«Перечислим основные причины, при наличии которых в сообщающихся сосудах будет существенно нарушаться равенство уровней: 1) Жидкость в одном из сосудов существенно холоднее (или теплее), чем в другом[14]; 2) В одном сосуде стенки смачиваются жидкостью, а в другом – нет, размеры же поперечных сечений сосудов невелики;
   3) Каждый из сосудов в районе мениска жидкости представляет собой капилляр, причём диаметры их различны; 4) Система сообщающихся сосудов движется по кривой, причём ось мгновенного вращения находится на различных расстояниях от сосудов. Если сообщающиеся сосуды присоединены к трубопроводу, в котором жидкость движется, то уровни в них могут существенно отличаться из-за различных соотношений статического и динамического напоров. и ещё целый ряд “если”. Так коварно на практике выглядит применение, казалось бы, простейшего закона…»
   Человечество отправляет первые корабли за пределы Солнечной системы, в гигантские дали. И, как это ни парадоксально, знает теперь больше и лучше о миллиардах километрах космического пространства, чем о том, что находится буквально в сотнях метров под ногами. Романтика поиска начинается здесь, на Земле, и не исчерпала себя с памятных десятилетий освоения Сибири. Инженеру открыты все области для проявления им изобретательских способностей, в том числе и та, что у него перед глазами каждый день.
   Эдвард де Боно в книге «Использование латерального[15] мышления» приводит следующий пример: «В течение многих лет физиологи не могли понять, зачем нужны большие витки на почечных сосудах. Предполагалось, что эти витки не выполняют особых функций, а являются просто реликтовыми образованиями. Но однажды инженер, взглянув на эти витки, тотчас же высказал предположение, что, они, видимо, представляют собой как бы часть противоточного конденсатора – давно известного технического устройства, предназначенного для увеличения концентрации растворов.
   В данном случае непредубежденный взгляд со стороны, – пишет де Боно, – дал ответ на вопрос, который оставался загадкой весьма продолжительное время. Подобный подход к проблеме полезен не только тем, что позволяет применить к ней специальные познания из какой-то другой области, но и тем, что посторонний человек еще не ограничен рамками конкретного подхода к данной проблеме, который выработался у людей, тесно с ней связанных.
   И действительно, исследователь, занимающийся разработкой проблемы на всех этапах ее развития, связывает себя определенным подходом к проблеме, в то время как посторонний человек, увидевший лишь заключительный этап развития проблемы, возможно, подойдет к решению совершенно с другой стороны. Так, приглашая консультантов из других областей науки и техники, исследователи надеются, что они не только дадут квалифицированное заключение на основании специальных знаний, но и предложат новый подход к решению проблемы. К сожалению, квалифицированная консультация еще не предполагает способности увидеть проблему в новом свете; для этого потребуется применение нешаблонного мышления…»
   Явление переноса достижений одной области знания в другую характерно для процессов эффективного инженерного творчества. В нефтяной отрасли, да и в собственно «горном деле», инженеры, как нигде, имеют необыкновенно высокий потенциал для такого переноса.
   На страницах журнала «Техника и наука» в начале 1980-х годов широкой популярностью пользовалась рубрика «Технология и психология творчества». Её ведущий Г.С. Альтшуллер с последователями и учениками предлагал читателям нетривиальные инженерные задачи. Вот одна из них: «Для бетонирования конструкций сложной формы, например, куполов, был предложен и защищён авторским свидетельством щит опалубки, способный принимать и сохранять любую форму. Каков, по вашему мнению, принцип действия такого щита?» (№ 7, 1983, С. 14). Ответ на этот вопрос приведён в другой публикации, найденной мной три года спустя – журнала «Изобретатель и рационализатор» (№ 3, 1986, С. 17) – «Мгновенная опалубка»: «Чтобы кровля горной выработки не просела под толщей породы, нужны массивные бетонные колонны, подпирающие потолок. Возводят их в деревянных опалубках, это хлопотно, и потому горняки предпочитают просто оставлять целики – неразработанные участки пласта полезного ископаемого. Возведение опорных колонн было бы намного более простым делом, если б они имели постоянные размеры. Но горная выработка следует за пластом, её очертания неопределённы, и поэтому ни один искусственный целик не похож на другой, каждый раз приходится городить новую опалубку…» Быть может, вы сами, основываясь на известных физических эффектах, предложите быстровозводимую эластичную конструкцию многоразового использования, твёрдую при заливке бетона и снова податливую, когда её нужно снять? По мнению автора изобретения И.И. Терёхина (а.с. № 883524), такую опалубку можно использовать, разумеется, и в наземном строительстве.
