Process and Reality by Whitehead. They were using
words in a funny way, and I couldn't quite understand what they were saying.
Now I didn't want to interrupt them in their own conversation and keep
asking them to explain something, and on the few occasions that I did,
they'd try to explain it to me, but I still didn't get it. Finally they
invited me to come to their seminar.
They had a seminar that was like a class. It had been meeting once a
week to discuss a new chapter out of Process and Reality -- some guy would
give a report on it and then there would be a discussion. I went to this
seminar promising myself to keep my mouth shut, reminding myself that I
didn't know anything about the subject, and I was going there just to watch.
What happened there was typical -- so typical that it was unbelievable,
but true. First of all, I sat there without saying anything, which is almost
unbelievable, but also true. A student gave a report on the chapter to be
studied that week. In it Whitehead kept using the words "essential object"
in a particular technical way that presumably he had defined, but that I
didn't understand.
After some discussion as to what "essential object" meant, the
professor leading the seminar said something meant to clarify things and
drew something that looked like lightning bolts on the blackboard. "Mr.
Feynman," he said, "would you say an electron is an 'essential object'?"
Well, now I was in trouble. I admitted that I hadn't read the book, so
I had no idea of what Whitehead meant by the phrase; I had only come to
watch. "But," I said, "I'll try to answer the professor's question if you
will first answer a question from me, so I can have a better idea of what
'essential object' means. Is a brick an essential object?"
What I had intended to do was to find out whether they thought
theoretical constructs were essential objects. The electron is a theory that
we use; it is so useful in understanding the way nature works that we can
almost call it real. I wanted to make the idea of a theory clear by analogy.
In the case of the brick, my next question was going to be, "What about the
inside of the brick?" -- and I would then point out that no one has ever
seen the inside of a brick. Every time you break the brick, you only see the
surface. That the brick has an inside is a simple theory which helps us
understand things better. The theory of electrons is analogous. So I began
by asking, "Is a brick an essential object?"
Then the answers came out. One man stood up and said, "A brick as an
individual, specific brick. That is what Whitehead means by an essential
object."
Another man said, "No, it isn't the individual brick that is an
essential object; it's the general character that all bricks have in common
-- their 'brickness' -- that is the essential object."
Another guy got up and said, "No, it's not in the bricks themselves.
'Essential object' means the idea in the mind that you get when you think of
bricks."
Another guy got up, and another, and I tell you I have never heard such
ingenious different ways of looking at a brick before. And, just like it
should in all stories about philosophers, it ended up in complete chaos. In
all their previous discussions they hadn't even asked themselves whether
such a simple object as a brick, much less an electron, is an "essential
object."
After that I went around to the biology table at dinner time. I had
always had some interest in biology, and the guys talked about very
interesting things. Some of them invited me to come to a course they were
going to have in cell physiology. I knew something about biology, but this
was a graduate course. "Do you think I can handle it? Will the professor let
me in?" I asked.
They asked the instructor, E. Newton Harvey, who had done a lot of
research on light-producing bacteria. Harvey said I could join this special,
advanced course provided one thing -- that I would do all the work, and
report on papers just like everybody else.
Before the first class meeting, the guys who had invited me to take the
course wanted to show me some things under the microscope. They had some
plant cells in there, and you could see some little green spots called
chloroplasts (they make sugar when light shines on them) circulating around.
I looked at them and then looked up: "How do they circulate? What pushes
them around?" I asked.
Nobody knew. It turned out that it was not understood at that time. So
right away I found out something about biology: it was very easy to find a
question that was very interesting, and that nobody knew the answer to. In
physics you had to go a little deeper before you could find an interesting
question that people didn't know.
When the course began, Harvey started out by drawing a great, big
picture of a cell on the blackboard and labeling all the things that are in
a cell. He then talked about them, and I understood most of what he said.
After the lecture, the guy who had invited me said, "Well, how did you
like it?"
"Just fine," I said. "The only part I didn't understand was the part
about lecithin. What is lecithin?"
The guy begins to explain in a monotonous voice: "All living creatures,
both plant and animal, are made of little bricklike objects called
'cells'..."
"Listen," I said, impatiently, "I know all that; otherwise I wouldn't
be in the course. What is lecithin?"
"I don't know."
I had to report on papers along with everyone else, and the first one I
was assigned was on the effect of pressure on cells -- Harvey chose that
topic for me because it had something that had to do with physics. Although
I understood what I was doing, I mispronounced everything when I read my
paper, and the class was always laughing hysterically when I'd talk about
"blastospheres" instead of "blastomeres," or some other such thing.
The next paper selected for me was by Adrian and Bronk. They
demonstrated that nerve impulses were sharp, single-pulse phenomena. They
had done experiments with cats in which they had measured voltages on
nerves.
I began to read the paper. It kept talking about extensors and flexors,
the gastrocnemius muscle, and so on. This and that muscle were named, but I
hadn't the foggiest idea of where they were located in relation to the
nerves or to the cat. So I went to the librarian in the biology section and
asked her if she could find me a map of the cat.
"A map of the cat, sir?" she asked, horrified. "You mean a zoological
chart!" From then on there were rumors about some dumb biology graduate
student who was looking for a "map of the cat."
When it came time for me to give my talk on the subject, I started off
by drawing an outline of the cat and began to name the various muscles.
The other students in the class interrupt me: "We know all that!"
"Oh," I say, "you do? Then no wonder I can catch up with you so fast
after you've had four years of biology." They had wasted all their time
memorizing stuff like that, when it could be looked up in fifteen minutes.
After the war, every summer I would go traveling by car somewhere in
the United States. One year, after I was at Caltech, I thought, "This
summer, instead of going to a different place, I'll go to a different
field."
It was right after Watson and Crick's discovery of the DNA spiral.
There were some very good biologists at Caltech because Delbrück had his lab
there, and Watson came to Caltech to give some lectures on the coding
systems of DNA. I went to his lectures and to seminars in the biology
department and got full of enthusiasm. It was a very exciting time in
biology, and Caltech was a wonderful place to be.
I didn't think I was up to doing actual research in biology, so for my
summer visit to the field of biology I thought I would just hang around the
biology lab and "wash dishes," while I watched what they were doing. I went
over to the biology lab to tell them my desire, and Bob Edgar, a young
post-doc who was sort of in charge there, said he wouldn't let me do that.
He said, "You'll have to really do some research, just like a graduate
student, and we'll give you a problem to work on." That suited me fine.
I took a phage course, which told us how to do research with
bacteriophages (a phage is a virus that contains DNA and attacks bacteria).
Right away I found that I was saved a lot of trouble because I knew some
physics and mathematics. I knew how atoms worked in liquids, so there was
nothing mysterious about how the centrifuge worked. I knew enough statistics
to understand the statistical errors in counting little spots in a dish. So
while all the biology guys were trying to understand these "new" things, I
could spend my time learning the biology part.
There was one useful lab technique I learned in that course which I
still use today. They taught us how to hold a test tube and take its cap off
with one hand (you use your middle and index fingers), while leaving the
other hand free to do something else (like hold a pipette that you're
sucking cyanide up into). Now, I can hold my toothbrush in one hand, and
with the other hand, hold the tube of toothpaste, twist the cap off, and put
it back on.
