Замечание 2. Ряды прямоугольников, полученные при данных преобразованиях, можно рассматривать как временны&е ряды, а инварианты преобразований, как инварианты сохраняющиеся во времени. Можно также рассматривать множество прямоугольников, появившихся в результате преобразований, как одновременно существующие. Тогда инварианты можно рассматривать как инварианты, существующие на множестве (в пространстве) многоугольников. В последнем случае это может быть неупорядоченное множество объектов.
   Имеются ли другие геометрические фигуры, остающиеся подобными исходной при последовательном делении на две части? Да. При делении подобную фигуру (обе половинки) дает равнобедренный прямоугольный треугольник. Приблизительно такой же результат получается у кольца: изолированные или вложенные концентрические кольца, соприкасающиеся внутри или касающиеся извне, либо ортогонально сцепленные кольца (рис. 3, Г). Любой прямоугольный треугольник делится на два подобных, но неравных прямоугольника.
   В. Раздвоение других математических объектов. Как раздвоение единицы на два взаимообратных сомножителя можно рассматривать равенство 1=а·(1/а), где а - любое действительное число. Такое преобразование неоднозначно. Дополнительные ограничения могут сузить область допустимых для а значений. При а=* (*=1,618...) константа золотого отношения 1/*=0,618..., т. е. взаимообратные числа отличаются на единицу (раздваиваемое число).
   Аналогично можно раздвоить единичное преобразование на два взаимо обратных: Е=А·А"-1", где Е - единичное преобразование, переводящее объект в самого себя; А - преобразование рассматриваемого класса объектов. Примерами могут служить дифференцирование и интегрирование, левый и правый повороты, логарифмическая и показательная функции и др.
   Подобным же образом произведем раздвоение функции. В математике не существует единичной функции, подобно единичному преобразованию, но существуют взаимные функции. Графики взаимообратных функций симметричны относительно биссектрисы первого квадранта в декартовой системе координат. Уравнение этой биссектрисы y=x. Данную функцию и будем называть единичной. В результате ее "раздвоения" всегда будут получаться взаимообратные функции y=f(x) и x=f(y).
   Особым случаем раздвоения единого (Е) являет выделение из него относительно целой, далее неделимой части (Н) и части, подверженной дальнейшему аналогичному делению (Д):
   ------------Картинка 1 стр. 35-------
   --------------------------
   Примерами могут служить бинарные ассиметричные систематики (корректирующие коды. темпераменты и т. д.). Математической моделью такого раздвоения является, в частности, цепная дробь, с помощью которой представляется число *:
   --------------Картинка 2 стр. 35---
   -------------------------
   II. 2. 5. Раздвоение понятий и множеств понятий. Дихотомия - это деление объема понятия на два класса. исчерпывающих весь объем делимого понятия. Дихотомии строятся по двум схемам: А и не-А и А - В. Каждому из двух классов соответствуют понятия, которые могут находится в логических отношениях отрицания или дополнительности. В реальной действительности отношения между компонентами диалектической пары не исчерпываются отношениями отрицания и дополнения, они носят более разнообразные и диалектический характер. По определения дихотомическая пара представляет собой полный набор понятий. Вместе с родовым понятием они образуют элементарную простейшую иерархию. Здесь представляют интерес такие вопросы:
   1. Какие отношения (кроме указанных выше) могут существовать между компонентами дихотомной пары?
   2. Каков механизм превращения дихотомии в политомию?
   3. Каковы механизм и результат объединения двух дихотомий и политомий?
   Анализируя описанные примеры процесса раздвоения, можно выделить следующие его особенности: неоднозначность, множественность возможностей; различие видов противоположностей, получающихся в результате раздвоения; различие отношений между целым и частями; зависимость результата от дополнительных ограничений.
   В практической и познавательной деятельности человека часто приходится иметь дело с раздвоением множеств объектов различной природы (точек, геометрических фигур, понятий). При аналогии с дифференциацией стимулов можно говорить о дифференциации подмножеств в множестве, оценивать соответствующие дифференциальные пороги, изучать процесс дифференциации, который в зависимости от условий может быть более или менее трудным субъективно. Процесс осознания наличия двух подмножеств в множестве, формулирование диапазона эквивалентности может происходить постепенно, первоначально может складываться представление либо о границе, либо о центрах подмножеств. Процесс раздвоения еще более затрудняется в случае открытых множеств с переменным составом переменных. В современной психологии процесс дифференциации подмножеств в множествах только начинает изучаться. Работы в этом направлении могут составить основу нового раздела психофизики. Практически их значение несомненно.