   Инженер должен иметь полное представление о ближайших социальных последствиях своей работы, это означает, что он должен быть развит всесторонне – не только в части понимания технических законов, но и в части общественной культуры.
   Так, Дэниел Ергин в своём бестселлере «Добыча»[16] приводит пример: «В первые десятилетия своего существования, нефтяная промышленность снабжала индустриальный мир продуктом с названием «керосин» и известным как «новый свет», который потеснил ночь и удлинил рабочий день. В конце девятнадцатого столетия Джон. Д. Рокфеллер стал самым богатым человеком в США, в основном, благодаря торговле керосином. Бензин в то время был практически бесполезным побочным продуктом, который иногда удавалось продать по цене два цента за галлон, а если нет, то его просто выливали в реку по ночам. Но как только изобретение лампы накаливания, казалось бы, стало первым шагом к моральному старению нефтяной индустрии, то с разработкой двигателя внутреннего сгорания, работающего на бензине, открылась новая эра. Нефтяная индустрия получила новый рынок, и родилась новая цивилизация».
   По словам Дэниела Ергина, технологический арсенал нефтяных изысканий пополнил сейсмограф, «оказавшийся мощным инструментом. Его изобрели в середине девятнадцатого века и использовали для регистрации и анализа землетрясений. В Германии же во время войны им пользовались для определения местоположения вражеской артиллерии…» С другой стороны, «во время Первой мировой войны воюющие стороны применяли в Европе аэрофотосъемку для определения расположения войск. Методику быстро внедрили в нефтяную индустрию и получили средство для широкого обзора геологии поверхности…»
   Из ярких примеров, когда фундаментальная наука внесла посильный вклад в развитие нефтедобычи, вспомним, пожалуй, разработку крупнейшего физика XX столетия, ученика и соратника самого Ферми – академика Бруно Максимовича Понтекорво. Он один из создателей советской школы эксперимента в области физики элементарных частиц. Правда, свою идею Понтекорво осуществил уже в 1941 году, так сказать, в американский период жизни, за десять лет до переселения в СССР. Речь о предложенном им методе нейтронного каротажа для разведки нефтеносных районов, основанном на взаимодействии нейтронов с веществом горных пород, водой и нефтью.
   Хотя оказалось, что нейтронный каротаж с источником непрерывного действия не позволяет достоверно различать пласты, насыщенные водой и нефтью, эти жидкости как замедлители нейтронов неразличимы. Но спустя некоторое время стали использовать так называемый импульсный нейтронный каротаж, при котором пластовая вода, растворяющая и несущая минеральные соли, например, хлориды, в отличие от нефти, вполне надёжно распознаётся.
   Как пишет к.ф.-м.н. Наталья Теряева (г. Дубна), изначально «внутри нефтяной скважины перемещали толстостенную стальную гильзу, содержавшую нейтронный источник (запаянную ампулу с механической смесью порошков бериллия-7 и полония) и детектор, регистрировавший излучение от горных пород, облученных нейтронами. Смесь радиоактивных изотопов бериллия и полония непрерывно производила поток нейтронов. Нейтроны взаимодействовали с ядрами элементов, которые содержались в горных породах скважины. Детектор стальной гильзы фиксировал энергию столкнувшихся с ядрами элементов породы нейтронов. По ней и судили о том, содержится ли в этих породах водород, входящий в состав нефти, поскольку столкновение с ядрами водорода замедляло бег нейтронов – снижало их энергию.
   Но оказалось, что источник непрерывного действия при нефтяном каротаже плохо отличал друг от друга пласты, насыщенные водой и нефтью. И вода, и нефть содержат водород, поэтому обе жидкости замедляют нейтроны практически в одинаковой степени.
   Толчок развитию нейтронных источников дало изобретение термоядерного оружия, где их использовали для инициации реакции цепного деления. В американском “Толстяке”, взорванном над Нагасаки 9 августа 1945 года, цепную реакцию плутония-239 запустил нейтронный инициатор под названием “ёжик” – шарик из бериллия размером с перепелиное яйцо, покрытый тонким слоем полония. Но такую схему признали малоэффективной, и неуправляемый тип нейтронного инициирования почти не применялся в дальнейшем. Более эффективным инициатором стал малогабаритный импульсный нейтронный генератор.