It had been discovered that phages could have mutations which would
affect their ability to attack bacteria, and we were supposed to study those
mutations. There were also some phages that would have a second mutation
which would reconstitute their ability to attack bacteria. Some phages which
mutated back were exactly the same as they were before. Others were not:
There was a slight difference in their effect on bacteria -- they would act
faster or slower than normal, and the bacteria would grow slower or faster
than normal. In other words, there were "back mutations," but they weren't
always perfect; sometimes the phage would recover only part of the ability
it had lost.
Bob Edgar suggested that I do an experiment which would try to find out
if the back mutations occurred in the same place on the DNA spiral. With
great care and a lot of tedious work I was able to find three examples of
back mutations which had occurred very close together -- closer than
anything they had ever seen so far -- and which partially restored the
phage's ability to function. It was a slow job. It was sort of accidental:
You had to wait around until you got a double mutation, which was very rare.
I kept trying to think of ways to make a phage mutate more often and
how to detect mutations more quickly, but before I could come up with a good
technique the summer was over, and I didn't feel like continuing on that
problem.
However, my sabbatical year was coming up, so I decided to work in the
same biology lab but on a different subject. I worked with Matt Meselson to
some extent, and then with a nice fella from England named J. D. Smith. The
problem had to do with ribosomes, the "machinery" in the cell that makes
protein from what we now call messenger RNA. Using radioactive substances,
we demonstrated that the RNA could come out of ribosomes and could be put
back in.
I did a very careful job in measuring and trying to control everything,
but it took me eight months to realize that there was one step that was
sloppy. In preparing the bacteria, to get the ribosomes out, in those days
you ground it up with alumina in a mortar. Everything else was chemical and
all under control, but you could never repeat the way you pushed the pestle
around when you were grinding the bacteria. So nothing ever came of the
experiment.
Then I guess I have to tell about the time I tried with Hildegarde
Lamfrom to discover whether peas could use the same ribosomes as bacteria.
The question was whether the ribosomes of bacteria can manufacture the
proteins of humans or other organisms. She had just developed a scheme for
getting the ribosomes out of peas and giving them messenger RNA so that they
would make pea proteins. We realized that a very dramatic and important
question was whether ribosomes from bacteria, when given the peas' messenger
RNA, would make pea protein or bacteria protein. It was to be a very
dramatic and fundamental experiment.
Hildegarde said, "I'll need a lot of ribosomes from bacteria."
Meselson and I had extracted enormous quantities of ribosomes from E.
coli for some other experiment. I said, "Hell, I'll just give you the
ribosomes we've got. We have plenty of them in my refrigerator at the lab."
It would have been a fantastic and vital discovery if I had been a good
biologist. But I wasn't a good biologist. We had a good idea, a good
experiment, the right equipment, but I screwed it up: I gave her infected
ribosomes -- the grossest possible error that you could make in an
experiment like that. My ribosomes had been in the refrigerator for almost a
month, and had become contaminated with some other living things. Had I
prepared those ribosomes promptly over again and given them to her in a
serious and careful way, with everything under control, that experiment
would have worked,, and we would have been the first to demonstrate the
uniformity of life: the machinery of making proteins, the ribosomes, is the
same in every creature. We were there at the right place, we were doing the
right things, but I was doing things as an amateur -- stupid and sloppy.
You know what it reminds me of? The husband of Madame Bovary in
Flaubert's book, a dull country doctor who had some idea of how to fix club
feet, and all he did was screw people up. I was similar to that unpracticed
surgeon. The other work on the phage I never wrote up -- Edgar kept asking
me to write it up, but I never got around to it. That's the trouble with not
being in your own field: You don't take it seriously.
I did write something informally on it. I sent it to Edgar, who laughed
when he read it. It wasn't in the standard form that biologists use --
first, procedures, and so forth. I spent a lot of time explaining things
that all the biologists knew. Edgar made a shortened version, but I couldn't
understand it. I don't think they ever published it. I never published it
directly.
Watson thought the stuff I had done with phages was of some interest,
so he invited me to go to Harvard. I gave a talk to the biology department
about the double mutations which occurred so close together. I told them my
guess was that one mutation made a change in the protein, such as changing
the pH of an amino acid, while the other mutation made the opposite change
on a different amino acid in the same protein, so that it partially balanced
the first mutation -- not perfectly, but enough to let the phage operate
again. I thought they were two changes in the same protein, which chemically
compensated each other.
That turned out not to be the case. It was found out a few years later
by people who undoubtedly developed a technique for producing and detecting
the mutations faster, that what happened was, the first mutation was a
mutation in which an entire DNA base was missing. Now the "code" was shifted
and could not be "read" any more. The second mutation was either one in
which an extra base was put back in, or two more were taken out. Now the
code could be read again. The closer the second mutation occurred to the
first, the less message would be altered by the double mutation, and the
more completely the phage would recover its lost abilities. The fact that
there are three "letters" to code each amino acid was thus demonstrated.
While I was at Harvard that week, Watson suggested something and we did
an experiment together for a few days. It was an incomplete experiment, but
I learned some new lab techniques from one of the best men in the field.
But that was my big moment: I gave a seminar in the biology department
of Harvard! I always do that, get into something and see how far I can go.
I learned a lot of things in biology, and I gained a lot of experience.
I got better at pronouncing the words, knowing what not to include in a
paper or a seminar, and detecting a weak technique in an experiment. But I
love physics, and I love to go back to it.
--------
While I was still a graduate student at Princeton, I worked as a
research assistant under John Wheeler. He gave me a problem to work on, and
it got hard, and I wasn't getting anywhere. So I went back to an idea that I
had had earlier, at MIT. The idea was that electrons don't act on
themselves, they only act on other electrons.
There was this problem: When you shake an electron, it radiates energy,
and so there's a loss. That means there must be a force on it. And there
must be a different force when it's charged than when it's not charged. (If
the force were exactly the same when it was charged and not charged, in one
case it would lose energy, and in the other it wouldn't. You can't have two
different answers to the same problem.)
The standard theory was that it was the electron acting on itself that
made that force (called the force of radiation reaction), and I had only
electrons acting on other electrons. So I was in some difficulty, I
realized, by that time. (When I was at MIT, I got the idea without noticing
the problem, but by the time I got to Princeton, I knew that problem.)
What I thought was: I'll shake this electron. It will make some nearby
electron shake, and the effect back from the nearby electron would be the
origin of the force of radiation reaction. So I did some calculations and
took them to Wheeler.
Wheeler, right away, said, "Well, that isn't right because it varies
inversely as the square of the distance of the other electrons, whereas it
should not depend on any of these variables at all. It'll also depend
inversely upon the mass of the other electron; it'll be proportional to the
charge on the other electron."
What bothered me was, I thought he must have done the calculation. I
only realized later that a man like Wheeler could immediately see all that
stuff when you give him the problem. I had to calculate, but he could see.