   II. 2. 6. Триады. Следующим шагом анализа является выделение триад в составе объекта. Речь идет о том же объекте, в котором исследовались противоположности.
   Раздвоение приводит к разбиению множества на пересекающиеся подмножества. При их сближении или расширении подмножества могут пересекаться. Область их пересечения будет третьим компонентом, возникает триада. Третий компонент по своему гнезду является промежуточным средним. Это определяет и его свойства: он может быть нейтральным (+, 0, -). В качестве примера можно привести три стадии онтогенеза (см. VI. 2).
   Образование третьего компонента почти наличии двух противоположных можно представить как пересечение двух противоположностей. Примером может служить получение нейтрального, незаряженного элемента в результате пересечения положительного и отрицательно зарядов.
   Еще один переход от диад к триадам связан с различением внутренних и граничных областей объекта. Так, отрезок, разделенный на две части, имеет три граничные точки. Триады возникают также в результате противополагания одного компонента объекта трем другим. Например, в квадрате один угол, одна сторона и противостоят трем другим.
   Можно заметить, что независимо от способа образования триады обладают полной общей чертой: третий компонент всегда оказывается промежуточным по отношению к двум другим. Эта особенность прослеживается на многочисленных примерах. Наиболее показательны в этом плане диалектические триады: единичное - особенное - всеобщее, тезис - антитезис - синтез.
   Многие триады связаны с первыми тремя числами натурального ряда. Такова, например, триада свойств отношений: рефлексивность, симметричность, транзитивность. Рефлексивность определяется на одном, симметричность на двух, транзитивность - на трех элементах множества. Этим свойствам аналогичны три аксиомы метрического пространства. В метрическом пространстве промежуточность третьего компонента, характеризуется термином "средний": среднее арифметическое, среднее геометрическое и т. д. На примере средних величин отчетливо видно, что, как и в случае диад, возможны различные триады при одних и тех же исходных данных.
   Остановимся на двух диадах из теории динамических систем:
   1. Статистическая, переходная и частотная характеристики. Полюса здесь статистическая и частотная характеристики, так как они получаются в как результат постоянного и непрерывного изменяющегося возмущения. Переходная характеристика - средний, промежуточный компонент триады как результат возмущения, кратковременно изменяющегося.
   2. Свободные, вынужденные и автоколебания. В этой триаде свободные и вынужденные колебания - полюса по семантике. Автоколебания - средний элемент триады, так как автоколебательная система содержит свободно колеблющийся элемент, на который производится принужденное воздействие в ограниченное время и с частотой, равной собственной частоте колебательной системы.
   Как триаду можно рассматривать подлежащее, сказуемое и дополнение в предложении. Подлежащее замкнуто на себя, сказуемое - на подлежащее, дополнение - на сказуемое. Обстоятельство и определение соотносятся с компонентами данной триады: обстоятельство замыкается на сказуемое, определение - на подлежащее или дополнение.
   В психологии аналогом диалектической триады единичное - особенное всеобщее является триада индивидуальное - типическое - общее. Конституциональная типология Шелдона строится на основе представлений об эктодерме, мезодерме и эндодерме зародышевого листка. В структуре познания П. Симонов выделяет подсознательные, сознательные и надсознательные явления [100].
   II. 2. 7. Тетрады и дальнейшее разбиение множеств. Тетрады могут образовываться путем двух последовательных дихотомий по разным основаниям, раздвоения среднего элемента триады и другими способами. Как тетраду можно рассматривать совокупность отрезка, разделенного на три части. Диады имеют одинаковую структуру, триады могут быть и одномерными и двухмерными, тетрады могут быть также и трехмерными (по положению своих компонентов в системном описании). Примерами тетрад могут служить тетрахорды в музыке. Б. Г. Ананьев рассматривал четыре вида отношений: внешне-внешние, внутренне-внутренние, внутренне-внешние и внутренне-внутренние [5]. Тетрада конструктивно менее прочна, чем диада и тетрада, поэтому для ее усиления часто бывает необходим пятый, объединяющий компонент.