   В разведке нефти импульсный источник нейтронов тоже давал более существенный эффект – оказался, как минимум, точнее. Его детектор при каротаже регистрировал энергию гамма-излучения от ядер элементов горных пород, облученных нейтронами. Эта энергия так же индивидуальна для каждого химического элемента, как отпечатки пальцев для человека.
   В Советском Союзе первый импульсный генератор нейтронов для контроля нефтяных скважин к 1956 году разработал коллектив физиков во главе с академиком Георгием Флеровым, известным всему миру как лидер пионерского синтеза сверхтяжелых элементов в Объединенном институте ядерных исследований в Дубне».
   Так что инженерное творчество имеет весьма широкие границы и затрагивает самые разные отрасли науки и знания!
   Кстати, кто сейчас не знает Texas Instruments? Эта компания занимает первое место в мире по производству микросхем для мобильных устройств и четвёртое место в мире по объёму производства полупроводниковых стройств вообще, наступает «на пятки» мировым гигантам типа Intel, Samsung и Toshiba. Но мало кто помнит о том, что кадровое ядро будущего лидера полупроводниковой электроники Texas Instruments сложилось из инженеров, ещё в 1920-х годах работавших над методом отражённых сейсмических волн для обнаружения нефтенесущих пластов. В мае 1930 года была создана одна из первых независимых компаний по сейсморазведке – Geophysical Service Inc., где и трудились все отцы-основатели будущей Texas Instruments.
   «Вторая Мировая открыла новые горизонты для развития сейсмобизнеса – был заключен контракт с Военно-морскими Силами на разработку аппаратуры обнаружения подводных лодок… Постепенно разработка радиоэлектронной аппаратуры, в первую очередь военного назначения, стала столь же значимой для компании, как и традиционная сейсморазведка. Оборот GSI в 1950 году составил $7,6 млн, и число сотрудников достигло 1 128 человек. В 1951 году компания получает новое имя – Texas Instruments, но и бренд GSI сохраняется в качестве названия дочерней компании, полностью занятой геофизикой. Основатели TI были инженерами-геофизиками, но это не помешало им создать компанию-лидера полупроводниковой отрасли. Компанию, производящую в наши дни полупроводников на $13,8 млрд. и имеющую более 30 тыс. сотрудников по всему миру, основали и управляли ею долгие годы обычные инженеры, очень увлеченные своей работой, но не забывающие о развитии мира вокруг себя. Хороший пример для подражания!»[17]
   В 1980-е годы, последнее десятилетие существования Советского Союза, как вспоминает Вице-президент Международной ассоциации ТРИЗ Александр Владимирович Кудрявцев, «ускорение научно-технического прогресса, потребовало существенно поднять эффективность труда инженерно-технических работников, создателей новой техники. Повышение эффективности творческой составляющей труда предусматривает овладение широким спектром методических средств. К ним следует отнести и методы поиска новых технических идей и решений»[18].
   Полагаем, что такая задача остаётся насущной и поныне, даже в гораздо большей степени, чем это было 20–25 лет назад.
   Нынешний экономический рост опирается на интеллектуализацию основных этапов производства. По свидетельству экономистов на долю новых знаний, воплощаемых в технологиях, оборудовании, образовании кадров, организации производства в развитых странах, приходится от 70 до 85 % прироста ВВП.
   «Особенностью современного этапа социально-экономического развития стало широкое применение информационных технологий, многократно расширивших возможности генерирования и передачи знаний и, соответственно, НИОКР.
   Интенсивность НИОКР и качество человеческого потенциала определяют сегодня возможности и уровень экономического развития – в глобальной экономической конкуренции выигрывают те компании, которые обеспечивают благоприятные условия для научно-технического прогресса и инженерно-технического совершенствования.
   Современная экономическая наука выделяет настоящий временной период как пятый технологический уклад (1985–2035 гг.), он формируется на научных разработках в области биотехнологии, генной инженерии, информатики, микроэлектронике, активном освоении космоса, создании новых видов сырья.
   Четвертый технологический уклад (1930–1990 гг.) базировался на развитии энергетики с использованием нефти и газа, применении атомной энергии, ракетостроении, кибернетике.
   Быстрое расширение несущих отраслей пятого технологического уклада происходит, к сожалению, на импортной технологической базе, что лишает шансов на адекватное развитие ключевые технологии его ядра. Это означает втягивание российской экономики в ловушку неэквивалентного обмена с зарубежным ядром этого технологического уклада, в котором генерируется основная часть интеллектуальной ренты»[19].