Then he said, "And it'll be delayed -- the wave returns late -- so all
you've described is reflected light."
"Oh! Of course," I said.
"But wait," he said. "Let's suppose it returns by advanced waves --
reactions backward in time -- so it comes back at the right time. We saw the
effect varied inversely as the square of the distance, but suppose there are
a lot of electrons, all over space: the number is proportional to the square
of the distance. So maybe we can make it all compensate."
We found out we could do that. It came out very nicely, and fit very
well. It was a classical theory that could be right, even though it differed
from Maxwell's standard, or Lorentz's standard theory. It didn't have any
trouble with the infinity of self-action, and it was ingenious. It had
actions and delays, forwards and backwards in time -- we called it
"half-advanced and half-retarded potentials."
Wheeler and I thought the next problem was to turn to the quantum
theory of electrodynamics, which had difficulties (I thought) with the
self-action of the electron. We figured if we could get rid of the
difficulty first in classical physics, and then make a quantum theory out of
that, we could straighten out the quantum theory as well.
Now that we had got the classical theory right, Wheeler said, "Feynman,
you're a young fella -- you should give a seminar on this. You need
experience in giving talks. Meanwhile, I'll work out the quantum theory part
and give a seminar on that later."
So it was to be my first technical talk, and Wheeler made arrangements
with Eugene Wigner to put it on the regular seminar schedule.
A day or two before the talk I saw Wigner in the hall. "Feynman," he
said, "I think that work you're doing with Wheeler is very interesting, so
I've invited Russell to the seminar." Henry Norris Russell, the famous,
great astronomer of the day, was coming to the lecture!
Wigner went on. "I think Professor von Neumann would also be
interested." Johnny von Neumann was the greatest mathematician around. "And
Professor Pauli is visiting from Switzerland, it so happens, so I've invited
Professor Pauli to come" -- Pauli was a very famous physicist -- and by this
time, I'm turning yellow. Finally, Wigner said, "Professor Einstein only
rarely comes to our weekly seminars, but your work is so interesting that
I've invited him specially, so he's coming, too."
By this time I must have turned green, because Wigner said, "No, no!
Don't worry! I'll just warn you, though: If Professor Russell falls asleep
-- and he will undoubtedly fall asleep -- it doesn't mean that the seminar
is bad; he falls asleep in all the seminars. On the other hand, if Professor
Pauli is nodding all the time, and seems to be in agreement as the seminar
goes along, pay no attention. Professor Pauli has palsy."
I went back to Wheeler and named all the big, famous people who were
coming to the talk he got me to give, and told him I was uneasy about it.
"It's all right," he said. "Don't worry. I'll answer all the
questions."
So I prepared the talk, and when the day came, I went in and did
something that young men who have had no experience in giving talks often do
-- I put too many equations up on the blackboard. You see, a young fella
doesn't know how to say, "Of course, that varies inversely, and this goes
this way..." because everybody listening already knows; they can see it. But
he doesn't know. He can only make it come out by actually doing the algebra
-- and therefore the reams of equations.
But it worked only on a few plastics, and new kinds of plastics were
coming out all the time, such as methylmethacrylate (which we call
plexiglass, now), that we couldn't plate, directly, at first. And cellulose
acetate, which was very cheap, was another one we couldn't plate at first,
though we finally discovered that putting it in sodium hydroxide for a
little while before using the stannous chloride made it plate very well.
I was pretty successful as a "chemist" in the company. My advantage was
that my pal had done no chemistry at all; he had done no experiments; he
just knew how to do something once. I set to work putting lots of different
knobs in bottles, and putting all kinds of chemicals in. By trying
everything and keeping track of everything I found ways of plating a wider
range of plastics than he had done before.
I was also able to simplify his process. From looking in books I
changed the reducing agent from glucose to formaldehyde, and was able to
recover 100 percent of the silver immediately, instead of having to recover
the silver left in solution at a later time.
I also got the stannous hydroxide to dissolve in water by adding a
little bit of hydrochloric acid -- something I remembered from a college
chemistry course -- so a step that used to take hours now took about five
minutes.
My experiments were always being interrupted by the salesman, who would
come back with some plastic from a prospective customer. I'd have all these
bottles lined up, with everything marked, when all of a sudden, "You gotta
stop the experiment to do a 'super job' for the sales department!" So, a lot
of experiments had to be started more than once.
One time we got into one hell of a lot of trouble. There was some
artist who was trying to make a picture for the cover of a magazine about
automobiles. He had very carefully built a wheel out of plastic, and somehow
or other this salesman had told him we could plate anything, so the artist
wanted us to metal-plate the hub, so it would be a shiny, silver hub. The
wheel was made of a new plastic that we didn't know very well how to plate
-- the fact is, the salesman never knew what we could plate, so he was
always promising things -- and it didn't work the first time. So, to fix it
up we had to get the old silver off, and we couldn't get it off easily. I
decided to use concentrated nitric acid on it, which took the silver off all
right, but also made pits and holes in the plastic. We were really in hot
water that time! In fact, we had lots of "hot water" experiments.
The other fellas in the company decided we should run advertisements in
Modern Plastics magazine. A few things we metal-plated were very pretty.
They looked good in the advertisements. We also had a few things out in a
showcase in front, for prospective customers to look at, but nobody could
pick up the things in the advertisements or in the showcase to see how well
the plating stayed on. Perhaps some of them were, in fact, pretty good jobs.
But they were made specially; they were not regular products.
Right after I left the company at the end of the summer to go to
Princeton, they got a good offer from somebody who wanted to metal-plate
plastic pens. Now people could have silver pens that were light, and easy,
and cheap. The pens immediately sold, all over, and it was rather exciting
to see people walking around everywhere with these pens -- and you knew
where they came from.
But the company hadn't had much experience with the material -- or
perhaps with the filler that was used in the plastic (most plastics aren't
pure; they have a "filler," which in those days wasn't very well controlled)
-- and the darn things would develop a blister. When you have something in
your hand that has a little blister that starts to peel, you can't help
fiddling with it. So everybody was fiddling with all the peelings coming off
the pens.
Now the company had this emergency problem to fix the pens, and my pal
decided he needed a big microscope, and so on. He didn't know what he was
going to look at, or why, and it cost his company a lot of money for this
fake research. The result was, they had trouble: They never solved the
problem, and the company failed, because their first big job was such a
failure.
A few years later I was in Los Alamos, where there was a man named
Frederic de Hoffman, who was a sort of scientist; but more, he was also very
good at administrating. Not highly trained, he liked mathematics, and worked
very hard; he compensated for his lack of training by hard work. Later he
became the president or vice president of General Atomics and he was a big
industrial character after that. But at the time he was just a very
energetic, open-eyed, enthusiastic boy, helping along with the Project as
best he could.
One day we were eating at the Fuller Lodge, and he told me he had been
working in England before coming to Los Alamos.
"What kind of work were you doing there?" I asked.
"I was working on a process for metal-plating plastics. I was one of
the guys in the laboratory."
"How did it go?"
"It was going along pretty well, but we had our problems."
"Oh?"
"Just as we were beginning to develop our process, there was a company
in New York..."