   Процесс разбиения множества на подмножества может быть продолжителен. Например, путем прогрессивного расслоения кольца оно может быть разбито на пять, шесть и вообще любое число колец. В том случае, когда образовавшееся множество компонентов исходного целого однородно и они могут быть упорядочены по целому основанию, мы можем получить упорядоченное множество, одномерный ряд, который воспринимается как единица опыта, хотя содержит число элементов больше четырех (множество годичных колец дерева, множество химических элементов в одном периоде таблицы Менделеева). Но когда компоненты целого объекта неоднородны, а отношения между ними разнокачественны, при восприятии такого объекта начинают давать себя знать ограничения восприятия, описанные выше (см. раздел I. 3). В этом случае при числе компонентов больше четырех они должны группироваться таким образом, чтобы число групп не превышало четырех. Именно этим объясняется определяющее значение диад, триад и тетрад при анализе целостных объектов.
   II. 3. СИСТЕМНЫЙ АНАЛИЗ ("ИЗ ВСЕГО - ОДНО")
   II. 3. 1. Объективная необходимость объединения. Существование множества разнообразных промежуточных данных об одном психологическом явлении, полученных разными авторами, на различных языках и в различных формах, ставит перед нами задачу синтеза этого многообразия в целостное представление на основе адекватного системного описания. Аналогичная задача возникает при необходимости систематизировать множество психических явлений, например психических состояний, а также множества методологических принципов.
   Объективная сложность вещей и ограниченность восприятия человека приводит к тому, что они признаются не сразу во всей их сложности и противоречивости. В. И. Ленин по этому поводу писал: "человек не может охватить=отразить=отобразить природы всей, полностью, ее "непосредственной цельности", он может лишь вечно приближаться к этому, создавая абстракции, законы, научную картину мира и т. д. и т. п.". *(*Там же, с. 154.) Кроме того, для описания используются конкретные языки (в широком смысле этого слова), а возможности любого языка ограничены, каждый имеет свои достоинства и свои недостатки. Эти объективные причины приводят к тому, что описания, создаваемые с познавательными, практическими и учебными целями, могут, а зачастую и должны быть множественными.
   Отдельные описания находятся между собой в различных отношениях: изоморфизма (тождества, эквивалентности), гомоморфизма, включения, пересечения, дополнительности. Описания могут быть эквивалентны не в целом, а в каком-либо одном определенном отношении. Описания могут быть даже противоречивыми, если они отражают реальные противоречия объекта. В каждом конкретном случае тип отношений между описаниями должен быть установлен (обоснован или доказан).
   Примерами эквивалентных описаний могут служить описания в различных системах координат и масштабов, матриц и соответствующий ей граф и др. Однако описания, даже эквивалентные по отношению к сущности явления, неэквивалентны по отношению к воспринимающему субъекту и к цели их применения.
   II. 3. 2. Принципы и факторы объединения подмножеств. Для объединения подмножеств используются операции объединения, пересечения и дополнения. Подмножества могут рассматриваться как элементы, имеющие в качественные и количественные характеристики. На основе принципа близости может осуществляться группировка подмножеств (элементов) по сходству, на основе отношения порядка они могут объединяться в ряды, упорядочиваться. Если подмножества имеют числовые характеристики, то они могут быть объединены одной количественной закономерностью. В многомерном пространстве объединяющей основой может служить система ортогональных осей (система координат), относительно которой располагаются подмножества.
   В физических реализациях объединение по близости означает прежде всего объединение по близости в пространстве и времени, затем по близости в пространстве наблюдаемых признаков. Группировка и упорядочение множества объектов на основе отношений эквивалентности и порядка являются идеальным случаем и в практике научных исследований встречается довольно редко. Обычно подмножества оказываются пересекающимися, размытыми. Само множество в большинстве случаев открытое, его изменение приводит к изменениям в преимущественной группировке и к изменению отношений между группировками. Как правило, множество, подлежащее группировке и упорядочиванию, является множеством характеристик, признаков реальных объектов. В биологии это множество характеристик клеток, видов организмов, биогеоценозов, по отношению к которым главной задачей выступает систематизация. Для психологии это множество характеристик структур, функций, свойств одного вида, по отношению к которому главными задачами являются задачи типологии его свойств, изучение структур и их изменения в онтогенезе.