   Но, тем не менее, импортная технологическая база не исключает необходимости воспитания и восполнения отечественных инженерных кадров!
* * *
   «Распространенное мнение, что интеллекта человеку достаточно, является вредным во многих отношениях. Умный человек способен избегать явных ошибок и достойно вести себя в споре, но зачастую закрывает глаза на необходимость развития специальных навыков мышления. Умения избежать ошибок явно недостаточно для эффективного мышления»[20].
   В книге Нурали Латыпова, Сергея Ёлкина и Дмитрия Гаврилова «Инженерная эвристика» заинтересованный читатель обнаружит рекомендации по преодолению инерции мышления, своеобразного психологического атавизма, способы развития творческого воображения, многочисленные примеры красивых и сильных решений как инженерно-технических, так и просто изобретательских задач, способствующих развитию таких необходимых навыков.
   Всё это можно найти уже хотя бы пролистывая издание. В подсознании читателя как бы сами собой расставятся необходимые метки, будут сделаны нужные закладки, накопятся аналогии.
   Отличительной особенностью книги является подход через физиологию человека – то самое, что остаётся неизменным тысячи и тысячи лет. Авторы останавливаются главным образом на особенностях строения и функционирования основного инструмента творчества – головного мозга.
   Это хороший концептуальный подход, ему следуют и выдающиеся мыслители современности:
   «На самом деле даже трудно предположить, каким образом тот, кто будет работать над вопросами мышления в будущем, сможет это сделать без понимания биологических процессов <…> от модели мозга как самоорганизующейся системы мы можем непосредственно перейти к пониманию творчества»[21].
   Когда вы возьмёте книгу второй раз, для вдумчивого прочитывания, советую также обратить внимание уже на саму комбинаторику принципов «придумывания», последовательность, логику превращения исходных условий задачи в красивый ответ на неё.
   Авторы опираются и на богатый исторический опыт, находят «изобретательское» в самых разных областях развития общества и отраслях знания, успешно решают проблему выхода за пределы обыденности, создают атмосферу праздника мысли, смещают шкалу ценностей в пользу людей творческих. Верю, что такой междисциплинарный подход оправдан и всячески приветствую его.
 
   доктор технических наук, профессор,
   Генеральный директор
   ООО «ЛУКОЙЛ-Инжиниринг»
   Н.Н. Карнаухов

Введение в тему

   Нет такого нового обычая, который бы не был старым.
Джеффри Чосер (1340–1400)


   Развитие – это тяжёлая работа, направленная против самого себя.
Георг Вильгельм Фридрих Гегель (1770–1831)


   Колодец, на дне которого, как говорят, скрывается истина, на самом деле является бездонной ямой.
Оливер Хевисайд (1850–1925)

   На исходе века девятнадцатого в России уже предпринимались попытки описать принципы системного подхода и к осмысленному изобретательству, и к развитию творческой личности, генерирующей идеи. Дисциплину, устанавливающую и изучающую законы творчества, ещё в начале XX века развивал выдающийся теоретик инженерного дела Пётр Климентьевич Энгельмейер (1855–1942) в рамках своей «Философии техники». Он назвал эту специальную отрасль эврилогией[22] и выделил три стадии креативного действия. Вначале – на психологической стадии – формируется замысел, возникает идея, предчувствие мысли, интуитивное ощущение. Логический этап, осуществляемый в рамках рациональных мыслительных процедур, приводит к непосредственному получению знания. На третьем этапе – конструктивном – сформулированная чётко и доказанная мысль получает конкретное воплощение, реализуется в материальной форме (Энгельмейер, 1910).
   «Сама жизнь, сама история неудержимо выдвигает инженера – этого поистине творца и руководителя хозяйства – из тесноты мастерских на широкую арену общественной деятельности и ставит его всё ближе и ближе к кормилу государства, и если пойти по стопам мудрого Платона и позволить себе мечту относительно идеального государства, то легко можно дойти до вывода, что… в современном государстве первенствующая роль неудержимо переходит к инженеру… Но если так, то инженер должен и готовиться к руководящей государственной роли, и готовиться сразу с четырех сторон, а прежде всего, конечно, со стороны технической в тесной связи с экономической и юридической. Но при этом нигде и никогда он не должен упускать из виду и этической стороны своей общественной функции… Вот в каком смысле, и на каком основании всё чаще и чаще раздаются авторитетные голоса, доказывающие необходимость сообщать инженеру уже в школе не одни технические познания, но и общую глубокую умственную культуру. Я бы сказал так, надо будущему инженеру сообщать: 1) фактические познания по технологии, экономике, законоведению, политике, психологии и этике; 2) кроме этого материала для мышления, надо дать ему возможность правильно пользоваться этим материалом, другими словами, выработать в нем мышление правильное, логическое, философское», – эти слова П.К. Энгельмейера актуальны сегодня как никогда, хотя сказаны они более века назад.