"What company in New York?"
"It was called the Metaplast Corporation. They were developing further
than we were."
"How could you tell?"
"They were advertising all the time in Modern Plastics with full-page
advertisements showing all the things they could plate, and we realized that
they were further along than we were."
"Did you have any stuff from them?"
"No, but you could tell from the advertisements that they were way
ahead of what we could do. Our process was pretty good, but it was no use
trying to compete with an American process like that."
"How many chemists did you have working in the lab?"
"We had six chemists working."
"How many chemists do you think the Metaplast Corporation had?"
"Oh! They must have had a real chemistry department!"
"Would you describe for me what you think the chief research chemist at
the Metaplast Corporation might look like, and how his laboratory might
work?"
"I would guess they must have twenty-five or fifty chemists, and the
chief research chemist has his own office -- special, with glass. You know,
like they have in the movies -- guys coming in all the time with research
projects that they're doing, getting his advice, and rushing off to do more
research, people coming in and out all the time. With twenty-five or fifty
chemists, how the hell could we compete with them?"
"You'll be interested and amused to know that you are now talking to
the chief research chemist of the Metaplast Corporation, whose staff
consisted of one bottle-washer!"
--------
--------
When I was an undergraduate at MIT I loved it. I thought it was a great
place, and I wanted to go to graduate school there too, of course. But when
I went to Professor Slater and told him of my intentions, he said, "We won't
let you in here."
I said, "What?"
Slater said, "Why do you think you should go to graduate school at
MIT?"
"Because MIT is the best school for science in the country."
"You think that?"
"Yeah."
"That's why you should go to some other school. You should find out how
the rest of the world is."
So I decided to go to Princeton. Now Princeton had a certain aspect of
elegance. It was an imitation of an English school, partly. So the guys in
the fraternity, who knew my rather rough, informal manners, started making
remarks like "Wait till they find out who they've got coming to Princeton!
Wait till they see the mistake they made!" So I decided to try to be nice
when I got to Princeton.
My father took me to Princeton in his car, and I got my room, and he
left. I hadn't been there an hour when I was met by a man: "I'm the Mahstah
of Residences heah, and I should like to tell you that the Dean is having a
Tea this aftanoon, and he should like to have all of you come. Perhaps you
would be so kind as to inform your roommate, Mr. Serette."
That was my introduction to the graduate "College" at Princeton, where
all the students lived. It was like an imitation Oxford or Cambridge --
complete with accents (the master of residences was a professor of "French
littrachaw"). There was a porter downstairs, everybody had nice rooms, and
we ate all our meals together, wearing academic gowns, in a great hall which
had stained-glass windows.
So the very afternoon I arrived in Princeton I'm going to the dean's
tea, and I didn't even know what a "tea" was, or why! I had no social
abilities whatsoever; I had no experience with this sort of thing.
So I come up to the door, and there's Dean Eisenhart, greeting the new
students: "Oh, you're Mr. Feynman," he says. "We're glad to have you." So
that helped a little, because he recognized me, somehow.
I go through the door, and there are some ladies, and some girls, too.
It's all very formal and I'm thinking about where to sit down and should I
sit next to this girl, or not, and how should I behave, when I hear a voice
behind me.
"Would you like cream or lemon in your tea, Mr. Feynman?" It's Mrs.
Eisenhart, pouring tea.
"I'll have both, thank you," I say, still looking for where I'm going
to sit, when suddenly I hear "Heh-heh-heh-heh-heh. Surely you're joking, Mr.
Feynman."
Joking? Joking? What the hell did I just say? Then I realized what I
had done. So that was my first experience with this tea business.
Later on, after I had been at Princeton longer, I got to understand
this "Heh-heh-heh-heh-heh." In fact it was at that first tea, as I was
leaving, that I realized it meant "You're making a social error." Because
the next time I heard this same cackle, "Heh-heh-heh-heh-heh," from Mrs.
Eisenhart, somebody was kissing her hand as he left.
Another time, perhaps a year later, at another tea, I was talking to
Professor Wildt, an astronomer who had worked out some theory about the
clouds on Venus. They were supposed to be formaldehyde (it's wonderful to
know what we once worried about) and he had it all figured out, how the
formaldehyde was precipitating, and so on. It was extremely interesting. We
were talking about all this stuff, when a little lady came up and said, "Mr.
Feynman, Mrs. Eisenhart would like to see you."
"OK, just a minute..." and I kept talking to Wildt.
The little lady came back again and said, "Mr. Feynman, Mrs. Eisenhart
would like to see you."
"OK, OK!" and I go over to Mrs. Eisenhart, who's pouring tea.
"Would you like to have some coffee or tea, Mr. Feynman?"
"Mrs. So-and-so says you wanted to talk to me."
"Heh-heh-heh-heh-heh. Would you like to have coffee, or tea, Mr.
Feynman?"
"Tea," I said, "thank you."
A few moments later Mrs. Eisenhart's daughter and a schoolmate came
over, and we were introduced to each other. The whole idea of this
"heh-heh-heh" was: Mrs. Eisenhart didn't want to talk to me, she wanted me
over there getting tea when her daughter and friend came over, so they would
have someone to talk to. That's the way it worked. By that time I knew what
to do when I heard "Heh-heh-heh-heh-heh." I didn't say, "What do you mean,
'Heh-heh-heh-heh-heh'?"; I knew the "heh-heh-heh" meant "error," and I'd
better get it straightened out.
Every night we wore academic gowns to dinner. The first night it scared
the life out of me, because I didn't like formality. But I soon realized
that the gowns were a great advantage. Guys who were out playing tennis
could rush into their room, grab their academic gown, and put it on. They
didn't have to take time off to change their clothes or take a shower. So
underneath the gowns there were bare arms, T-shirts, everything.
Furthermore, there was a rule that you never cleaned the gown, so you could
tell a first-year man from a second-year man, from a third-year man, from a
pig! You never cleaned the gown and you never repaired it, so the first-year
men had very nice, relatively clean gowns, but by the time you got to the
third year or so, it was nothing but some kind of cardboard thing on your
shoulders with tatters hanging down from it.
So when I got to Princeton, I went to that tea on Sunday afternoon and
had dinner that evening in an academic gown at the "College." But on Monday,
the first thing I wanted to do was to see the cyclotron.
MIT had built a new cyclotron while I was a student there, and it was
just beautiful! The cyclotron itself was in one room, with the controls in
another room. It was beautifully engineered. The wires ran from the control
room to the cyclotron underneath in conduits, and there was a whole console
of buttons and meters. It was what I would call a gold-plated cyclotron.
Now I had read a lot of papers on cyclotron experiments, and there
weren't many from MIT. Maybe they were just starting. But there were lots of
results from places like Cornell, and Berkeley, and above all, Princeton.
Therefore what I really wanted to see, what I was looking forward to, was
the PRINCETON CYCLOTRON. That must be something.
So first thing on Monday, I go into the physics building and ask,
"Where is the cyclotron -- which building?"
"It's downstairs, in the basement -- at the end of the hall."