   Разработано большое число методов и процедур группировки элементов первичного множества: таксономия, методы корреляционного анализа, факторного анализа, многомерного шкалирования и т. д. Эти методы, производя "развал" множества на подмножества (таксоны), не позволяют получить содержательную характеристику самих таксонов и не учитывают особенностей восприятия человека. Для содержательной характеристики таксона был предложен термин "мирон" [70], который в частном случае имеет вид упрощенной топологической схемы элементов таксона. Топологическая схема действительно является общей характеристикой структурированного объекта. В качестве "мирона" может выступать и конъюнкция устойчивых и хорошо воспринимаемых человеком признаков элементов, поскольку задачу группировки нельзя решать только на основе формальной процедуры, в ней обязательно должна учитываться отражающая система пользователя.
   По своей семантике упорядоченность означает прежде всего расположение вряд. Основой такой процедуры является отношение порядка. Конкретными его видами выступают отношения включения и неравенства (топологическое и метрическое соответственно). Оба этих отношения имеют место как в искусственных, так и в естественных объектах. Число элементов множества является важнейшим определяющим фактором в процессе ее синтеза. Когда число превосходит объем восприятия, возникает необходимость группировки, укрупнения единиц восприятия.
   Как и при раздвоении (в случае анализа), при синтезе наиболее принципиальным является процесс объединения двух компонентов в один. Этот процесс противоположен раздвоению единого. Группировка может происходить в результате взаимодействия на расстоянии, при контактном соприкосновении, при частичном пространственно-временном пересечении компонентов. Объединяющие факторов объективны, интеграция приводит к появлению у системы новых функциональных возможностей. Большее число элементов может объединяться в цепи, кольца, "звезды", "решетки", многосвязные структуры. Такие группировки в графическом представлении воспринимаются как целостные объекты.
   II. 3. 3. Базисы системных описаний. Для структурирования, организации больших массивов информации воспользуемся идеей базиса. В математике базисом называют множество независимых элементов В, порождающих с помощью преобразования Р множество элементов Х. Так, например, В - множество простых чисел, Р - умножение, Х - множество натуральных чисел.
   Рассмотрим более подробно еще один пример. В математической логике устанавливается, что любая функция булевой алгебры (функция любого числа переменных) может быть представлена в стандартной форме в одном из двух вариантов: в виде совершенной дизъюнктивной или совершенной конъюнктивной нормальной форм; булевы переменные связаны операциями трех типов: конъюнкции, дизъюнкции и отрицания, которые служат базисом для представления булевой функции. Этот набор булевых операций является полным, благодаря чему с его помощью и может быть представлена любая функция булевой алгебры. Но в булевой алгебре показывается, что этот набор является не только полным, но и избыточным, так как операции конъюнкции и дизъюнкции могут быть выражены через другие две операции полного набора. Отсюда следует, что, во-первых, базис может быть избыточным, а во-вторых, что наборы операций конъюнкции и отрицания, дизъюнкции и отрицания тоже выступают базисами. В булевой алгебре показывается, что существуют и другие базис из двух операций и даже базис всего одной операции (штрих Шеффера).
   Все это свидетельствует о множественности базисов. Кроме того, эти примеры дают представление о размерах самого базиса. Размеры базиса оказываются связанными с длиной описания объекта: чем короче базис, тем длиннее описание объекта. Однако существует целый ряд причин, которые заставляют ограничивать длину базиса сверху. Мы воспользуемся не математическим понятием базиса, а только самой идеей.
   Сущность метода базисов состоит в следующем. Множество элементов описания объекта соотносится с множеством элементов базиса. Процедура соотнесения может быть различной - от формальной, алгоритмической, до соотнесения по аналогии, сходству, семантической близости и т. д. В результате множество элементов описания оказывается упорядоченным, устанавливается его полнота (или неполнота), связи между различными описаниями, производится структурирование множества элементов описания.
   Базис - это множество знаковых объектов, которые характеризуются полнотой и упорядоченностью. В качестве базисов могут выступать множества понятий, математических объектов, графических объектов и т. д. Для описания одного и того же круга явлений могут быть использованы различные базисы или их совокупности (которые тоже могут быть упорядочены по какому-то базису). Выбор базиса описания зависит от задачи пользователя описания и ряда других факторов.
   Само множество базисов описания является открытым, и поэтому использование упорядоченных, или полных, множеств в качестве базисов описания нив коем случае не означает замкнутости знаний, невозможности включения новых знаний в описание данного круга явлений. Но вместе с тем необходимо подчеркнуть, что использование базисов описания делает эти описания наиболее устойчивыми, позволяет систематизировать разрозненные научные данные, получать значительно более крупные научные синтезы, представить научную информацию в форме, более удобной для восприятия и осмысления. В ряде случаев поиск базисов играет и эвристическую роль, он может помочь обнаружить "белые пятна", облегчает переход от изучения явления к его сущности.