   Одна из первых попыток – описать последовательный ход творческой инженерной мысли – по словам того же автора была сделана немецким физиком и изобретателем Генрихом Мейдингером. Создатель печи медленного горения, он задался похожими вопросами в работе «Об изобретении» ещё в 1892 году. Мейдингер был весьма одарён в разных областях знания. Так он предложил усовершенствовать гальванический элемент «для продолжительного и постоянного, хотя и слабого тока», с 1859 года и не менее полувека его батарея использовалась в электрических звонках и часах, а также на телеграфе. Мейдингер успешно решал проблему домашних «холодильников», исследуя смеси льда и поваренной соли (Энгельмейер, 1911). Именно Мейдингеру добрых 60 лет подряд могли бы говорить «спасибо» все лакомки мира, пока в мороженицах с 1925 года не стали использовать сухой лёд.
   Среди русско-советских естественников, предложивших системный подход к творческому процессу, следует назвать Александра Александровича Богданова (1873–1928). Свою «Всеобщую организационную науку» А.А.Богданов (Малиновский) разработал ещё до Первой Мировой войны. В 1913 году вышло пионерское издание «Тектологии», в котором уже обсуждались понятия организации и дезорганизации, закономерности структурного преобразования и виды кризисов живых и технических систем в развитии, регулирующие механизмы, обеспечивающие их сохранение или уничтожение, описывала тектология и методы разрешения системных противоречий. Тектология предвосхитила множество идей и подходов ТРИЗ, общей теории систем Карла Людвига фон Берталанфи, кибернетики Ноберта Винера. Тектология – одна из основополагающих, актуальных и по сей день разработок, с которой следовало бы ознакомиться каждому уважающему себя современному инженеру: «Не надо думать, что технические знания одной отрасли только в этой отрасли и применимы: действительное единство человеческого труда господствует над его формальным разделением, и часто организационные методы оказываются пригодными далеко за пределами той области, где первоначально вырабатывались<…> Никакой специалист не может жить всецело и исключительно в своей специальности; его знания и опыт неизбежно выходят за ее пределы в силу связей и общения с другими людьми <…> Специализация повела к огромному развитию коллективной силы человечества в труде и в познании. Но всё же она – ограниченный двигатель прогресса. Рядом с условиями, облегчающими и ускоряющими прогресс, она заключает в себе также условия замедляющие; значение их вначале ничтожно, но с развитием оно возрастает и в позднейшие эпохи превращается в настоящее, глубокое противоречие, которое дорого обходится человечеству. Выгода специализации, это прежде всего – экономия сил. Работник не разбрасывает их по разным направлениям, а сосредоточивает на одном; в результате действие их оказывается значительнее, точнее, совершеннее. Так как поле организационного опыта сужено, то им овладеть легче; выработка навыков и приемов идет быстрее, успешнее. Тем не менее, рядом со сбережением сил идет и их расточение, на первых шагах незаметное, но неизбежное уже с самого начала. Оно вытекает из уменьшения связи людей и связности их опыта <…> Расхождение опыта и методов разных отраслей ведет к сужению кругозора специалистов и подрыву организационного творчества. Располагая, по отдельности, лишь ничтожной частью накопленных в обществе приемов и точек зрения, не имея возможности выбирать из них и комбинировать их наилучшим образом, специалисты не справляются с непрерывно накопляемым материалом, не в силах стройно и целостно организовать его. Получается нагромождение материала во всё более сыром виде, нередко подавляющее количеством. Усвоение делается всё труднее и вынуждает дальнейшее дробление отраслей на еще более мелкие, с новым сужением кругозора и т. д.», – обосновывал автор необходимость тектологического подхода, и, как мы понимаем, проблема остаётся насущной и поныне (Богданов, 1989).
   Предвоенные годы – период появления весьма работоспособных творческих методик, не претендующих на роль теорий, но повышающих количество «неожиданных» идей за счёт активизации психологических возможностей человека. В середине 1920-х в Берлинском университете уже задействован «метод фокальных объектов», в 1940-х гг. в США уже использовали так называемый «морфологический анализ» и «синектику», о которой пойдёт речь впереди.