In the basement? It was an old building. There was no room in the
basement for a cyclotron. I walked down to the end of the hall, went through
the door, and in ten seconds I learned why Princeton was right for me -- the
best place for me to go to school. In this room there were wires strung all
over the place! Switches were hanging from the wires, cooling water was
dripping from the valves, the room was full of stuff, all out in the open.
Tables piled with tools were everywhere; it was the most godawful mess you
ever saw. The whole cyclotron was there in one room, and it was complete,
absolute chaos!
It reminded me of my lab at home. Nothing at MIT had ever reminded me
of my lab at home. I suddenly realized why Princeton was getting results.
They were working with the instrument. They built the instrument; they knew
where everything was, they knew how everything worked, there was no engineer
involved, except maybe he was working there too. It was much smaller than
the cyclotron at MIT, and "gold-plated"? -- it was the exact opposite. When
they wanted to fix a vacuum, they'd drip glyptal on it, so there were drops
of glyptal on the floor. It was wonderful! Because they worked with it. They
didn't have to sit in another room and push buttons! (Incidentally, they had
a fire in that room, because of all the chaotic mess that they had -- too
many wires -- and it destroyed the cyclotron. But I'd better not tell about
that!)
(When I got to Cornell I went to look at the cyclotron there. This
cyclotron hardly required a room: It was about a yard across -- the diameter
of the whole thing. It was the world's smallest cyclotron, but they had got
fantastic results. They had all kinds of special techniques and tricks. If
they wanted to change something in the "D's" -- the D-shaped half circles
that the particles go around -- they'd take a screwdriver, and remove the
D's by hand, fix them, and put them back. At Princeton it was a lot harder,
and at MIT you had to take a crane that came rolling across the ceiling,
lower the hooks, and it was a hellllll of a job.)
I learned a lot of different things from different schools. MIT is a
very good place; I'm not trying to put it down. I was just in love with it.
It has developed for itself a spirit, so that every member of the whole
place thinks that it's the most wonderful place in the world -- it's the
center, somehow, of scientific and technological development in the United
States, if not the world. It's like a New Yorker's view of New York: they
forget the rest of the country. And while you don't get a good sense of
proportion there, you do get an excellent sense of being with it and in it,
and having motivation and desire to keep on -- that you're specially chosen,
and lucky to be there.
So MIT was good, but Slater was right to warn me to go to another
school for my graduate work. And I often advise my students the same way.
Learn what the rest of the world is like. The variety is worthwhile.
I once did an experiment in the cyclotron laboratory at Princeton that
had some startling results. There was a problem in a hydrodynamics book that
was being discussed by all the physics students. The problem is this: You
have an S-shaped lawn sprinkler -- an S-shaped pipe on a pivot -- and the
water squirts out at right angles to the axis and makes it spin in a certain
direction. Everybody knows which way it goes around; it backs away from the
outgoing water. Now the question is this: If you had a lake, or swimming
pool -- a big supply of water -- and you put the sprinkler completely under
water, and sucked the water in, instead of squirting it out, which way would
it turn? Would it turn the same way as it does when you squirt water out
into the air, or would it turn the other way?
The answer is perfectly clear at first sight. The trouble was, some guy
would think it was perfectly clear one way, and another guy would think it
was perfectly clear the other way. So everybody was discussing it. I
remember at one particular seminar, or tea, somebody went up to Prof. John
Wheeler and said, "Which way do you think it goes around?"
Wheeler said, "Yesterday, Feynman convinced me that it went backwards.
Today, he's convinced me equally well that it goes around the other way. I
don't know what he'll convince me of tomorrow!"
I'll tell you an argument that will make you think it's one way, and
another argument that will make you think it's the other way, OK?
One argument is that when you're sucking water in, you're sort of
pulling the water with the nozzle, so it will go forward, towards the
incoming water.
But then another guy comes along and says, "Suppose we hold it still
and ask what kind of a torque we need to hold it still. In the case of the
water going out, we all know you have to hold it on the outside of the
curve, because of the centrifugal force of the water going around the curve.
Now, when the water goes around the same curve the other way, it still makes
the same centrifugal force toward the outside of the curve. Therefore the
two cases are the same, and the sprinkler will go around the same way,
whether you're squirting water out or sucking it in."
After some thought, I finally made up my mind what the answer was, and
in order to demonstrate it, I wanted to do an experiment.
In the Princeton cyclotron lab they had a big carboy -- a monster
bottle of water. I thought this was just great for the experiment. I got a
piece of copper tubing and bent it into an S-shape. Then in the middle I
drilled a hole, stuck in a piece of rubber hose, and led it up through a
hole in a cork I had put in the top of the bottle. The cork had another
hole, into which I put another piece of rubber hose, and connected it to the
air pressure supply of the lab. By blowing air into the bottle, I could
force water into the copper tubing exactly as if I were sucking it in. Now,
the S-shaped tubing wouldn't turn around, but it would twist (because of the
flexible rubber hose), and I was going to measure the speed of the water
flow by measuring how far it squirted out of the top of the bottle.
I got it all set up, turned on the air supply, and it went "Puup!" The
air pressure blew the cork out of the bottle. I wired it in very well, so it
wouldn't jump out. Now the experiment was going pretty good. The water was
coming out, and the hose was twisting, so I put a little more pressure on
it, because with a higher speed, the measurements would be more accurate. I
measured the angle very carefully, and measured the distance, and increased
the pressure again, and suddenly the whole thing just blew glass and water
in all directions throughout the laboratory. A guy who had come to watch got
all wet and had to go home and change his clothes (it's a miracle he didn't
get cut by the glass), and lots of cloud chamber pictures that had been
taken patiently using the cyclotron were all wet, but for some reason I was
far enough away, or in some such position that I didn't get very wet. But
I'll always remember how the great Professor Del Sasso, who was in charge of
the cyclotron, came over to me and said sternly, "The freshman experiments
should be done in the freshman laboratory!"
--------
On Wednesdays at the Princeton Graduate College, various people would
come in to give talks. The speakers were often interesting, and in the
discussions after the talks we used to have a lot of fun. For instance, one
guy in our school was very strongly anti-Catholic, so he passed out
questions in advance for people to ask a religious speaker, and we gave the
speaker a hard time.
Another time somebody gave a talk about poetry. He talked about the
structure of the poem and the emotions that come with it; he divided
everything up into certain kinds of classes. In the discussion that came
afterwards, he said, "Isn't that the same as in mathematics, Dr. Eisenhart?"
Dr. Eisenhart was the dean of the graduate school and a great professor
of mathematics. He was also very clever. He said, "I'd like to know what
Dick Feynman thinks about it in reference to theoretical physics." He was
always putting me on in this kind of situation.
I got up and said, "Yes, it's very closely related. In theoretical
physics, the analog of the word is the mathematical formula, the analog of
the structure of the poem is the interrelationship of the theoretical
bling-bling with the so-and-so" -- and I went through the whole thing,
making a perfect analogy. The speaker's eyes were beaming with happiness.
Then I said, "It seems to me that no matter what you say about poetry,
I could find a way of making up an analog with any subject, just as I did
for theoretical physics. I don't consider such analogs meaningful."