   Базис определяется числом элементов и типом отношений между ними. По числу элементов базисы можно разделить на коечные и бесконечные. Полнота базиса может быть доказана, постулирована или установлена эмпирически. Базис может состоять как из элементов, так и из операций с ними в символической записи. Кроме отношений порядка между элементами базиса возможны как логические (математические, лингвистические), так и диалектические отношения. Для представления данного множества может существовать несколько базисов с различным числом элементов. Одной из задач является нахождение минимального базиса. В случае нескольких базисов для представления целесообразно использовать систему базисов.
   С помощью принципов соответствия или критериев близости множество характеристик описываемого явления соотносится с компонентами базиса. В этом состоит главная идея использования базисов для системных описаний. Что она дает? Базис позволяет: 1) убедиться в полноте системного описания, 2) упорядочить его компоненты, 3) получить устойчивую "опору" описания", 4) использовать ее для соотнесения различных описаний одного и того же объекта, 5) обнаружить общность объектов различной природы.
   Элементы базиса могут быть элементами разных множеств. Однако при использовании в системных описаниях к ним предъявляются определенные требования. Прежде всего речь идет о числе элементов базиса. Системное описание должно быть хорошо согласовано с возможностями восприятия человека, поэтому количество элементов базиса должно быть невелико либо они должны группироваться в небольшое число отчетливых групп. Как отдельные элементы базиса, так и их полный набор должны иметь отчетливую психологическую, логическую или системную интерпретацию. Интерпретация может быть и многозначной. Например, спектр можно рассматривать как последовательность цветов, выраженных соответствующими понятиями, и как последовательность чисел, выражающих частоту или длину волны электромагнитных колебаний. Широко известна также психологическая интерпретация цветов. Цветовой спектр, хотя и является физическим понятием, представляет собой строгий базис для построения психологических описаний. Как у базиса у него есть и другие достоинства: возможность использования в линейной и в круговых формах. Спектр хорошо согласуется и с другими базисами.
   В отличие от системы аксиом базисы имеют следующий набор свойств: полноту, упорядоченность, инвариантность, большое разнообразие состава ( у различных базисов), возможность соотнесения, совмещения, объединения, наложения различных базисов. Они должны обладать высокой стабильностью в пространстве и времени, независимостью от конъюнктивных и ситуативных тенденций, структурировать основные фонды научных знаний. Чтобы выполнить свою интегративную функцию, базисы должны иметь большую степень общности, можно сказать, высокую ассоциативную и семантическую мощность. Базисы являются преимущественно совокупностью знаков или символов. Но возможны и совокупности изображений большой степени общности, хотя фактически такие изображения приближаются к символам. Базисы должны хорошо восприниматься человеком, их компоненты могут предназначаться как для первой, так и для второй сигнальной систем. Относительно числа компонентов остаются верными положения, приведенные в подразделе I. 3, т. е. число их должно быть ограничено, или компоненты базиса должны быть объединены в небольшое количество групп.
   Существуют различные способы установления полноты набора компонентов базиса:
   1. Вероятностный (аддитивный). Набор событий считается полным, если сумма вероятностей данной группы событий равно единице.
   2. Логический. Набор логических функций является полным, если с его помощью может быть построена любая функция алгебра логики.
   3. Комбинаторный.
   4. Алгоритмический.
   5. Эмпирический.
   Свойство полноты базисов позволяет использовать их для оценки и сопоставления эмпирических системных описаний. Базисы большой общности дают возможность соотносить между собой системные описания меньшей общности. Собственные базисы (относящиеся к конкретной области знания) являются "центрами конденсации", структурирующими факторами внутри данной области. Система базисов может служить основой для формирования представлений о широкой области объективной реальности, для формирования картины мира.
   II. 3. 4. Примеры базисов. Среди базисов можно выделить следующие группы: числовые базисы - натуральный ряд чисел, ряд Фибоначчи; функциональные - набор булевых функций одного или двух элементов (конъюнкция, дизъюнкция, отрицание); набор функций синуса и косинуса натурального аргумента при разложении периодической функции в ряд Фурье; графические - правильные многоугольники и многогранники, их полные наборы, дерево дихотомической иерархии; физические - множество состояний вещества, множество цветов спектра; системные - набор принципов гармоничного целого; диалектические - диалектические диады и триады.