In the great big dining hall with stained-glass windows, where we
always ate, in our steadily deteriorating academic gowns, Dean Eisenhart
would begin each dinner by saying grace in Latin. After dinner he would
often get up and make some announcements. One night Dr. Eisenhart got up and
said, "Two weeks from now, a professor of psychology is coming to give a
talk about hypnosis. Now, this professor thought it would be much better if
we had a real demonstration of hypnosis instead of just talking about it.
Therefore he would like some people to volunteer to be hypnotized..."
I get all excited: There's no question but that I've got to find out
about hypnosis. This is going to be terrific!
Dean Eisenhart went on to say that it would be good if three or four
people would volunteer so that the hypnotist could try them out first to see
which ones would be able to be hypnotized, so he'd like to urge very much
that we apply for this. (He's wasting all this time, for God's sake!)
Eisenhart was down at one end of the hall, and I was way down at the
other end, in the back. There were hundreds of guys there. I knew that
everybody was going to want to do this, and I was terrified that he wouldn't
see me because I was so far back. I just had to get in on this
demonstration!
Finally Eisenhart said, "And so I would like to ask if there are going
to be any volunteers..."
I raised my hand and shot out of my seat, screaming as loud as I could,
to make sure that he would hear me: "MEEEEEEEEEEE!"
He heard me all right, because there wasn't another soul. My voice
reverberated throughout the hall -- it was very embarrassing. Eisenhart's
immediate reaction was, "Yes, of course, I knew you would volunteer, Mr.
Feynman, but I was wondering if there would be anybody else."
Finally a few other guys volunteered, and a week before the
demonstration the man came to practice on us, to see if any of us would be
good for hypnosis. I knew about the phenomenon, but I didn't know what it
was like to be hypnotized.
He started to work on me and soon I got into a position where he said,
"You can't open your eyes."
I said to myself, "I bet I could open my eyes, but I don't want to
disturb the situation: Let's see how much further it goes." It was an
interesting situation: You're only slightly fogged out, and although you've
lost a little bit, you're pretty sure you could open your eyes. But of
course, you're not opening your eyes, so in a sense you can't do it.
He went through a lot of stuff and decided that I was pretty good.
When the real demonstration came he had us walk on stage, and he
hypnotized us in front of the whole Princeton Graduate College. This time
the effect was stronger; I guess I had learned how to become hypnotized. The
hypnotist made various demonstrations, having me do things that I couldn't
normally do, and at the end he said that after I came out of hypnosis,
instead of returning to my seat directly, which was the natural way to go, I
would walk all the way around the room and go to my seat from the back.
All through the demonstration I was vaguely aware of what was going on,
and cooperating with the things the hypnotist said, but this time I decided,
"Damn it, enough is enough! I'm gonna go straight to my seat."
When it was time to get up and go off the stage, I started to walk
straight to my seat. But then an annoying feeling came over me: I felt so
uncomfortable that I couldn't continue. I walked all the way around the
hall.
I was hypnotized in another situation some time later by a woman. While
I was hypnotized she said, "I'm going to light a match, blow it out, and
immediately touch the back of your hand with it. You will feel no pain."
I thought, "Baloney!" She took a match, lit it, blew it out, and
touched it to the back of my hand. It felt slightly warm. My eyes were
closed throughout all of this, but I was thinking, "That's easy. She lit one
match, but touched a different match to my hand. There's nothin' to that;
it's a fake!"
When I came out of the hypnosis and looked at the back of my hand, I
got the biggest surprise: There was a burn on the back of my hand. Soon a
blister grew, and it never hurt at all, even when it broke.
So I found hypnosis to be a very interesting experience. All the time
you're saying to yourself, "I could do that, but I won't" -- which is just
another way of saying that you can't.
--------
In the Graduate College dining room at Princeton everybody used to sit
with his own group. I sat with the physicists, but after a bit I thought: It
would be nice to see what the rest of the world is doing, so I'll sit for a
week or two in each of the other groups.
When I sat with the philosophers I listened to them discuss very
seriously a book called Process and Reality by Whitehead. They were using
words in a funny way, and I couldn't quite understand what they were saying.
Now I didn't want to interrupt them in their own conversation and keep
asking them to explain something, and on the few occasions that I did,
they'd try to explain it to me, but I still didn't get it. Finally they
invited me to come to their seminar.
They had a seminar that was like a class. It had been meeting once a
week to discuss a new chapter out of Process and Reality -- some guy would
give a report on it and then there would be a discussion. I went to this
seminar promising myself to keep my mouth shut, reminding myself that I
didn't know anything about the subject, and I was going there just to watch.
What happened there was typical -- so typical that it was unbelievable,
but true. First of all, I sat there without saying anything, which is almost
unbelievable, but also true. A student gave a report on the chapter to be
studied that week. In it Whitehead kept using the words "essential object"
in a particular technical way that presumably he had defined, but that I
didn't understand.
After some discussion as to what "essential object" meant, the
professor leading the seminar said something meant to clarify things and
drew something that looked like lightning bolts on the blackboard. "Mr.
Feynman," he said, "would you say an electron is an 'essential object'?"
Well, now I was in trouble. I admitted that I hadn't read the book, so
I had no idea of what Whitehead meant by the phrase; I had only come to
watch. "But," I said, "I'll try to answer the professor's question if you
will first answer a question from me, so I can have a better idea of what
'essential object' means. Is a brick an essential object?"
What I had intended to do was to find out whether they thought
theoretical constructs were essential objects. The electron is a theory that
we use; it is so useful in understanding the way nature works that we can
almost call it real. I wanted to make the idea of a theory clear by analogy.
In the case of the brick, my next question was going to be, "What about the
inside of the brick?" -- and I would then point out that no one has ever
seen the inside of a brick. Every time you break the brick, you only see the
surface. That the brick has an inside is a simple theory which helps us
understand things better. The theory of electrons is analogous. So I began
by asking, "Is a brick an essential object?"
Then the answers came out. One man stood up and said, "A brick as an
individual, specific brick. That is what Whitehead means by an essential
object."
Another man said, "No, it isn't the individual brick that is an
essential object; it's the general character that all bricks have in common
-- their 'brickness' -- that is the essential object."
Another guy got up and said, "No, it's not in the bricks themselves.
'Essential object' means the idea in the mind that you get when you think of
bricks."
Another guy got up, and another, and I tell you I have never heard such
ingenious different ways of looking at a brick before. And, just like it
should in all stories about philosophers, it ended up in complete chaos. In
all their previous discussions they hadn't even asked themselves whether
such a simple object as a brick, much less an electron, is an "essential
object."
After that I went around to the biology table at dinner time. I had
always had some interest in biology, and the guys talked about very
interesting things. Some of them invited me to come to a course they were
going to have in cell physiology. I knew something about biology, but this
was a graduate course. "Do you think I can handle it? Will the professor let
me in?" I asked.
They asked the instructor, E. Newton Harvey, who had done a lot of
research on light-producing bacteria. Harvey said I could join this special,
advanced course provided one thing -- that I would do all the work, and
report on papers just like everybody else.
Before the first class meeting, the guys who had invited me to take the
course wanted to show me some things under the microscope. They had some
plant cells in there, and you could see some little green spots called
chloroplasts (they make sugar when light shines on them) circulating around.
I looked at them and then looked up: "How do they circulate? What pushes
them around?" I asked.
Nobody knew. It turned out that it was not understood at that time. So
right away I found out something about biology: it was very easy to find a
question that was very interesting, and that nobody knew the answer to. In
physics you had to go a little deeper before you could find an interesting
question that people didn't know.
When the course began, Harvey started out by drawing a great, big
picture of a cell on the blackboard and labeling all the things that are in
a cell. He then talked about them, and I understood most of what he said.
After the lecture, the guy who had invited me said, "Well, how did you
like it?"
"Just fine," I said. "The only part I didn't understand was the part
about lecithin. What is lecithin?"
The guy begins to explain in a monotonous voice: "All living creatures,
both plant and animal, are made of little bricklike objects called
'cells'..."
"Listen," I said, impatiently, "I know all that; otherwise I wouldn't
be in the course. What is lecithin?"
"I don't know."
I had to report on papers along with everyone else, and the first one I
was assigned was on the effect of pressure on cells -- Harvey chose that
topic for me because it had something that had to do with physics. Although
I understood what I was doing, I mispronounced everything when I read my
paper, and the class was always laughing hysterically when I'd talk about
"blastospheres" instead of "blastomeres," or some other such thing.
The next paper selected for me was by Adrian and Bronk. They
demonstrated that nerve impulses were sharp, single-pulse phenomena. They
had done experiments with cats in which they had measured voltages on
nerves.
I began to read the paper. It kept talking about extensors and flexors,
the gastrocnemius muscle, and so on. This and that muscle were named, but I
hadn't the foggiest idea of where they were located in relation to the
nerves or to the cat. So I went to the librarian in the biology section and
asked her if she could find me a map of the cat.
"A map of the cat, sir?" she asked, horrified. "You mean a zoological
chart!" From then on there were rumors about some dumb biology graduate
student who was looking for a "map of the cat."
When it came time for me to give my talk on the subject, I started off
by drawing an outline of the cat and began to name the various muscles.
The other students in the class interrupt me: "We know all that!"
"Oh," I say, "you do? Then no wonder I can catch up with you so fast
after you've had four years of biology." They had wasted all their time
memorizing stuff like that, when it could be looked up in fifteen minutes.
After the war, every summer I would go traveling by car somewhere in
the United States. One year, after I was at Caltech, I thought, "This
summer, instead of going to a different place, I'll go to a different
field."
It was right after Watson and Crick's discovery of the DNA spiral.
There were some very good biologists at Caltech because Delbrück had his lab
there, and Watson came to Caltech to give some lectures on the coding
systems of DNA. I went to his lectures and to seminars in the biology
department and got full of enthusiasm. It was a very exciting time in
biology, and Caltech was a wonderful place to be.
I didn't think I was up to doing actual research in biology, so for my
summer visit to the field of biology I thought I would just hang around the
biology lab and "wash dishes," while I watched what they were doing. I went
over to the biology lab to tell them my desire, and Bob Edgar, a young
post-doc who was sort of in charge there, said he wouldn't let me do that.
He said, "You'll have to really do some research, just like a graduate
student, and we'll give you a problem to work on." That suited me fine.
I took a phage course, which told us how to do research with
bacteriophages (a phage is a virus that contains DNA and attacks bacteria).
Right away I found that I was saved a lot of trouble because I knew some
physics and mathematics. I knew how atoms worked in liquids, so there was
nothing mysterious about how the centrifuge worked. I knew enough statistics
to understand the statistical errors in counting little spots in a dish. So
while all the biology guys were trying to understand these "new" things, I
could spend my time learning the biology part.
There was one useful lab technique I learned in that course which I
still use today. They taught us how to hold a test tube and take its cap off
with one hand (you use your middle and index fingers), while leaving the
other hand free to do something else (like hold a pipette that you're
sucking cyanide up into). Now, I can hold my toothbrush in one hand, and
with the other hand, hold the tube of toothpaste, twist the cap off, and put
it back on.
It had been discovered that phages could have mutations which would
affect their ability to attack bacteria, and we were supposed to study those
mutations. There were also some phages that would have a second mutation
which would reconstitute their ability to attack bacteria. Some phages which
mutated back were exactly the same as they were before. Others were not:
There was a slight difference in their effect on bacteria -- they would act
faster or slower than normal, and the bacteria would grow slower or faster
than normal. In other words, there were "back mutations," but they weren't
always perfect; sometimes the phage would recover only part of the ability
it had lost.
Bob Edgar suggested that I do an experiment which would try to find out
if the back mutations occurred in the same place on the DNA spiral. With
great care and a lot of tedious work I was able to find three examples of
back mutations which had occurred very close together -- closer than
anything they had ever seen so far -- and which partially restored the
phage's ability to function. It was a slow job. It was sort of accidental:
You had to wait around until you got a double mutation, which was very rare.
I kept trying to think of ways to make a phage mutate more often and
how to detect mutations more quickly, but before I could come up with a good
technique the summer was over, and I didn't feel like continuing on that
problem.
However, my sabbatical year was coming up, so I decided to work in the
same biology lab but on a different subject. I worked with Matt Meselson to
some extent, and then with a nice fella from England named J. D. Smith. The
problem had to do with ribosomes, the "machinery" in the cell that makes
protein from what we now call messenger RNA. Using radioactive substances,
we demonstrated that the RNA could come out of ribosomes and could be put
back in.
I did a very careful job in measuring and trying to control everything,
but it took me eight months to realize that there was one step that was
sloppy. In preparing the bacteria, to get the ribosomes out, in those days
you ground it up with alumina in a mortar. Everything else was chemical and
all under control, but you could never repeat the way you pushed the pestle
around when you were grinding the bacteria. So nothing ever came of the
experiment.
Then I guess I have to tell about the time I tried with Hildegarde
Lamfrom to discover whether peas could use the same ribosomes as bacteria.
The question was whether the ribosomes of bacteria can manufacture the
proteins of humans or other organisms. She had just developed a scheme for
getting the ribosomes out of peas and giving them messenger RNA so that they
would make pea proteins. We realized that a very dramatic and important
question was whether ribosomes from bacteria, when given the peas' messenger
RNA, would make pea protein or bacteria protein. It was to be a very
dramatic and fundamental experiment.
Hildegarde said, "I'll need a lot of ribosomes from bacteria."
Meselson and I had extracted enormous quantities of ribosomes from E.
coli for some other experiment. I said, "Hell, I'll just give you the
ribosomes we've got. We have plenty of them in my refrigerator at the lab."
It would have been a fantastic and vital discovery if I had been a good
biologist. But I wasn't a good biologist. We had a good idea, a good
experiment, the right equipment, but I screwed it up: I gave her infected
ribosomes -- the grossest possible error that you could make in an
experiment like that. My ribosomes had been in the refrigerator for almost a
month, and had become contaminated with some other living things. Had I
prepared those ribosomes promptly over again and given them to her in a
serious and careful way, with everything under control, that experiment
would have worked,, and we would have been the first to demonstrate the
uniformity of life: the machinery of making proteins, the ribosomes, is the
same in every creature. We were there at the right place, we were doing the
right things, but I was doing things as an amateur -- stupid and sloppy.
You know what it reminds me of? The husband of Madame Bovary in
Flaubert's book, a dull country doctor who had some idea of how to fix club
feet, and all he did was screw people up. I was similar to that unpracticed
surgeon. The other work on the phage I never wrote up -- Edgar kept asking
me to write it up, but I never got around to it. That's the trouble with not
being in your own field: You don't take it seriously.
I did write something informally on it. I sent it to Edgar, who laughed
when he read it. It wasn't in the standard form that biologists use --
first, procedures, and so forth. I spent a lot of time explaining things
that all the biologists knew. Edgar made a shortened version, but I couldn't
understand it. I don't think they ever published it. I never published it
directly.
Watson thought the stuff I had done with phages was of some interest,
so he invited me to go to Harvard. I gave a talk to the biology department
about the double mutations which occurred so close together. I told them my
guess was that one mutation made a change in the protein, such as changing
the pH of an amino acid, while the other mutation made the opposite change
on a different amino acid in the same protein, so that it partially balanced
the first mutation -- not perfectly, but enough to let the phage operate
again. I thought they were two changes in the same protein, which chemically
compensated each other.
That turned out not to be the case. It was found out a few years later
by people who undoubtedly developed a technique for producing and detecting
the mutations faster, that what happened was, the first mutation was a
mutation in which an entire DNA base was missing. Now the "code" was shifted
and could not be "read" any more. The second mutation was either one in
which an extra base was put back in, or two more were taken out. Now the
code could be read again. The closer the second mutation occurred to the
first, the less message would be altered by the double mutation, and the
more completely the phage would recover its lost abilities. The fact that
there are three "letters" to code each amino acid was thus demonstrated.
While I was at Harvard that week, Watson suggested something and we did
an experiment together for a few days. It was an incomplete experiment, but
I learned some new lab techniques from one of the best men in the field.
But that was my big moment: I gave a seminar in the biology department
of Harvard! I always do that, get into something and see how far I can go.
I learned a lot of things in biology, and I gained a lot of experience.
I got better at pronouncing the words, knowing what not to include in a
paper or a seminar, and detecting a weak technique in an experiment. But I
love physics, and I love to go back to it.
--------
While I was still a graduate student at Princeton, I worked as a
research assistant under John Wheeler. He gave me a problem to work on, and
it got hard, and I wasn't getting anywhere. So I went back to an idea that I
had had earlier, at MIT. The idea was that electrons don't act on
themselves, they only act on other electrons.
There was this problem: When you shake an electron, it radiates energy,
and so there's a loss. That means there must be a force on it. And there
must be a different force when it's charged than when it's not charged. (If
the force were exactly the same when it was charged and not charged, in one
case it would lose energy, and in the other it wouldn't. You can't have two
different answers to the same problem.)
The standard theory was that it was the electron acting on itself that
made that force (called the force of radiation reaction), and I had only
electrons acting on other electrons. So I was in some difficulty, I
realized, by that time. (When I was at MIT, I got the idea without noticing
the problem, but by the time I got to Princeton, I knew that problem.)
What I thought was: I'll shake this electron. It will make some nearby
electron shake, and the effect back from the nearby electron would be the
origin of the force of radiation reaction. So I did some calculations and
took them to Wheeler.
Wheeler, right away, said, "Well, that isn't right because it varies
inversely as the square of the distance of the other electrons, whereas it
should not depend on any of these variables at all. It'll also depend
inversely upon the mass of the other electron; it'll be proportional to the
charge on the other electron."
What bothered me was, I thought he must have done the calculation. I
only realized later that a man like Wheeler could immediately see all that
stuff when you give him the problem. I had to calculate, but he could see.
Then he said, "And it'll be delayed -- the wave returns late -- so all
you've described is reflected light."
"Oh! Of course," I said.
"But wait," he said. "Let's suppose it returns by advanced waves --
reactions backward in time -- so it comes back at the right time. We saw the
effect varied inversely as the square of the distance, but suppose there are
a lot of electrons, all over space: the number is proportional to the square
of the distance. So maybe we can make it all compensate."
We found out we could do that. It came out very nicely, and fit very
well. It was a classical theory that could be right, even though it differed
from Maxwell's standard, or Lorentz's standard theory. It didn't have any
trouble with the infinity of self-action, and it was ingenious. It had
actions and delays, forwards and backwards in time -- we called it
"half-advanced and half-retarded potentials."
Wheeler and I thought the next problem was to turn to the quantum
theory of electrodynamics, which had difficulties (I thought) with the
self-action of the electron. We figured if we could get rid of the
difficulty first in classical physics, and then make a quantum theory out of
that, we could straighten out the quantum theory as well.
Now that we had got the classical theory right, Wheeler said, "Feynman,
you're a young fella -- you should give a seminar on this. You need
experience in giving talks. Meanwhile, I'll work out the quantum theory part
and give a seminar on that later."
So it was to be my first technical talk, and Wheeler made arrangements
with Eugene Wigner to put it on the regular seminar schedule.
A day or two before the talk I saw Wigner in the hall. "Feynman," he
said, "I think that work you're doing with Wheeler is very interesting, so
I've invited Russell to the seminar." Henry Norris Russell, the famous,
great astronomer of the day, was coming to the lecture!
Wigner went on. "I think Professor von Neumann would also be
interested." Johnny von Neumann was the greatest mathematician around. "And
Professor Pauli is visiting from Switzerland, it so happens, so I've invited
Professor Pauli to come" -- Pauli was a very famous physicist -- and by this
time, I'm turning yellow. Finally, Wigner said, "Professor Einstein only
rarely comes to our weekly seminars, but your work is so interesting that
I've invited him specially, so he's coming, too."
By this time I must have turned green, because Wigner said, "No, no!
Don't worry! I'll just warn you, though: If Professor Russell falls asleep
-- and he will undoubtedly fall asleep -- it doesn't mean that the seminar
is bad; he falls asleep in all the seminars. On the other hand, if Professor
Pauli is nodding all the time, and seems to be in agreement as the seminar
goes along, pay no attention. Professor Pauli has palsy."
I went back to Wheeler and named all the big, famous people who were
coming to the talk he got me to give, and told him I was uneasy about it.
"It's all right," he said. "Don't worry. I'll answer all the
questions."
So I prepared the talk, and when the day came, I went in and did
something that young men who have had no experience in giving talks often do
-- I put too many equations up on the blackboard. You see, a young fella
doesn't know how to say, "Of course, that varies inversely, and this goes
this way..." because everybody listening already knows; they can see it. But
he doesn't know. He can only make it come out by actually doing the algebra
-- and therefore the reams of equations.
Конец бесплатного ознакомительного фрагмента